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Abstract—The concept of structural complexity describes the
temporal progress of feature values on different time scales. We
apply it to audio features with the goal to classify music files
into genres using k-Nearest Neighbors and Random Forest. We
use a publicly available data set of 1550 music tracks which
are labeled as belonging to one of six different genres (or to
none of them). The classification models are trained with the
help of eight feature sets that describe different musical aspects
(chords, harmony, instruments, timbre, etc.) in order to find
out which features are best suited to predict these genres using
the structural complexity. We apply evolutionary multi-objective
feature selection to measure individual contributions of different
structural complexity features for each genre to feature sets
with the smallest classification errors. We also introduce a new
feature chord vector which is shown to perform significantly
better on genre classification with the structural complexity
method than the chord features used in a previous work. The
statistical analysis of time scales and features leads to several
recommendations for the setup of feature processing based on
structural complexity.

Index Terms—Music genre recognition, semantic audio fea-
tures, structural complexity, evolutionary feature selection

I. INTRODUCTION

Structural complexity is a method to measure the temporal
change of a base feature on different time scales suggested to
correlate to musical complexity as perceived by humans [1].
Other studies introduced similar concepts for the calculation
of harmonic complexity to predict genres and styles [2],
[3]. Genre classification is a very common task in music
information retrieval, because genres are a very popular way
to discover music and organize music collections (see survey
[4]). Nonetheless, genres are often hard to define, and even for
experts it can be difficult to label a song with a single genre.

Common approaches to recognize genres are based on
manually engineered audio signal features [5] or deep neural
networks in more recent studies [6], [7]. However, classifica-
tion models built with such descriptors are less interpretable
and cannot yield explainable rules why a certain music piece
is assigned to a particular genre. A more interpretable solution
are fuzzy rule-based systems which were used in [8] together
with evolutionary algorithms for music genre recognition. An-
other approach to this problem is the estimation of structural
complexity for semantic audio descriptors, which keeps the
feature space as interpretable as possible [9].

In our work, we have applied the k-Nearest Neighbor and
the Random Forest classifier together with structural complex-
ity for genre classification and examined the optimal setup of
parameters. The results have shown that the choice of a proper
time scale depending on the underlying feature group may
significantly improve the classification performance. Beyond
the estimation of structural complexity for chords, chroma-
derived characteristics, harmony, instruments, tempo/rhythm,
and timbre, we have implemented a novel feature for chord
statistics, which was significantly better than the previous
chord complexity vector from [9]. Furthermore, we have ap-
plied evolutionary multi-objective feature selection to measure
the individual importance of structural complexity feature
groups which contribute to feature subsets with smallest
classification errors using as few features as possible.

In Section II, we describe the algorithmic backgrounds of
structural complexity, audio features, classification methods,
and evolutionary feature selection. Section III deals with the
setup of experiments. The results are discussed in Section IV.
The concluding remarks are given in Section V.

II. METHODS

A. Structural Complexity

Structural complexity measures the change of a base feature
on different time scales [1]. Let x1, x2, ..., xS ∈ RM be M -
dimensional feature vectors that have been extracted for the S
frames of a music track. To calculate the structural complexity
for the frame i ∈ [0, S], the W feature vectors before and
including xi are compared to the W feature vectors after xi.
In order to do that, the vectors xi−W , ..., xi are summarized
with a function s : (RM )W → RM . The same is done for
the vectors xi+1, ..., xi+W . The results are compared with a
divergence function d : RM × RM → R+.

For s and d, we followed [1] using the mean for s and
the Jenson-Shannon divergence for d. For the time scales,
we set W ∈ {2, 4, 8, 16, 32, 64} (measured in seconds). The
music tracks were divided in partitions, for which we have
calculated the 1st, 2nd, and 3rd quartiles, the minimum, the
maximum, the mean, and the variance for each complexity.
This resulted in a 7-dimensional vector for each partition for
later classification. For W ∈ {2, 4, 8}, we used partitions of
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the size 24s with a 12s overlap; for W ∈ {16, 32}, 96s with
a 48s overlap, and for W = 64, 138s with a 69s overlap.

B. Features

We distinguish between 8 feature sets which describe differ-
ent musical properties. The structural complexity is calculated
on each of these groups separately. We adopt feature sets from
[9] extending them with a new feature chord vector described
below. Short descriptions and examples of the base features are
provided in Table I. All features are normalized using min-max
normalization before the structural complexity is calculated.

For the estimation of the chord vector, we have first
extracted the chords with Chordino Vamp Plugin [10]. For
structural complexity processing, they have to be converted
into numerical values. The feature set chords as used in [9]
contains numbers of different chords and their changes in
10s. That way, structural complexities can only be calculated
for partitions with a length of at least 10s and the values
describe some kind of change of change because the structural
complexity is not calculated on the chords themselves.

For the estimation of the structural complexity on the
extracted chords themselves, and not on their change, we
convert the chord names into vectors, for which means and
distances can be calculated, and the resulting values have some
kind of musical meaning. Each chord name is converted into a
20-dimensional binary vector. The first 12 indices of the vector
are a one-hot encoding of the root of the chord. Each index
represents one note of the chromatic scale. The use of one-hot
encoding has the benefit of every index of the vector having
its own unique meaning. Enharmonically equivalent chords
like D# and Eb have the same representation. The labeling
with either D# or Eb is dependent on the context. Sometimes
the ambiguity of enharmonic equivalences is even desired by
the composer. Therefore, we treat enharmonically equivalent
chords in the same way. The indices 13 through 16 are a one-
hot encoding of the different types of chords the plugin can
detect, i.e. major, minor, diminished, and augmented. The last
four indices describe the four different extensions the plugin
can detect, i.e. major sevenths, minor sevenths, diminished
sevenths, and sixths (although sixths and diminished sevenths
are enharmonically equivalent, we separate them, because they
have a very different musical meaning). Additional tensions
are not represented because they are not extracted by the
Chordino Vamp Plugin but can be considered in future work.
If the plugin extracts the chord name “N”, it means that it
either did not recognize the chord or that no harmonic sound
was identified in that moment. We represent this with a vector,
in which every index is 0.

As a result, we represent every chord as a unique vector
with the exception of enharmonic equivalencies and bass notes
(D7 and D7/F# have the same representation). The reason we
used 20 dimensions and not less was that every index of the
vector got its own meaning. For example, the first index of
the mean of some vectors describes, which ratio of the chords
have the root C and the value of the 13th index describes,
which ratio of the chords were major chords. That way, the

structural complexity of this vector can describe the change
of root notes and chord qualities in a given time frame.

C. Classification Algorithms

For classification we used the algorithms k-Nearest Neigh-
bors (KNN) and Random Forest (RF).

KNN is a very simple classification algorithm. Let x1, ..., xn
be labeled training instances. Let Y be the set of classes to
predict, so that a label yi ∈ Y will be assigned to each training
instance xi. To classify an unknown instance x, the algorithm
finds the k training instances that have the smallest distances
to x according to some metric (we use the Euclidean distance).
Then, the most frequent label in these k neighbors is assigned
to k. For binary classification, it is best to only use odd values
for k, so that it would be impossible to get a tie, cf. [11].

The RF classifier builds an ensemble of small decision trees,
each trained to classify the training examples [12]. For each
tree, only a subset of all features is randomly selected, in a
standard implementation equal to

√
|X| (X denotes the set

of all features). Unknown instances are then classified using
majority voting. This method is very robust and usually only
the number of trees should be adjusted.

Because we focus on semantic audio features and our
data set contained 1550 tracks (see Section III), we did not
apply deep neural networks which can be very powerful for
classification tasks but require very large training sets and
often lead to less interpretable features and models.

D. Feature Selection and Evaluation

To identify the most relevant structural complexity fea-
tures for individual classification tasks, we have integrated
multi-objective evolutionary feature selection (FS) based on
S-Metric Selection Evolutionary Multi-Objective Algorithm
(SMS-EMOA) [13] as proposed in [14] and adjusted in [15].
The selected features are here represented by a binary vector q
with qi = 1 indicating that the i-th feature has to be selected
and with qi = 0 to be removed from the training data set.

The first one is the balanced error rate εr, defined as:

εr =
1

2

(
FN

TP + FN
+

FP

TN + FP

)
, (1)

where TP is the number of true positives (classification
instances correctly predicted as belonging to the positive
category in a binary classification task), TN true negatives
(instances correctly predicted as not belonging to the positive
class), FP false positives (negative instances predicted as pos-
itives), and FN false negatives (positive instances predicted
as negatives).

The second optimization criterion is the number of selected
features, with the target to produce small and robust feature
sets keeping only the most relevant features:

fr =
|Φ(q)|
|X|

, (2)

where |Φ(q)| corresponds to the number of selected features
and |X| the overall number of features.



TABLE I
DESCRIPTIONS AND EXAMPLES OF THE USED FEATURE SETS

Feature set Description Examples of base features
Chords Chord changes in 10s frames Number of different chords in 10s
Chord vector The chord vector feature, see Section II-B Chord vector
Chroma Various chroma implementations Bass chroma [10]
Chroma-derived Features related to chroma Chroma maximum
Harmony Aspects of a track’s harmony Interval strengths estimated from 10 highest semitone values
Instruments Share of instruments in 10s frames Share of strings
Tempo and rhythm Aspects of a track’s tempo and rhythm Estimated beat number per minute
Timbre Aspects of a track’s timbre Zero-crossing rate

The optimization of SMS-EMOA parameters was beyond
the scope of this work, we used the setup which was successful
in previous studies. The population size was set to 50 solutions
(feature sets) randomly initialized with approximately half of
selected features. The number of expected bit flips per gener-
ation (mutations) was set to 64/|X|, with a larger probability
to deselect features (w1 = 0.05 and w2 = 0.2 after [15]). The
number of generations was 3000 (for the reasons of acceptable
convergence behaviour), and we run 10 statistical repetitions
for each combination of a classification task and a method.
For further details, see [14], [15].

III. EXPERIMENT SETUP

We have selected 1517-Artists dataset [16] for our exper-
iments, because it is publicly available and contains audio
tracks for the extraction of signal-based features. From the
original 3180 tracks assigned to 23 music genres, we have
selected only tracks from different artists in each category.
Only tracks longer than 138s were kept, so that the structural
complexity features could be calculated for all window sizes
(cf. Section II-A), leading to the final number of 1550 tracks.

Table II lists parameters of our study. We distinguish
between six genres for binary prediction in set {T}. {G} con-
tains 8 feature groups described in Section II-B. These features
are processed using the structural complexity with six different
window sizes, as described in Section II-A. For chords and
instruments, only the window sizes {W} = {16, 32, 64}
are used, since these features can only be extracted for 10s
windows. {A} denotes classification algorithms (cf. Section
II-C), {K} numbers of neighbors, and {N} numbers of trees.
{F} contains numbers of folds during 10-fold stratified cross
validation [17]. The music data set is partitioned into 10 folds,
such that the share of positive samples is roughly the same in
each fold. Because the folds contain much more negative than
positive tracks, we evaluate the classification performance with
the balanced relative error εr. All experiments were conducted
within the AMUSE-Framework [18].

IV. RESULTS

A. Overview

We show εr for all experiments with KNN in Fig. 1 and for
RF in Fig. 2. Table III lists εr for the best combinations of k
and W with KNN and the best combinations of the number
of trees and W with RF. After the separate classification with

TABLE II
SUMMARY OF PARAMETERS VARIED IN OUR STUDY

Set Parameter Values
{T} Classification tasks {Classical, Electronic & Dance, Jazz,

Rock & Pop, Rap, R&B & Soul}
{G} Feature groups {Chords, chord vector, chroma, chroma-

derived, harmony, instruments,
tempo and rhythm, timbre}

{W} Window size {2s, 4s, 8s, 16s, 32s, 64s}
{A} Algorithms {KNN, RF}
{K} No. of KNN neighbors {1, 3, 5, 7, 9, 11, 13, 15}
{N} No. of RF trees {100, 200}
{F} Validation folds {1, 2, ..., 10}

each complexity feature vector to measure its individual im-
portance, we have applied evolutionary FS (see Section II-D)
for the complete feature set with all structural complexities
and different analysis frames (294 dimensions). The mean εr
across all folds for the feature set with the smallest error after
10 statistical repetitions for each fold is provided in the last
two lines of the table.

Classical was the easiest genre to classify, while chroma
complexity was the best feature group. The best results were
reached with the combinations Classical and harmony, and Rap
and chroma. For Rap, good results were also reached with
the feature groups harmony and chord vector. Interestingly,
Classical music was classified quite well with instruments,
although this group did not work so well with the other genres.
We can also see that the new feature chord vector achieved
better results than the old chords complexity.

The classification with RF led to smaller errors than with
KNN for all genres after feature selection. Also for individual
structural complexities RF was often better than KNN, but
not always: for instance, recognition of Electronic with chord,
chroma, chroma-derived, and harmony complexities (half of
all eight groups) had smaller εr with KNN.

B. Comparison of Structural Complexity Groups in Feature
Sets with Smallest Errors

After the application of evolutionary FS as described in
Section II-D, we have analyzed feature sets with the smallest
errors for 10 folds. These sets were estimated after 10 statis-
tical repetitions of FS and the estimation of non-dominated
fronts for final populations. Table IV lists average relative
contributions of each structural complexity feature group to
these sets (in per cent, the numbers are normalized with regard



TABLE III
εr OF THE BEST PAIR OF k AND W WITH KNN AND THE BEST PAIR OF

THE NUMBER OF TREES AND W WITH RANDOM FOREST

Alg Class Elect Jazz Pop Rap RnB
Chords KNN 0.408 0.317 0.430 0.447 0.393 0.454

RF 0.307 0.318 0.384 0.374 0.473 0.469
Chord vector KNN 0.357 0.294 0.341 0.422 0.280 0.388

RF 0.243 0.260 0.259 0.357 0.215 0.363
Chroma KNN 0.219 0.270 0.366 0.378 0.194 0.371

RF 0.196 0.290 0.312 0.251 0.176 0.316
Chroma-derived KNN 0.254 0.361 0.393 0.327 0.327 0.353

RF 0.207 0.386 0.331 0.286 0.285 0.381
Harmony KNN 0.177 0.304 0.404 0.424 0.253 0.381

RF 0.095 0.322 0.388 0.418 0.196 0.386
Instruments KNN 0.244 0.416 0.350 0.335 0.325 0.414

RF 0.135 0.409 0.398 0.240 0.238 0.345
Timbre KNN 0.282 0.300 0.399 0.334 0.307 0.395

RF 0.191 0.278 0.313 0.236 0.229 0.342
Tempo and rhythm KNN 0.286 0.299 0.431 0.421 0.350 0.432

RF 0.237 0.287 0.422 0.377 0.347 0.348
Best KNN 0.057 0.075 0.145 0.128 0.067 0.174

RF 0.054 0.070 0.136 0.100 0.057 0.141

TABLE IV
SHARES IN PER CENT OF 8 STRUCTURAL COMPLEXITY FEATURE GROUPS

IN SELECTED FEATURE SETS WITH THE SMALLEST εr

Alg Class Elect Jazz Pop Rap RnB
Chords KNN 7.14 4.69 12.11 6.60 12.92 10.40

RF 3.41 6.11 13.33 7.00 7.45 9.25
Chord vector KNN 14.97 6.87 18.30 11.67 17.05 19.69

RF 14.66 10.10 23.89 14.87 15.19 10.25
Chroma KNN 14.61 17.06 21.22 16.25 27.65 21.54

RF 17.97 14.28 15.82 11.49 18.66 16.68
Chroma-derived KNN 5.24 10.67 6.78 20.98 6.80 9.61

RF 11.96 14.92 5.08 16.85 15.84 13.69
Harmony KNN 25.68 17.25 10.56 12.60 12.97 14.10

RF 22.37 14.23 12.68 14.79 9.47 13.31
Instruments KNN 10.94 3.64 6.33 4.06 2.14 4.09

RF 7.42 9.26 8.65 6.11 7.30 5.75
Timbre KNN 12.60 18.81 11.88 19.61 4.96 10.10

RF 11.81 15.86 9.80 18.68 13.34 15.47
Tempo and rhythm KNN 8.82 21.02 12.82 8.24 15.49 10.47

RF 10.40 15.24 10.75 10.20 12.75 15.60

to the number of features in the set with the smallest error,
and then averaged across all 10 folds). The numbers in bold
mark the largest shares for each category, estimated separately
for experiments with KNN and RF.

All structural complexity feature groups contribute to the
best selected sets, but, as expected, the importance of feature
groups varies across categories. Chords and instruments seem
to be the least important groups (for the latter one, possi-
bly because only guitar, piano, string, and wind instrument
groups were analyzed in the instrument complexity group [9]).
Chroma complexity has the largest share for 5 of 12 cases
(6 problems x 2 classifiers), being rather important. Chord
vector has higher shares compared to chords for each task
and classifier, however, it could not completely replace the
chords in the best selected feature sets.

With regard to genres, the identification of classical pieces
benefits at most from harmony structural complexity group.
For Rap and R’n’B, chroma complexity features have the
largest shares. Note that the groups with the largest con-

TABLE V
OVERVIEW OF STATISTICAL TESTS

# Compared Fixed Varied Dim.
1 {Wi,Wj} : i, j ∈ {1, ..., |W |} , i 6= j A, G, K̂/N̂ T , F 60
2a {Ki,Kj} : i, j ∈ {1, ..., |K|} , i 6= j T , A G, F 80
2b {Ni, Nj} : i, j ∈ {1, ..., |N |} , i 6= j T , A G, F 80
3 G1, G2 Ŵ,K/Ŵ,N T , F 60

tribution in Table IV are not necessarily the groups with
the smallest errors in Table III. E.g., for Electronic, chroma
complexity alone has the smallest εr = 0.270 with KNN and
chord vector with RF (εr = 0.260), but the groups with largest
contributions to the best selected feature sets are tempo/rhythm
for KNN and timbre for RF. Generally, we do not recommend
to omit the estimation of some “weaker” structural complexity
groups, but rather to store all these statistics and to apply
feature selection for the identification of the most relevant
groups and their combinations for each genre separately. This
automatic approach helps to extract musically meaningful
semantic information for further theoretical analysis of music
genres and styles, or also other categories, like music pieces
from a given composer or a particular time decade.

C. Comparison of Analysis Frames

Some of the observations of the previous section can be
explained by looking at the structural complexity values that
were calculated for different genres and feature groups. Fig. 3
shows the mean structural complexity values of the feature
groups and genres and their change depending on the window
size. Chroma complexity has a high variance across genres,
which explains its distinctive performance. For chord vector
and chords, the differences between the genres are much
higher for chord vector. That explains its comparatively better
performance. Tempo and rhythm performed relatively good for
Electronic and Dance. An interesting property of this genre’s
structural complexity values is that it has very low values for
short window sizes but high values for long window sizes.
This shows that combining features of different window sizes
could be helpful for genre classification.

D. Statistical Tests

For the statistical analysis of results, we compared εr by
means of the Wilcoxon signed rank test. Table V presents an
overview of tests. The column “Compared” contains settings
to compare, “Fixed” settings, which are the same for both
vectors to test, and “Varied” settings, which are varied along
the dimensions of vectors to test, and produce a final number
of dimensions in column “Dim.”.

The goal of the first test was to find the best settings for
window sizes during the calculation of structural complex-
ity. For a fixed algorithm from the set {A} and a feature
group from {G}, we compare two vectors. The first vector
contains errors using window size Wi, the second using Wj .
Both vectors have 60 dimensions: for each combination of
a classification task and a fold, we store the smallest error
across experiments with all values from K resp. N , denoted



Fig. 1. Balanced relative errors of the tests with the KNN classifier for every combination of feature set, window size, and number of neighbors. The horizontal
axis shows the number of neighbors (k). The vertical axis shows the window sizes (W ) in seconds. The values of the errors are represented by colors (see
legend on the bottom right).



Fig. 2. Balanced relative errors of the tests with the RF classifier for every combination of feature set, window size, and number of trees. The horizontal axis
shows the number of trees. The vertical axis shows the window sizes (W ) in seconds. The values of the errors are represented by colors (see legend on the
bottom right).



Fig. 3. Mean structural complexity values of the feature groups chroma, chord
vector, chords, and tempo & rhythm. The mean complexities are marked on
the vertical axes. The window sizes (W ) are marked on the horizontal axes.

here with K̂ and N̂ . Because all categories contribute to each
application of the test at the same time, we can provide here
general recommendations for the setup of window size with
regard to the feature group.

Table VI shows only significant differences between win-
dow sizes. A ≺ B denotes that the setting A produced a
significantly lower error as B, with p-values listed in columns
“p(KNN)” and “p(RF)”. For the chroma complexity, the best
setting seems to be Wi = 8, however, the advantage is
more clear for RF compared to KNN. For the chroma-derived
complexity, the best setting is Wi = 2, however, it is not
significantly better than Wi = 4. For the chords complexity,
no significant differences were estimated. For the chord vector
complexity, the best window size is Wi = 2, for harmony
Wi = 4, for instruments Wi = 16, and for timbre Wi = 4.
Wi = 8 seems to be quite good for tempo and rhythm.

Generally, smaller window sizes seem to perform better; the
window size of 64s could not significantly outperform other
sizes for all feature groups. Wi = 16 was not better than
smaller window sizes (and is recommended for instruments
only because it was the smallest possible window size). The
choice of Wi ∈ {2, 4, 8} depends on the feature group.

The goal of the second test was to find the best k for KNN
and to compare the numbers of trees in RF. For KNN, the
best k varies strongly for different classification tasks. For
Classical, the only significant observation is that Ki = 5 is
better than Kj = 1 (p=0.02918). For Electronic and Dance
as well as for Rap, the best value is Ki = 11, which is
significantly better than Kj ∈ {1, 7, 9} resp. Kj ∈ {1, 5}.
For Jazz, the best value is Ki = 9, significantly better than
Kj ∈ {1, 15}. For Pop/Rock and R’n’B/Soul, there were
no significant differences across all pairs of k values. The
numbers of trees for RF were not significantly different for
all classification tasks.

Finally, the third test showed that the proposed chord vector
complexity significantly outperformed chords for both algo-
rithms. For KNN, the median error of chord vector across all
categories and folds was 0.27818 against 0.33116 (p=2.1885e-
07), and for RF, 0.29605 against 0.36525 (p=2.5616e-07).

V. CONCLUSIONS

In this work, we tested and optimized feature processing by
means of structural complexity in combination with different
semantic audio feature groups for music genre classification.
With the help of evolutionary multi-objective feature selection,
it was possible to identify the best combination of features and
to measure the individual contribution of structural complexity
groups to feature sets with the smallest classification errors,
allowing for a further theoretical analysis of music categories
like genres and styles.

We found that the structural complexity method tends to
work best for smaller window sizes with the concrete values
depending on the base feature group that is used, but also
depending on the classification task. Further recommendations
for reasonable window sizes were provided with respect to
different feature groups. We have also introduced the new



TABLE VI
RESULTS OF THE TEST COMPARING WINDOW SIZES

Comparison p(KNN) p(RF)
Chroma

Wi = 2 ≺Wj = 32 0.000179
Wi = 2 ≺Wj = 64 1.108e-05
Wi = 4 ≺Wj = 32 0.009258
Wi = 4 ≺Wj = 64 0.002542
Wi = 8 ≺Wj = 4 0.032059 0.023592
Wi = 8 ≺Wj = 16 0.016400
Wi = 8 ≺Wj = 32 0.004030 2.052e-06
Wi = 8 ≺Wj = 64 0.003233 7.827e-07
Wi = 16 ≺Wj = 32 0.021114 0.002669
Wi = 16 ≺Wj = 64 0.001262

Chroma-derived
Wi = 2 ≺Wj = 8 0.005390 0.009160
Wi = 2 ≺Wj = 16 2.550e-06 8.163e-06
Wi = 2 ≺Wj = 32 1.036e-05 2.550e-06
Wi = 2 ≺Wj = 64 0.000728 2.629e-05
Wi = 4 ≺Wj = 8 0.023143
Wi = 4 ≺Wj = 16 2.561e-07 7.351e-06
Wi = 4 ≺Wj = 32 6.956e-05 1.114e-05
Wi = 4 ≺Wj = 64 0.005226 6.816e-05
Wi = 8 ≺Wj = 16 8.456e-05 0.026202
Wi = 8 ≺Wj = 32 0.001279 0.003101
Wi = 8 ≺Wj = 64 0.015127

Chord vector
Wi = 2 ≺Wj = 16 0.006975 0.010161
Wi = 2 ≺Wj = 32 0.000563 8.438e-06
Wi = 2 ≺Wj = 64 2.160e-05 2.128e-06
Wi = 4 ≺Wj = 32 0.031586 3.748e-05
Wi = 4 ≺Wj = 64 0.000831 3.404e-05
Wi = 8 ≺Wj = 32 0.040344 3.192e-05
Wi = 8 ≺Wj = 64 0.008587 0.000671
Wi = 16 ≺Wj = 32 0.000619
Wi = 16 ≺Wj = 64 0.040805 0.001081

Harmony
Wi = 2 ≺Wj = 16 5.311e-05 0.000540
Wi = 2 ≺Wj = 32 9.848e-05 2.534e-05
Wi = 2 ≺Wj = 64 0.000540 4.832e-05
Wi = 4 ≺Wj = 8 0.041174 0.007372
Wi = 4 ≺Wj = 16 1.261e-06 9.528e-05
Wi = 4 ≺Wj = 32 8.732e-06 1.057e-06
Wi = 4 ≺Wj = 64 1.894e-05 7.353e-06
Wi = 8 ≺Wj = 16 0.000342
Wi = 8 ≺Wj = 32 0.000959 0.001199
Wi = 8 ≺Wj = 64 0.001435 0.001756
Wi = 16 ≺Wj = 32 0.044852
Wi = 16 ≺Wj = 64 0.018857

Instruments
Wi = 16 ≺Wj = 32 0.026221 3.042e-05
Wi = 16 ≺Wj = 64 0.037897 1.648e-06

Tempo and rhythm
Wi = 2 ≺Wj = 4 0.029718
Wi = 2 ≺Wj = 32 0.009978
Wi = 2 ≺Wj = 64 0.004091
Wi = 8 ≺Wj = 4 0.024747 0.007207
Wi = 8 ≺Wj = 16 0.038106
Wi = 8 ≺Wj = 32 0.017072 0.000347
Wi = 8 ≺Wj = 64 0.000310
Wi = 16 ≺Wj = 32 0.046040

Timbre
Wi = 2 ≺Wj = 32 0.048085
Wi = 2 ≺Wj = 64 0.009979
Wi = 4 ≺Wj = 2 0.042904
Wi = 4 ≺Wj = 16 0.000578 0.024748
Wi = 4 ≺Wj = 32 0.001756 0.001026
Wi = 4 ≺Wj = 64 0.019615 0.000446
Wi = 8 ≺Wj = 2 0.004227
Wi = 8 ≺Wj = 16 0.000888 0.0001216
Wi = 8 ≺Wj = 32 0.000347 4.592e-06
Wi = 8 ≺Wj = 64 0.007701 1.227e-05

feature chord vector which performed significantly better than
related statistics from the previous work.

In future, we plan to test further combinations of structural
complexity features (and the base features for each complexity
group), together with other processing parameters, like the
choice of a distance metric. Further applications include other
classification tasks like recognition of emotions or music
segmentation.

ACKNOWLEDGMENTS

This work was partly funded by the DFG (German Research
Foundation, project 336599081).

REFERENCES

[1] M. Mauch and M. Levy, “Structural change on multiple time scales as
a correlate of musical complexity,” in Proc. 12th Int’l Society for Music
Information Retrieval Conf. (ISMIR), 2011, pp. 489–494.
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