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Abstract—Text classification is one of the most important
tasks in the field of Natural Language Processing. There are
many approaches that focus on two main aspects: generating an
effective representation; and selecting and refining algorithms
to build the classification model. Traditional machine learning
methods represent documents in vector space using features such
as term frequencies, which have limitations in handling the order
and semantics of words. Meanwhile, although achieving many
successes, deep learning classifiers require substantial resources
in terms of labelled data and computational complexity. In this
work, a weighted ensemble of classifiers (WEC) is introduced to
address the text classification problem. Instead of using majority
vote as the combining method, we propose to associate each
classifier’s prediction with a different weight when combining
classifiers. The optimal weights are obtained by minimising a
loss function on the training data with the Particle Swarm
Optimisation algorithm. We conducted experiments on 5 popular
datasets and report classification performance of algorithms with
classification accuracy and macro F1 score. WEC was run with
several different combinations of traditional machine learning
and deep learning classifiers to show its flexibility and robustness.
Experimental results confirm the advantage of WEC, especially
on smaller datasets.

Index Terms—Text Classification, Ensemble Method, Ensemble
of Classifiers, Multiple Classifiers, Particle Swarm Optimisation.

I. INTRODUCTION

Text classification is one of the most popular tasks of
Natural Language Processing (NLP) which involves assign-
ing a sentence/document one category from a list of pre-
defined categories. There are various real-world applications
ranging from classifying a review’s sentiment to classifying
news/research articles into various topics in online libraries
[1]. In recent years, there has been much research on this
topic which mainly focuses on two aspects: representation of
the text; and choice of classifier to approximate the relations
between text representation and categories.

Before the wave of Deep Neural Networks (DNNs), statisti-
cal representations of text, such as n-gram and Bag-of-Words
based Term Frequency (TF) and Term Frequency-Inverse
Document Frequency (TF-IDF) features were frequently used.
In order to utilise these representations, machine learning
algorithms, such as Naı̈ve Bayes (NB) and Support Vector
Machine (SVM) are frequently employed as the classification
model. Although these traditional classification models can
achieve good performance, they are only able to use the
presence of a word in the document and do not address the

order or semantics of the words which is a drawback of
traditional machine learning approaches.

Word Embedding algorithms such as word2vec and GloVe
[2], [3] introduced a new approach to NLP in which the
vectored representation of words can be used to capture the
semantics. The dense representation of a word in high dimen-
sional space tries to group the words with similar meaning in
the same cluster and increases the distance from the words
with dissimilar meaning. These word embeddings are fed
into different types of DNNs such as Convolutional Neural
Networks (CNNs) [4], [5], Long short-term memory (LSTM)
[6] and Recurrent Neural Networks (RNNs) [7] with various
backbone architectures to learn the relationship between the
representation and its associated class label in the training
data. Several advanced versions of Word Embeddings such
as ELMo [8] and BERT [9] capture the context of a word
in the sentence by using language models (LM) to generate
deep contextualised representations of full sentences using pre-
trained LMs with RNN or Transformer architectures.

Despite many successes with DNNs compared to the tradi-
tional algorithms on text classification problems, DNNs have
their own drawbacks in terms of high resource requirements
in relation to the amount of labelled data and computational
training time. In many real-world applications where acquiring
labelled data is an integral part of a process, employing deep
learning algorithms in the initial phase is not effective due to
the lack of labelled data. In this work, we propose a novel
weighted ensemble of different algorithms and statistical text
representations to classify text data. We construct an ensemble
of text classifiers in which each classifier is obtained by
training a different learning algorithm (traditional or deep
learning algorithms) on a specific representation (i.e. set of
features) extracted from the text sentence or document. The
selected classifiers are combined to obtain the final collab-
orated prediction. In the proposed combining method, each
classifier puts different weights on its predictions which reflect
its contribution to the collaborated prediction. We propose to
search for the optimal combining weights by minimising a 0-1
loss function on the training data.

The main contributions of our work are:

• introduction of Weighted Ensemble for Text
Classification (WEC), a novel ensemble model based
on a weighted combining method to address the text
classification problem;
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• introduction of a new search method for the optimal
combining of weights by minimising the 0-1 loss function
on the training data; and

• demonstrating effectiveness by experimentally showing
that WEC is better than some well-known benchmark
algorithms on a number of datasets 1.

The rest of the paper is organised as follows. In section
2 we discuss some related work on existing text classification
approaches, focusing on deep learning and ensemble methods.
In section 3 we introduce our proposed method. Section 4 has
details of our experiment set up while results and discussion
follow in section 5. In section 6 we give our conclusions and
propose some modifications for future work.

II. RELATED WORK

A. Approaches for text classification

In recent years, there has been significant development in
deep learning techniques applied to text classification. The
state-of-the-art for learning the approximation between text
representation and categories has mostly shifted from using
traditional machine learning to deep learning methods.

Authors in [4] presented a CNN architecture which uses the
word2vec word embedding to represent text data. In this work,
a multi-channel convolution layer was applied on top of the
word embedding generated from a pre-trained word2vec model
and then a maxpool layer is applied to all the convolution
filters. Finally, the convolution layers are concatenated and
flattened into a vector for applying the softmax function on
the final layer. Another version of CNN was presented in
the work [5], where a sentence is encoded on the character
level instead of word-level to represent the textual data. In
this work, authors identified 70 different characters (including
alphabets, digits and special characters) for encoding and then
represented a sentence with one-hot encoded vector with 70
elements.

With the introduction of the new idea of contextualised word
vectors representation [8], [10], the pre-trained LMs are used
to represent the words in a sentence using their context. These
methods generally take the character level encoded words
and apply a bidirectional-LSTM LM to learn the contextual
representation of the words. Following this idea, Howard and
Ruder [11], presented a technique of transfer learning for text
classification where a LM is trained unsurprisingly on a huge
corpus of text followed by the domain-specific fine-tuning of
the LM. Finally, this fine-tune LM is frozen with a softmax
layer on top followed by fine-tuning by unfreezing the LM
layer by layer from penultimate to the first layer on domain-
specific data. The idea behind this is to have different learning
rates for different layers. This method was introduced by the
name of Universal Language Model Fine Tuning or ULMFiT
which outperformed many state-of-the-art methods on more
than five standard datasets.

Vaswani et.al. [12] presented a new deep architecture called
Transformers which only uses a combination of attention

1The intial codebase can be found at: https://github.com/panditu2015/WEC

systems and feed-forward neural networks without any convo-
lutional or recurrent element to train the deep learning models
on huge datasets in comparatively less training time. Using the
Transformer architecture, the pre-trained LMs such as Open
AI’s GPT [13] and Google’s BERT [9] are used for generating
a contextualized vector representation of words in a sentence.
These pre-trained LM can be used for any downstream task
with just a few modifications, such as adding the softmax
at the top layer when applied to text classification. These
works have largely given improved performance on various
NLP tasks [9], [13], including text classification on which
they have established themselves as current state-of-the-arts on
many datasets ranging from topic classification to sentiment
analysis.

Although these methods perform well on a lot of tasks
and datasets, they come with a disadvantage of needing
huge labelled datasets for the training phase. When sufficient
labelled data is not available during the training phase, these
methods tend to perform poorly compared to other traditional
machine learning algorithms.

B. Ensemble methods for text classification

Ensemble learning is a learning mechanism by combining
a set of learners i.e. classifiers to obtain better result than
using each individual learner. In general, ensemble learning
can be categorised into two main types namely homoge-
neous ensemble and heterogeneous ensemble [14], [15]. In
homogeneous ensemble, many new training sets are generated
from the original training data. One learning algorithm then
trains the set of learners on these new training sets. Several
well-known homogeneous ensemble methods are Bagging,
Boosting, Random Subspace, and Random Forest. Meanwhile,
in heterogeneous ensemble, different learning algorithms train
learners on the original training data and final prediction is
made by combining the output of these learners. This type
of ensemble focuses on designing the combining algorithm
that combines the outputs of the learners. One well-known
heterogeneous ensemble approach is Stacking which trains
the combining algorithm on the predictive outputs of training
observations [16].

Several examples of ensemble methods in text classification
using different representations or learning algorithms are as
follows. In the work [17], the authors proposed the use a RNN
layer on top of the CNN + max pooling layers supporting
the idea of capturing both local and global textual semantics
from a sentence. In [18], linguistic features such as parts of
speech and word senses with TF-IDF vectors, were combined
with several learning methods such as Naive Bayes and SVM.
Authors in [19] analysed the use of bigram, unigram, TF and
TF-IDF features with different ensemble learning algorithms
(e.g., Boosting, Random Subspace, and Bagging) combined
with other classification algorithms such as Naive Bayes (NB),
Support Vector Machine (SVM), and k-nearest neighbours (k-
NN). In [20], an ensemble classification method is presented
which utilises the static classifier selection with majority
voting error and the multi-objective differential evolution algo-
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rithm for sentiment analysis. The drawback of these techniques
is that they only combine either different learning algorithms
on same representation or different representations with same
learning algorithms for their ensemble. On the other hand,
our heterogeneous stacking ensemble method utilises different
representations combined with different learning algorithms at
the same time.

III. PROPOSED METHOD

A. General Descriptions

Let D be the training data, i.e. the text documents with
class labels. Each class label belongs to the set of labels
Y = {y1, y2, · · · , yM}. Let H = {hi} be the ensemble
of classifiers in which each classifier is a function from
the feature space to Y which returns a M -dimension vector
Si(·) = [si,1(·), si,2(·), · · · , si,M (·)] where si,m(·) is the
support that classifier hi gives to the hypothesis that a sample
belongs to the class label ym. The si,m(·) is considered under
the assumption si,m(.) ∈ [0, 1] and

∑M
m=1 si,m(·) = 1 for

each i [21]. In ensemble methods for the classification prob-
lem, one combining algorithm C is applied to Si(.) to obtain
the combined hypothesis h̃(·) = C{Si(·)}. The hypothesis
h̃(·) will be used to predict a class label for samples.

The proposed method is presented in Fig 1. It is recognised
that there are some well-known feature representations pro-
posed for the text classification problem such as TF, TF-IDF,
and Word Embedding. From the given text training set, we ap-
ply several feature extraction methods to get the new training
sets associated with each of these feature representations. The
K learning algorithms will train on these new training sets to
obtain the classifiers. It is noted that some representations are
only suitable for particular learning algorithms. For example,
TF and TF-IDF are a 1-D feature representation that is suitable
for traditional machine learning algorithms. Meanwhile, the
Word Embedding is a 2-D feature representation, which is
suitable for DNNs. Assume that we can train the L classifiers
from the set of S types of feature representations and K learn-
ing algorithms. After obtaining the classifiers, we combine
their outputs for the final collaborated prediction. Normally,
the outputs of the classifiers are combined in which the role
of each classifier is treated equally in the combination [16].
In fact, different learning algorithms use different approaches
to train the classifiers, resulting in the differences in their
classifiers’ outputs. Some classifiers which perform well on
specific tasks should have higher contributions than those
that perform poorly. In this study, we propose a weighted
combining method on the outputs of the classifiers for the
text classification. Lets denote the weights as w = wim in
which wim ∈ [0, 1] is the weight of classifier hi putting
on the combining result on class label ym. By using the
different weights among the different classifiers, we can set
the contributions of the classifiers to the final combination,
thus intuitively expecting higher prediction performance.

The question that arises from the proposed method is how
to search for a suitable combining weight w for each situation.
We formulate the optimisation problem which we can solve to

Text Training Set

Feature Extraction

Training Set (Feature 1)

Training Set (Feature 2)

Learning Algorithm 2

Learning Algorithm 2

Training Set (Feature S) Learning Algorithm K

Set of Classifiers HWeighted CombinerPrediction

There are two modules namely Feature Extraction and Weighted Combiners are noticed. The learning algorithm 1 and 2
can train the classifiers on the training set associated with Feature 1 and 2. Meanwhile, the learning algorithm K can
only work on the training set associated with the feature S (in orange color).

Fig. 1. The proposed weighted ensemble of classifiers for text classification.

find the optimal value for w. Starting from the support matrix
S in (1) including the vector of supports of all classifiers to
all the training observations [22] (S is a matrix of N -row as
number of training observations and M × L-columns as the
concatenation of the vector of supports of each classifier for
each observation), we formulate the combined hypothesis from
S and w by (2):

S =

 s1,1(x1) · · · s1,M (x1) · · · sL,1(x1) · · · sL,M (x1)
. . .

s1,1(xN ) · · · s1,M (xN ) · · · sL,1(xN ) · · · sL,M (xN )


(1)

h̃(xn) : xn ∈ y if y = argmaxym,m=1···M
1

L

L∑
i=1

wimsi,m(xn)

(2)
Since xn is a training observation, its ground truth is

available. Based on the comparison between the prediction
given by hypothesis h̃(xn) and the ground truth ŷ , we can
compute the loss-value on xn:

L0−1(w, xn) = 1−
∥∥h̃(xn) = ŷn

∥∥ (3)

in which ‖·‖ returns 1 if the condition is true, otherwise
returns 0. This loss function is for the classification error rate
which is one of the most popular performance metrics in the
literature [21]–[23]. The loss on the training set associated
with w is given by:

L0−1(w) =
1

N

N∑
n=1

L0−1(w, xn) (4)

The optimal combining weight is obtained by minimising
the loss value in (4) for wim ∈ [0, 1] , i = 1, · · · , L;m =
1, · · · ,M . The optimisation problem is given by:

minw={wim}L0−1(w)

s.t. wim ∈ [0, 1] , i = 1, · · · , L;m = 1, · · · ,M
(5)



B. Optimisation

In this study, we use the Particle Swarm Optimisation (PSO)
algorithm to search for the optimal weights used to combine
classifiers. PSO is stochastic population-based algorithm, orig-
inally introduced by Kennedy and Eberhart [24], [25], inspired
by the emergent motion of a flock of birds searching for
food. In comparison to other optimisation algorithms, PSO has
some advantages. As a member of the family of evolutionary
computation, it is well suited to handle non-linear, non-convex
spaces with non-differentiable, discontinuous objective func-
tions. PSO can work with diverse types of variables including
continuous, discrete and integer types. In comparison to other
evolutionary computation-based optimisation methods, PSO
requires a fewer number of function evaluations, while leading
to better or the same quality of results [26]. PSO, in addition,
can be efficiently parallelized to reduce computational cost.

The main concept of PSO is a particle involving two com-
ponents: a position vector which refers to a potential solution
(candidate) for the optimisation problem and a velocity vector.
To search for the optimal solution, five steps on the particles
are conducted:
Step 1: We first initialise a set of positions w(0)

i (i =
1, · · · , nPoP ) where nPoP is the number of candidates
in each generation and velocities v(0)i randomly distributed
throughout the design space bounded by specified limits.
Normally, the w(0)

i and v(0)i are generated from the uniform
distribution as w(0)

i ∼ U [bl, bu], v(0)i ∼ U [−|bu−bl|, |bu−bl|].
We also initialise the best know position p(0)

i by w(0)
i and

update the swarm’s best-known position p(0)
g based on the

comparison between the value of the objective functions
f(p(0)

i ) and f(p(0)
g ).

Step 2: At the tth iteration (1 ≤ t ≤ maxT ), we update the
position of each particle using its previous position and its
updated velocity vector as in (6) and (7):

w(t)
i = w(t−1)

i + v(t)i (6)

v(t)i = av(t)i +C1r1(p(t−1)
g −w(t−1)

i )+C2r2(p(t−1)
g −w(t−1)

i )
(7)

in which a is inertia weight used to set up the balance
between the abilities of global and local search in PSO, C1

and C2 are the social and cognitive attraction indicating how
much confidence it has in the swarm or in itself respectively,
and r1 and r2 are two random number drawn from a uniform
distribution over [0, 1].
Step 3: We evaluate the objective function values f(w(t)

i ). In
this study, the objective function is the 0 − 1 loss defined in
(4).
Step 4: The optimum particle position p(t)

i at the current
iteration and the global optimum particle position p(t)

g are
updated based on the comparison between f(w(t)

i ) and f(p(t)
i ),

and f(p(t)
i ) and p(t)

g .
Step 5: Repeat steps 2–4 until the stopping criteria is met e.g.
when the number of iterations reaches the predefined maxT .

The training phase and classification phase of the proposed
weighted ensemble of text classifiers are present in Algorithm
1, 2, and 3. The training process receives the inputs including
the training text data D, a set of K learning algorithms K,
feature type F (which are the types of feature we extracted
from the text data D, and |F| = S), and some parameters
of PSO (two popular parameters such as other population-
based algorithms: maximum number of iterations maxGen,
population size nPop and three parameters of PSO: inertia
weight: a, social and cognitive parameter C1, C2. In step 1-3,
based on the feature type F, we extract S features Fj from D.
In step 4-6, we train each of K learning algorithm K on the
features Fj . The result of this training is the set of classifiers
H including L classifiers.

In step 7-17, we generate the supports associated with each
feature vector for the training observations. In detail, we apply
T-fold Cross Validation on the training text data D to obtain the
support matrix S which includes the supports of all classifiers
for N training observations.

In step 18-19, we apply PSO to search for the optimal
weights ŵ for combining classifiers. In Algorithm 2, for each
candidate w generated in an iteration of PSO, we compute the
combining result from the support for xn i.e. S(xn) and w
by using (2). By comparing the predicted label h̃(xn) and the
ground truth label ŷn, we can calculate the 0 − 1 loss value
on each observation xn (Step 4 in Algorithm 2). After looping
through all training observations, we obtain the 0−1 loss value
on the training data associated with candidate w. The value
of the 0 − 1 loss function will be used as the fitness value
of each candidate. At each iteration of PSO, we update the
position (i.e. the combining weight w) of each particle using
its previous position and its updated velocity vector (6) and
(7). At the end of PSO, we obtain the optimal weight ŵ which
has the lowest value of fitness function among all candidates.

The classification process works in a straightforward way
(Algorithm 3). The process receives three inputs including the
optimal weights ŵ, the set of classifiers H, and a sample x that
needs to be classified. In the first step, x is classified by each of
classifiers in H. The output of this step is the support vector for
x i.e. Sx. The support vector is combined corresponding to the
class label based on the optimal weight ŵ :

∑L
i=1 ŵimsi,m(x).

Based on the combining result, we assign a label to x by using
(2).

IV. EXPERIMENTAL SETUP

A. Datasets

To evaluate our method we used five benchmark datasets
on text classification selected from different previous works
[5], [6], [11], [27], [28]. A summary of dataset statistics is
given in Table I. The number of classes (|c|) in each dataset
is shown in column 2. We present the number of samples in
training and testing set (tr for train and ts for test) in column
3, as well as the length of vocabulary from training set (|v|)
in presented in column 4.
• Newsgroup: Newsgroup20 is a popular dataset with

news articles from different sources categorized into 20



Algorithm 1 Training phase
Input: Training text data D, learning algorithms K, maxi-

mum number of generations: maxGen, population size:
nPop, inertia weight: a, social and cognitive parameter
C1, C2, feature type F

Output: The optimal weights of ŵ and H
Extract Features

1: for each type in F do
2: Extract feature Fj from D
3: end for

Generate the classifier
4: for each pair of feature Fj and learning algorithm Ki do
5: Training the classifier hij

H = H ∪ hij
6: end for

Generate the support matrix
7: Support S = φ
8: D = D(1) ∪ · · · ∪D(T ), D(i) ∩D(j) = φ(i 6= j)
9: for each D(i) do

10: D(−i) = D−D(i)

11: for each feature Fj do
12: Get the data F (−i)

j and F
(i)
j in Fj associated with

D(−i) and D(i)

13: Train ensemble of classifiers on F
(−i)
j using each

learning algorithm in K
14: Classify samples of F (i)

j by these classifiers
15: Add outputs on samples in F (i)

j to S
16: end for
17: end for

Search for optimal weights using the PSO method with
a,maxGen, nPop, C1, C2

18: For each candidate w, compute the loss value using
Algorithm 2

19: Select the optimal ŵ at the end of PSO
20: return ŵ and H

Algorithm 2 Compute the loss value for each candidate
generated in PSO algorithm
Input: Candidate w
Output: The loss value for w

1: for each xn ∈ D do
2: Compute the combining result from S(xn) and w
3: Assign a class label for xn using hypothesis h̃(xn) (2)
4: Compute L0−1(w, xn) by (3)
5: end for
6: Compute L0−1(w) by (4)
7: return L0−1(w)

Algorithm 3 Classification phase
Input: Unlabeled sample x, the optimal weights ŵ and H
Output: Predicted class label for x

1: Obtain the support S(x) by using H
2: Compute the combining result from S(x) and ŵ.
3: Assign the class label by using (2).

TABLE I
DATASETS USED IN THE EXPERIMENTS

Name |c| tr/ts |v|
Newsgroup (NG) 4 8335/5558 44,333

Reuters (RU) 8 5485/2189 14,575
Deception (DC) 2 1200/400 9064
AG News (AG) 4 1.2M/7.6k 63,738
Dbpedia (DB) 14 5.6M/70k 727,621

different classes. For our experiment, we choose four
major classes from Newsgroup20 dataset (comp, politics,
rec & religion) following the approach adopted by [6].

• AG News: This is also a dataset comprised of news
articles from more than 2000 data sources, out of which
we select the four major classes with the highest number
of samples following the approach adopted by [5].

• Dbpedia: This is a crowd-sourced community ef-
fort dataset with structured information extracted from
Wikipedia. It contains abstract and topic from 14 non-
overlapping classes obtained from Wikipedia articles
[29].

• Reuters: This dataset consists of news articles from
different categories and topics. We select the top 8 classes
with the highest number of samples [30].

• Deception: The dataset consists of reviews collected from
the users of 20 hotels in Chicago. It contains 800 truthful
and 800 deceptive reviews. We use this dataset to classify
the reviews into deceptive or truthful reviews [27], [28].

B. Experimental Settings and Benchmark algorithms

We selected 5 traditional machine learning algorithms
namely Random Forest (RF), Naive Bayes (NB), Logistic Re-
gression (LR), Support Vector Machine (SVM), and XgBoost
(XgB) in constructing the ensemble. The configuration used
for these algorithms are given as follows:
• RF: The number of trees was set to 100, the criteria for

measuring the quality of a split was the Gini index.
• NB: Multinomial distribution of Naı̈ve Bayes was used

in which the smoothing parameter was set to 10.
• LR: The multinomial loss was used to fit across the entire

probability distribution.
• SVM: The regularization parameter was set to 1 with

squared L2 penalty and linear kernel.
• XgB: The number of estimators was set to 100 while the

maximum depth allowed for a tree is kept to 3 by default.
These parameters were obtained using the grid search cross-

validation on the train set of newsgroup data. We used the
Scikit-Learn library 2 to implement these algorithms. For the
feature representation, we used two features namely TF and
TF-IDF to represent the text data for the traditional machine
learning algorithms. For the training of PSO, the inertia weight
a was set to 0.9 while two parameters c1 & c2 were set to
1.494. The number of iterations was set to 100 while the
population size was set to 50.

2https://scikit-learn.org/stable/index.html
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There have been a lot of developments in the field of
text classification in terms of using DNNs. We compared our
method with two deep-learning benchmark algorithms for text
classification namely ULMFiT and BERT. ULMFiT [11] is
one of the pioneer works proposing neural transfer learning for
NLP. The authors presented a fine-tuning approach for sharing
weights from a pre-trained Bi-LSTM LM for a classification
model. This work out-performed many state-of-the-art algo-
rithms on various text classification datasets. Following the
success of transformers and ULMFiT, authors in [9] proposed
a similar fine-tuning approach using transformers that out-
performed many state-of-the-arts in various downstream NLP
tasks.

The configuration used for these algorithms are:
• ULMFiT: Pre-trained AWD-LSTM LM [31] with highest

learning rate allowed for pre-training as 1e − 3. Fine-
tuning each layer with different learning rate starting from
2e− 3/100 to 2e− 3 3 .

• BERT: Pre-trained LM with 12 transformer layers, each
having 12 self-attention heads and 786 hidden layers
feed-forward neural net. Bacth size for classifier training
is 32 with learning rate as 2e−5 and warmup proportion
as 0.1 4.

V. RESULTS AND DISCUSSIONS

A. Ensemble with different configurations

We compared the performance of WEC with 5 different
configurations, i.e. using different classifiers to construct the
ensemble. Fig. 2 and 3 show the classification accuracy and
macro F1 score of 5 versions of WEC on experimental
datasets. It is noted that we could not run SVM on the 2
largest datasets, namely AG News and Dbpedia , because of
the computational complexity. That’s why observations shown
in fig. 2 & 3 and table II & III don’t have any value in AG
News and Dbpedia results for combinations where SVM is
involved.

Some of the observations from experimental results are as
follows:
• Using different combinations of classifiers can obtain

slightly different results. For example, WEC (RF, NB,
LR) is about 2% better than WEC (RF, NB, LR, XgB)
on the AG News dataset.

• Among the different configurations of traditional machine
learning algorithms, WEC obtains the best results on the
Reuters and Deception dataset when RF, LR, NB, SVM,
and XgB were used to construct the ensemble.

• When adding BERT and ULMFiT to WEC, the new
ensemble is better than WEC with all the other con-
figurations. For example, on the Deception dataset, the
classification accuracy increases from nearly 88% to
90.5%.

• Similar patterns can be observed regarding the macro F1
score.

3Parameters taken from [11]
4Parameters taken from [9]
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Fig. 2. Accuracy of WEC with different combinations.
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Fig. 3. Macro F1 score of WEC with different combinations.

The experimental results show the flexibility and robustness
of WEC as this ensemble can be constructed with different
classifiers to obtain high performance. Using only traditional
classifiers obtain the acceptable performance with less re-
source usages. Meanwhile, using the combination between
deep learning classifiers and traditional classifier can obtain
the best results among all versions of WEC with high resource
requirements. The selected combination for WEC is deter-
mined based on the specific situations. In the next section, we
chose WEC(RF,NB,LR,BERT,ULMFiT ) to compare
with the ensemble members.

B. Comparison with benchmark algorithms

Table II present the accuracy and macro F1 score while table
III presents the ranking for 10 traditional machine learning
classifiers, two deep learning classifiers, and WEC. Some of
the observations from these results are given as follows:
• WEC achieves the lowest average rank among all meth-

ods (rank value 1.6 in terms of both accuracy and F1
score). On the five datasets, WEC ranks first on three
smaller datasets, ranks second and thirds on the AG News
and Dbpedia dataset.

• WEC is better than all constituent traditional classifiers.
For instances, WEC is about 1.5% and 2% better than
SVM and LR with TF-IDF, the second and third-rank
method, on Newsgroup and Deception dataset.



TABLE II
THE CLASSIFICATION ACCURACY AND MACRO F1 SCORE OF ALL METHODS

Accuracy
Datasets RF TF NB TF LR TF RF TFIDF NB TFIDF LR TFIDF XgB TF XgB TFIDF SVM TF SVM TFIDF BERT ULMFiT WEC

NG 0.9166 0.9530 0.9431 0.9188 0.9584 0.9559 0.8774 0.8792 0.9229 0.9571 0.9289 0.9429 0.9707
RU 0.9396 0.9652 0.9648 0.9465 0.9182 0.9588 0.9543 0.9492 0.957 0.9725 0.9584 0.9575 0.9780
DC 0.8675 0.8750 0.8450 0.8700 0.8650 0.8775 0.8225 0.8300 0.8300 0.8775 0.8675 0.7875 0.9050
AG 0.8747 0.8765 0.8853 0.8731 0.8777 0.8963 0.7898 0.7888 - - 0.9259 0.9501 0.9271
DB 0.9636 0.9506 0.9722 0.9639 0.9455 0.9718 0.9324 0.9343 - - 0.9925 0.9915 0.9792

Macro F1
Datasets RF TF NB TF LR TF RF TFIDF NB TFIDF LR TFIDF XgB TF XgB TFIDF SVM TF SVM TFIDF BERT ULMFiT WEC

NG 0.9085 0.9465 0.9342 0.9105 0.9518 0.9486 0.8713 0.8732 0.9135 0.9508 0.9193 0.9332 0.9550
RU 0.7996 0.9160 0.9042 0.8413 0.6846 0.8664 0.9033 0.8960 0.8950 0.9386 0.9266 0.8939 0.9428
DC 0.8672 0.8747 0.8447 0.8699 0.8644 0.8773 0.8224 0.8300 0.8294 0.8773 0.8674 0.7863 0.9049
AG 0.8740 0.8758 0.8852 0.8725 0.8772 0.8961 0.7898 0.7888 - - 0.9230 0.9499 0.9270
DB 0.9635 0.9504 0.9722 0.9638 0.9452 0.9718 0.9320 0.9334 - - 0.9920 0.9915 0.9790

TABLE III
THE RANKING OF ALL METHODS

Accuracy
Datasets RF TF NB TF LR TF RF TFIDF NB TFIDF LR TFIDF XgB TF XgB TFIDF SVM TF SVM TFIDF BERT ULMFiT WEC

NG 11 5 6 10 2 4 13 12 9 3 8 7 1
RU 12 3 4 11 13 5 9 10 8 2 6 7 1
DC 6.5 4 9 5 8 2.5 12 10.5 10.5 2.5 6.5 13 1
AG 8 7 5 9 6 4 10 11 - - 3 1 2
DB 7 8 4 6 9 5 11 10 - - 1 2 3

Avg. Rank 8.9 5.4 5.6 8.2 7.6 4.1 11 10.7 9.17 2.5 4.9 6 1.6
Macro F1

Datasets RF TF NB TF LR TF RF TFIDF NB TFIDF LR TFIDF XgB TF XgB TFIDF SVM TF SVM TFIDF BERT ULMFiT WEC
NG 11 5 6 10 2 4 13 12 9 3 8 7 1
RU 12 4 5 11 13 10 6 7 8 2 3 9 1
DC 7 4 9 5 8 2.5 12 10 11 2.5 6 13 1
AG 8 7 5 9 6 4 10 11 - - 3 1 2
DB 7 8 4 6 9 5 11 10 - - 1 2 3

Avg. Rank 9 5.6 5.8 8.2 7.6 5.1 10.4 10 9.33 2.5 4.2 6.4 1.6

• WEC is better than ULMFiT and BERT on 3 small
datasets. On Newsgroups dataset, for example, WEC is
4.5% and 3.5% better than BERT and ULMFiT, respec-
tively. Although WEC performs poorly on AG News and
Dbpedia datasets compared to BERT and ULMFiT, the
prediction accuracy of WEC and the first rank-method is
not significantly different (for example, 0.9271 vs. 0.9501
of WEC vs. ULMFiT on the AG News dataset).

• XgBoost is the poorest method in our experiment and its
performance is by far worse than WEC. For example,
on the Newsgroup dataset, XgBoost with TF obtains
87.74% accuracy whereas by using TFIDF, XgBoost
obtains 87.92%, which is approximately 9% lower than
the classification accuracy of WEC.

• A similar pattern can be seen in terms of the macro F1
score as WEC continues to rank first (with rank value
1.6), followed by SVM with TF-IDF.

Table IV shows the combining weights for the Newsgroup
dataset obtained by solving the optimisation problem in (5)
with the PSO. The weights reflect the contribution of each
classifier on the combined result. For example, for the class
y1, WEC algorithm gives less weights to the Random Forest
(0.0426 & 0.0255) but more to BERT (0.9998). In the same
way for class y2, higher weights are given to logistic regression
TF and ULMFiT (0.7502 & 0.8876) compared to BERT
(0.2307). In this way, WEC decides the contribution of each

TABLE IV
THE OPTIMAL COMBINING WEIGHTS FOR NEWSGROUP DATASET

Algorithms y1 y2 y3 y4
RF TF 0.0426 0.5399 0.5987 0.0968
NB TF 0.3942 0.3242 0.9998 0.2307
LR TF 0.2262 0.7502 0.0297 0.1283

RF TFIDF 0.0255 0.6907 0.2336 0.0523
NB TFIDF 0.3255 0.4403 0.5811 0.1237
LR TFIDF 0.2328 0.3623 0.6504 0.1351
ULMFiT 0.4442 0.8876 0.7106 0.9463

BERT 0.9998 0.2307 0.3623 0.1351

classifier in the final prediction.
The experimental results confirm the advantage of WEC

compared to the traditional machine and deep learning clas-
sifiers, especially on the smaller datasets. In terms of time
complexity, training time for WEC is slightly higher than
other classifiers due to the PSO training required for weight
optimisation. There is no difference in testing time of WEC
compared to other classifiers.

VI. CONCLUSION

In this work, we presented an idea of the weighted ensemble
of different text classifiers. Instead of using the majority
voting mechanism for combining these classifiers, we propose



a weighted combination approach in which the classifiers
contribution to the collaborative class prediction varies. These
weights were found by minimising the 0-1 loss function on the
training data with the PSO algorithm. Extensive experiments
were conducted using 10 machine learning classifiers and
2 deep learning classifiers and performance with respect to
classification accuracy and macro F1 score was compared with
constituent members of the ensemble. Our proposed method
performed better than the state-of-the-arts on smaller datasets
as well as better than all the baselines on each dataset. WEC
achieves the lowest average rank among all other methods
used and can be applied in real-world applications for high
prediction performance. In a cold start scenario of a business
process, where we have less labelled data for supervised
downstream tasks, our method can be helpful in achieving
better performance. In situations where it is hard to decide
which learning algorithm or text representation should be
used, our method provides an excellent option giving robust,
effective performance across a range of datasets.
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