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Abstract—Hyper-heuristics are potent techniques that repre-
sent the synergy of low-level heuristics when solving optimiza-
tion problems. This synergy usually leads to better solutions.
Similarly, fuzzy logic has been successfully applied to several
domains, thanks to the expert knowledge it encompasses. Thus,
combining the benefits of both approaches should lead to a more
reliable and effective method. Hence, in this work, we propose a
fuzzy-based selection hyper-heuristic model. We considered seven
features and four low-level heuristics, which represent the inputs
and output of the fuzzy inference system, respectively. Each input
was defined with two membership functions. Since there is no
expert knowledge available, we lay out all the rules (128) and use
a genetic algorithm to find optimum values for the consequents of
these rules. In other words, the genetic algorithm will evolve the
rules of the fuzzy inference system until it become an expert, and
will then save such knowledge as the set of fuzzy rules. The main
concern of this paper is to find out if a fuzzy inference system
can help to get better results in the inner working of a hyper-
heuristic. To prove this, we make a comparison between a fuzzy
hyper-heuristic model optimized by a genetic algorithm against
three traditional selection hyper-heuristic models (with a different
number of rules) optimized by a particle swarm optimization
method. We applied all these methods using the same set of low-
level heuristics to solve an 800 instance set of the 0-1 Knapsack
problem as a testbed.

Index Terms—Fuzzy logic, Hyper-Heuristic, Genetic algorithm

I. INTRODUCTION

Fuzzy logic [1] represents a versatile set of tools. It can be
implemented in many different problems due to its adaptabil-
ity [2] and because it requires expert knowledge [3] instead of
physical modeling. Such an approach requires the definition
of membership functions and of fuzzy rules (for representing
the expert knowledge) [4]. An advantage of using a fuzzy
inference system is that we can “store” the expert knowledge
of a problem in its fuzzy rules. Therefore optimizing a fuzzy
inference system is similar to extracting knowledge from
a problem because lately, we can read the fuzzy rules as
a knowledge base from the problem. There are two main
types of fuzzy inference systems, named after their creators:
“Mamdani” and “Sugeno”. Mamdani [5] proposed the first
application of fuzzy logic into a controller problem, described
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a type of membership function, and a manner to approximate
reasoning with fuzzy logic. Sugeno [6] proposed a faster way
of computing the output of a fuzzy system.

Similarly, genetic algorithms (GAs) stands as a well-known
optimization technique [7], free from the calculation of deriva-
tives that traditional optimization techniques require. GAs seek
to replicate the evolution of populations and has been widely
used to tackle combinatorial problems [8], [9]. We use GAs in
this work because they are easy to implement and it can handle
integer values. However, we can apply any other optimization
method that can handle integer values, since each gene of the
chromosome is transformed into a consequent of a fuzzy rule
of the fuzzy inference system.

Among the combinatorial problems of interest, a recurrent
research subject is the knapsack problem. Here, the idea
is to select a subset of items that maximizes the profit
without breaking a weight constraint. Although solving the
knapsack problem through low-level heuristics is a relatively
old idea [10], it remains useful nowadays for many practical
cases. For example, Morales et al. [11] proposed a divide-
and-conquer heuristic to solve the knapsack problem. Another
approach seeks to combine a set of low-level heuristics to
generate a high-level solver known as a hyper-heuristic. So,
we can describe hyper-heuristics as the process of creating
“heuristics to choose heuristics”. Even so, Burke et al. [12]
defined hyper-heuristics as an automated methodology for
selecting or generating low-level heuristics to solve hard com-
putational problems, and they proposed a classification of such
methods. Ross presented a survey of hyper-heuristics, where
he explained basic concepts and typical applications [13].

To solve the knapsack problem, we use a fuzzy inference
system as a selection hyper-heuristic, and the meta-heuristics
are used only to find the best rules for our fuzzy proposal
and traditional selection hyper-heuristics. Nowadays, there is a
significant diversity of meta-heuristics applied to solve the 0-1
knapsack problem. A few of them are listed next: an improve-
ment to the whale optimization algorithm (WOA) to handle
binary values, was proposed by Abdel-Basset et al. [14], where
they get better results than GA, harmony search (HS) and
variants of PSO (Particle Swarm Optimization). The cohort
intelligence (CI) with an educated approach was proposed
by Sapre et al. [15], demonstrating that their approach is
better than the original CI method. Abdel-Basset et al. [16]
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proposed a binary flower pollination algorithm (FPA) which
obtained better results when compared against a GA and a
binary version of PSO. Ezugwu et al. [17] studied a set of
meta-heuristics such as GAs, simulated annealing (SA), as
well as the exact methods branch and bound, and dynamic
programming. In their study, exact methods obtained not only
the best results but also the lowest computational times. Ye
et al. [18] proposed a tissue P system that demonstrates
that can solve the knapsack problem in linear time. Zhang
et al. [19] described an improvement to the bee colony
algorithm (BCA). They compared it against some variants of
differential evolution (DE) and PSO, improving the perfor-
mance and convergence against the original method. Huang
et al. [20] introduced a binary modification of a quantum
harmonic oscillator algorithm (QHOA). This algorithm was
compared against binary versions of bat algorithm (BA), PSO,
dragonfly algorithm (DA), and a hybrid PSO with gravitational
search algorithm (GSA), demonstrating that their approach
is superior in accuracy, convergence capability, and stability.
Xue et al. [21] proposed a binary version of the fireworks
algorithm (FWA) and compared it with the quantum genetic
algorithm (QGA), binary PSO, and binary cuckoo search (CS).
Their results show that their proposal is competitive against
the other meta-heuristics. Zhan et al. [22] proposed a hybrid
greedy repair operator to noising methods, compared to several
meta-heuristics revealing that their approach is competitive.
All the previously mentioned meta-heuristics differ from our
approach to the fact that they lack saving any knowledge
extracted from the problem, while our approach using a GA
can save the extracted knowledge as fuzzy rules.

The main contribution of this work is the proposal of a new
fuzzy selection hyper-heuristic approach, with the potential to
be applied to a wide variety of problems. Still, in this case,
we use the knapsack problem as a benchmark scenario to see
the performance when compared against a traditional selection
hyper-heuristic. Although several solution approaches exist
for solving the knapsack problem, there is a knowledge gap
regarding the feasibility of using fuzzy logic combined with
selection hyper-heuristics. Then, we consider that it is feasible
to use a GA to extract knowledge from the knapsack problem
and convert it into a set of fuzzy rules. That can be later
compared against selection hyper-heuristics optimized by PSO
to produce robust hyper-heuristics for solving this problem.
The results show that the combination of fuzzy logic and
hyper-heuristics provides solutions with a reduced standard
deviation. This means that the proposed fuzzy approach helps
the hyper-heuristics to get better quality results with a small
variation, making our proposal more robust and precise.

This manuscript is organized as follows. Section II provides
information about the knapsack problem and other concepts
related to this investigation. The solution approach proposed
in this investigation is depicted in Section III. The experiments
and results are presented in Section IV. Finally, Section V
presents the conclusion as well as some directions for future
work for this investigation.

II. BACKGROUND AND RELATED WORK

A. The knapsack problem

The knapsack problem considered for this work has the
restriction that the items can either be packed within the
knapsack or not. This version of the knapsack problem is
usually referred to as the 0-1 knapsack problem. A formal
definition of the 0-1 knapsack problem is given by Equations 1
and 2, where n is the number of items, xi is the number of
copies of an item (0 or 1), i is the ID of such an item, and wi

and pi represent the weight and profit of item i, respectively.
Moreover, the knapsack has a maximum weight capacity given
by W .

max
n∑

i=1

pixi (1)

subject to
n∑

i=1

wixi ≤W and xi ∈ {0, 1} (2)

Regarding the instances used for this work, we consider a
balanced set of instances of the 0-1 knapsack problem, which
were tailored for each heuristic [23]. This way, every heuristic
has the same number of instances where it excels –a desirable
scenario for testing a hyper-heuristic approach. A total of 800
knapsack problem instances are used in this investigation, so
each heuristic represents the best choice for 200 instances.
Each instance contains 40 items with a weight ranging from
1 to 32 and a profit ranging from 1 to 128. The maximum
capacity of the knapsack for all instances is 25.

B. Hyper-heuristics with fuzzy logic

The current literature contains some examples of hyper-
heuristics that, at least at some point, incorporate fuzzy logic
to make their decisions. For example, the work conducted by
Asmuni et al. [24] proposed a fuzzy inference system as a
metric to order the exams in a scholar calendar. The ordering
was made through low-level heuristics, but a fuzzy inference
system was used to improve their approach. In a further study,
Asmuni et al. [25] extended their fuzzy inference system
and applied it to order courses instead of exams. Chaudhuri
et al. [26] proposed a modified genetic algorithm through
hill-climbing methods applied to the timetabling of resources
(teachers, classrooms, and students) from a university. They
used a fuzzy inference system to improve the objective func-
tion for the soft constraints, aside from the objective function
from the genetic algorithm to satisfy the hard constraints. A
more recent work conducted by Jackson et al. [27] proposed
using a fuzzy inference system to control the late acceptance
parameter in a hyper-heuristic, which produced a performance
rank of the applied low-level heuristics. In their work, new
evaluations were compared against previous ones to see if
there was an improvement. This was done not only with
the last solution but with a given number of the previous
ones. Based on this, a decision was made about which low-
level heuristic yielded the best performance. Zamli et al. [28]
applied a fuzzy inference system as a selection hyper-heuristic.



The inputs they considered represented various metrics about
the applied low-level heuristics. With this, the system decided
to change, stay, or maybe change the last low-level heuristic.

The main difference between all these works (where they
combine hyper-heuristics with fuzzy logic) is that, in our
proposal, the fuzzy inference system takes the inputs and
gives us the low-level heuristic to use in the next iteration of
the solution process. All other methods use a fuzzy inference
system but as a tool to ordering some items, to improve their
objective function, to control a parameter, or to decide if a
low-level heuristic must be changed or not.

C. Heuristics and features

Heuristics are practical methods that, unlike exact methods,
frequently trade optimality for speed in solving complex
problems. In this work we use heuristics that every time we
apply them to the same problem, they always get the same
result and need the same amount of time.

We have included four commonly used low-level heuristics
for solving the knapsack problem [29] [30]. Default (Def)
selects the next unpacked item that can fit into the knapsack
by preserving the original ordering of the items. Maximum
profit (MaxP) selects the unpacked item with the maximum
profit (as long as it can be packed). Minimum weight (MinW)
selects the unpacked item with the minimum weight (as long
as it can be packed). Finally, maximum profit per weight
unit (MaxPW) selects, among the unpacked items, the one
with the maximum value resulting from dividing its profit over
its weight.

In this work, we characterize the instances of the 0-1
knapsack problem by using seven features. These features are
computed based on the unpacked items in the instance being
solved: the normalized mean weight (MeanW), the normalized
median weight (MedianW), the normalized standard deviation
of the weight (StdW), the normalized mean profit (MeanP), the
normalized median profit (MedianP), the normalized standard
deviation of the profit (StdP) and the correlation between
weight and profit (Corr).

The hyper-heuristics use these features to decide which
heuristic to apply given the current state of the solving
process of an instance. Both the proposed fuzzy approach and
the traditional hyper-heuristics use the same features of the
problem and the same set of heuristics. The only difference is
the rules used to decide which heuristic to select in the next
step.

III. SOLUTION APPROACH

The problem we want to overcome is to obtain the best
results in each instance of the knapsack problem by using a
fuzzy inference system as a selection hyper-heuristic. In our
model, a GA is responsible for finding the fuzzy rule set that
maximizes the performance of the fuzzy inference system.

The GA used in this work is a custom discrete version of the
original GA, where the genes can only have integer values. In
our case, 1, 2, 3, or 4, that represents the heuristic selected by
the fuzzy rule. The selection is made via tournament, where

two chromosomes are randomly selected and the one with
the best fitness is selected for the crossover. The process
is repeated until the desired percentage of the population is
selected. For the crossover operation, two genes are randomly
selected to split the chromosome into three parts. The offspring
is created by switching the middle part between parent one and
parent two. The mutation is performed by randomly selecting
a percentage of genes from the offspring, where their values
are randomly changed. The next generation is created via a
tournament between the populations of parents and offspring.

The PSO algorithm used to optimize the rules of the
selection hyper-heuristics is the original version, which uses
Equations 3 and 4 to update the position and velocity of
the particles, respectively. The position of the particle i is
represented by xi and its velocity by vi in time t, while
the velocity is computed using its previous velocity plus a
cognitive and a social component, given by Equations 5 and 6,
respectively.

xi(t+ 1) = xi(t) + vi(t+ 1) (3)

vij(t+ 1) = vij(t) + Cognitive+ Social (4)

Cognitive = c1r1(t)[yij(t)− xij(t)] (5)

Social = c2r2(t)[ŷj(t)− xij(t)] (6)

Internally, the fuzzy hyper-heuristic works as follows. Given
an instance of the 0-1 knapsack problem, the seven features
described in Section II are computed and processed as inputs
for the fuzzy inference system. By using the current set
of fuzzy rules, the system computes the output —which
corresponds to one of the four available low-level heuristics in
the system. Once the low-level heuristic is selected, it is used
to choose the item to be added to the knapsack. This process
is repeated on the unpacked items until no more items can be
packed within the knapsack.

Figure 1 illustrates how each chromosome in the GA
represents a candidate set of fuzzy rules to be used within
the fuzzy inference system. In each iteration, the fuzzy rules
represented by each chromosome are extracted and replace
the existing rules in the fuzzy inference system. The objective
function, in this case, is using the fuzzy inference system with
its new set of fuzzy rules to compute a solution for all the
instances in the training set.

The solution approach illustrated in Figure 2 works as a
step-by-step process described next:

1) From a set instances (training when GA is optimizing
the fuzzy rules and testing when we are using the best
fuzzy rule set found by GA), one instance is selected to
be processed.

2) All the features are computed from the unpacked items
in the instance.



Fig. 1. Transformation of a chromosome from GA to a fuzzy rule set.

3) The fuzzy hyper-heuristic takes the features as inputs,
and using the firing strength of the fuzzy rules, it
computes an output through the defuzzification process.

4) Using the output of the fuzzy hyper-heuristic a low-level
heuristic is selected to be applied to the instance.

5) The chosen heuristic selects the next item to pack.
6) If there are no more unpacked items or the knapsack

is full, the system selects another instance, otherwise
continue from step (2).

The fuzzy inference system (Sugeno) used within the
hyper-heuristic has seven input variables (with two triangular
membership functions each), one output (with four constant
membership functions, one per low-level heuristic) and 128
fuzzy rules. The value of each input ranges from 0 to
1. Moreover, two triangular membership functions (equally
distributed) are considered for mapping the values of such
features. We adopted this type of membership function in
this work because of its simplicity, which leads to faster
computing. Such membership functions (Equation 7) have the
following parameters:

• Low: a = −1, b = 1, m = 0.
• High: a = 0, b = 2, m = 1.

µA(x) =


0, x ≤ a
x−a
m−a , a < x ≤ m
b−x
b−m , m < x < b

0, x ≥ b

(7)

The seven inputs are directly related to the seven features
described in Section II. The number of membership functions
was selected based on the number of fuzzy rules that can be
generated. Two membership functions per input generate a
total of 128 rules. Although this is a large number of rules to
handle, we consider that reducing the number of membership
functions per input would decrease the performance of the
system since the problem state would not be properly cap-
tured. We consider that optimizing the number of rules would
represent an important and interesting future research path.

We lack expert knowledge about when to select a low-level
heuristic based on a certain level of each feature. So, a first
approach considered randomly assigning the consequent of the

TABLE I
PARAMETERS USED FOR THE GENETIC ALGORITHM AND FOR PARTICLE

SWARM OPTIMIZATION.

Parameter GA PSO

Population 30 30
Iterations 100 100

Dimensions 128 32, 48 and 64
Crossover 0.80 N/A
Mutation 0.10 N/A
C1=C2 N/A 2

Inertia Weight N/A Linear decreasing

fuzzy rules i.e., the low-level heuristic. Hence, we generated
3000 random configurations. This value was selected because
it represents the same number of configurations that GA will
test for finding appropriate rules. Alas, there is a humongous
number of possible fuzzy rules, since there are 4128 possible
combinations.

The GA was used as a more complex (and intelligent)
way of finding the best possible set of fuzzy rules, with the
parameters shown in Table I, and using the aforementioned
type of chromosome. Table I also presents the parameters used
for PSO for the optimization of the selection hyper-heuristics.
These parameters are taken from [31]. Note that these methods
use a different number of dimensions since we apply them to
different optimization processes. While we use GA to find 128
consequents for the fuzzy rules, PSO needs to find all rules
for the selection hyper-heuristics. Here we make each rule up
of eight dimensions, one for each feature and the heuristic to
select. So to generate four rules we need 32 dimensions in
each particle, 48 for six rules and 64 for 8 rules.

In order to perform a comparison between our proposed
fuzzy hyper-heuristic approach and a traditional one, we use
the hyper-heuristic model illustrated in Figure 3. This model
uses an optimizer for finding a set of rules that determines
which low-level heuristic to use next, depending on the results
of the calculated features. The model depicts that the hyper-
heuristic is problem-independent and only can compute the
features from a problem state. In this example, the hyper-
heuristic has three rules with three features each, plus an
action (or the low-level heuristic to select). A distance metric
between the features from the problem and each rule allows
determining the low-level heuristic to be selected.

The set of instances used in this work is balanced in
the sense that each low-level heuristic excels over the same
number of instances (200). So, there is a total of 800 instances.
To create the training test, we randomly select 30 instances fa-
voring each solver (i.e. the 15%). The remaining 170 instances
per solver (i.e. 85%) are left as the testing set.

IV. RESULTS AND DISCUSSION

As mentioned above, the training set used in the experiments
represents the 15% of the total instances (i.e. 30 × 4 = 120)
while the testing set is comprised of 680 instances (i.e. 85%).
Table II presents the profit achieved (in both sets of instances),
after using the GA for training the fuzzy model (using the



Fig. 2. Evaluation of a set of instances using our proposed fuzzy hyper-heuristic approach optimized by GA.

Fig. 3. A traditional selection hyper-heuristic model, as depicted in [32]

parameters shown in Table I). Moreover, data for traditional
selection hyper-heuristics with four, six, and eight rules are
given for comparison purposes. These selectors were trained
with PSO using the parameters from Table I. Please note that
each result from Table II is the sum of the profit achieved on
each instance, so larger values mean better ones (highlighted
in bold).

Table III summarizes data from Table II by providing the
average profit values of each approach on both the training and
testing sets. It is worth mentioning that the random approach
corresponds to the best values after 3000 tests. We select
this amount of tests because it corresponds to the number of
chromosomes that the GA tests in one experiment over all the
generations.

As shown in Table III, our proposed fuzzy selection hyper-
heuristic model obtains better results (on average) than low-
level heuristics. As expected, it also outperforms a purely
random approach with the same number of candidate solu-
tions, and traditional selection hyper-heuristics with four, six,
and eight rules. Hence the fuzzy inference system helps in
obtaining a better model of the problem. This assumption is
strengthened by the fact that the fuzzy model was the one with
the lowest standard deviation in both training (Figure 4) and
testing (Figure 5).

Data from Tables II and III show that the advantage of

Fig. 4. Box plot of the results achieved during training (30 runs). FuzzyHH:
Fuzzy-based selection hyper-heuristic. HHXR: Traditional selection hyper-
heuristic with 4, 6, or 8 rules.

Fig. 5. Box plot of the results achieved during testing (30 runs). FuzzyHH:
Fuzzy-based selection hyper-heuristic. HHXR: Traditional selection hyper-
heuristic with 4, 6, or 8 rules.



TABLE II
RESULTS ACHIEVED WITH THE GA-TRAINED FUZZY SELECTION HYPER-HEURISTIC AND WITH TRADITIONAL HYPER-HEURISTICS.

Experiments Proposal Hyper-heuristics
4 Rules 6 Rules 8 Rules

Set Train Test Train Test Train Test Train Test

1 59526 341235 58933 337920 58694 336556 58692 333842
2 59589 336988 59086 339967 59057 337315 58964 338763
3 59586 338773 59872 342036 58687 332939 58803 336557
4 59642 340809 58974 339905 58486 335705 58932 339207
5 59565 336077 58613 337251 58924 336586 58830 333445
6 59527 340774 60079 340868 58963 339089 58881 337612
7 59527 340858 58784 337067 59996 339793 59688 337903
8 59643 339134 59009 337723 58149 330367 58791 337286
9 59576 339994 59237 336150 58820 333839 59006 333959

10 59589 338846 58997 335964 58087 326238 59096 336340
11 59586 340210 59495 340880 58606 333607 59656 336563
12 59589 336873 59167 333256 59055 339428 58194 333118
13 59535 341180 60107 338194 58815 337397 58250 333988
14 59527 340729 59734 339352 59295 336074 59450 340233
15 59604 336964 59045 339454 58519 335488 58535 330495
16 59658 339695 58779 336772 59258 338708 58283 332022
17 59527 340431 58937 341720 58828 334294 58823 336507
18 59548 340284 58481 334449 58498 331030 58628 337797
19 59586 340297 58973 336653 58769 335686 58383 334232
20 59527 339804 58980 338186 58409 336360 59180 340653
21 59536 338484 58732 336182 58622 332845 58080 332225
22 59586 340900 59142 339468 58759 338563 58419 335350
23 59586 339715 58588 334204 59323 342381 59831 340420
24 59586 340453 58909 339396 58935 338298 59089 339531
25 59544 340604 59387 340609 59198 335589 58491 333937
26 59527 338858 58769 335983 58752 337117 58974 337958
27 59586 338416 59261 337062 59118 338358 58938 336934
28 59527 340798 59287 340705 59205 340038 59127 339345
29 59586 337493 58116 331936 58388 332839 58893 339265
30 59526 340474 59454 340069 59420 339339 58798 341739

TABLE III
SUMMARY OF ALL METHODS ON ALL INSTANCES (SPLIT INTO TRAINING

AND TESTING). DATA CORRESPONDS TO AVERAGE AND STANDARD
DEVIATION VALUES ACROSS 30 REPETITIONS.

Method Training Testing

Default 32275 191080
MaxP 41864 234917
MinW 49329 282972
MaxPW 57585 330949
Random (best of 3000) 50238±3263.09 282189±20683.35
Fuzzy Hyper-Heuristic 59572±39.86 339538±1454.34
Hyper-Heuristic (4 Rules) 59098±450.20 337979±2543.48
Hyper-Heuristic (6 Rules) 58854±402.23 336062±3369.03
Hyper-Heuristic (8 Rules) 58857±434.16 336574±2918.92

using the proposed fuzzy approach mainly stems from stability
(lower standard deviation). The best results found in Table II
(60107 in training and 342381 in testing), are given by a
traditional selection hyper-heuristics. Moreover, the traditional
hyper-heuristic methods also get the worst results, when
compared to the fuzzy approach.

On the other hand, the results on average from our proposed
fuzzy approach are better than the other methods, which are
depicted in Figures 4 and 5. Although, our proposed approach
and the traditional hyper-heuristic with four rules yield similar
average values. In terms of standard deviation, the hyper-

heuristic produced with our approach is about a tenth (training)
and about a half (testing) of the values given by the traditional
model.

It is important to mention that the pure random approach
was only executed once, since it was used as a starting point.
This approach is not reliable due to its nature, and it is not an
intelligent way of finding a good set of fuzzy rules. During
our tests, the random approach obtained better results than
three low-level heuristics but worst than the hyper-heuristics.
We believe that the fuzzy inference system helps to get these
results, but also it shows that our proposed fuzzy selection
hyper-heuristic requires an optimization process. A drawback
that traditional selection hyper-heuristics also have.

Table IV summarizes the time, in seconds, needed for each
method to process all the instances from both the training and
testing sets. Data show that the random and the optimized
fuzzy hyper-heuristic require similar computational time. This
is due to the fact that both of them use 128 fuzzy rules.
The traditional selection hyper-heuristics need roughly a third
of the time compared with the fuzzy approach. Hence, it is
computationally cheaper but also more unstable.

The results in time are as expected: including the fuzzy
system increases computational requirements. However, we
believe that this can be improved by optimizing the number of
rules. Profits achieved show that the proposed fuzzy approach



TABLE IV
TIME IN SECONDS NEEDED TO PROCESS EACH SET OF INSTANCES BY

EACH METHOD.

Method Training set Testing set

Default 0.0458 0.1367
MaxP 0.0333 0.1567
MinW 0.0412 0.2011

MaxPW 0.0415 0.2162
Random 2.5361±0.4606 13.1353±0.8654

Fuzzy Hyper-Heuristic 2.1085±0.1606 12.0324±0.8842
Hyper-Heuristic (4 Rules) 0.6817±0.0408 3.7993±0.0564
Hyper-Heuristic (6 Rules) 0.6987±0.0432 3.9365±0.1782
Hyper-Heuristic (8 Rules) 0.7107±0.0262 4.0176±0.2330

can yield better and more stable results than a traditional
approach. Nonetheless, they differ from the optimal value, e.g.
achieved with a dynamic programming approach. Even so, it
is an infeasible approach in terms of scaling. For example,
even though it achieved profits of 65810 and 377570 in the
training and testing set, respectively, it required 8.1292 and
45.1803 seconds in each case. Hence, it required over thrice
the computing time than the most expensive approach. It is
important to highlight that we are aware that we are not
proposing the best method for the knapsack problem. Instead,
the main objective of this work was to show the feasibility of
a fuzzy-based hyper-heuristic model, by comparing it against
a traditional selection hyper-heuristic.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a fuzzy-based selection hyper-
heuristic. Our data revealed that this model can obtain better
results (on average) than low-level heuristics and traditional se-
lection hyper-heuristics for the knapsack problem. Our model
was also more stable than the other approaches in both the
training and testing sets. It is important to remark that our
proposal was unable to achieve the same result as dynamic
programming. However, and as it was mentioned, our goal for
this work was not to achieve the optimal solution, but to show
that a fuzzy-based hyper-heuristic model is feasible and may
yield good results. We plan on further improving our approach
in future works.

MaxPW was the best low-level heuristic. Even so, our
proposed approach achieved an average result with a profit of
about 2000 units higher. Moreover, this represents an increase
of about 500 units with respect to the best traditional hyper-
heuristic considered for this work (the one using four rules).
Nonetheless, our approach has some drawbacks. For example,
we are currently using the combination of all rules within
the fuzzy model. Nevertheless, not all of them may contribute
to performance in a significant way. Instead, they provide a
computational burden. Besides, using all combinations limits
the scalability of the approach, since the number of rules
would escalate too quickly. Thus, our proposal needs to
include a refinement stage, where a smaller set of fuzzy rules
can be identified. Therefore, a future research path that stems
from this work is to analyze the contribution of each rule to

the overall performance, so that a reduced number of rules can
be obtained. This will lower the computational effort required
to select a low-level heuristic and, in turn, would make our
proposal more attractive.

The fuzzy approach does not always improve the result,
and we believe this is due to the large number of fuzzy
rules (128) used that causes an “interference” in the reasoning
(defuzzification) of the proposed fuzzy approach. The firing
strength of the fuzzy rules is being decimated by other
rules that have opposite consequent. We are working on an
improvement of that issue for future works by reducing the
number of fuzzy rules.

Throughout this work, we used a GA for finding the outputs
of each rule in the fuzzy system. Although this approach
worked adequately, it does not inhibit the idea of exploring and
comparing the performance of other metaheuristics for such a
task. Moreover, using a GA for identifying the aforementioned
set of rules seems like a feasible approach.

Another path for future work rests on the problem domain.
We believe that our proposed approach can be applied to
several types of problems, aside from the knapsack problem.
The modular nature of our proposed hyper-heuristic model
eases its application to other domains, as it is only required to
define the fuzzy set in terms of the already existing features.
Hence, this application can be viewed as a proof of concept.
We shall delve deeper into this idea in future studies. Finally,
it is also important to analyze the behavior of our proposed
approach when solving harder instances. Thus, the behavior
under different instance sets should be explored in the future.
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