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Abstract—In this work, a computational approach has been
proposed based on the hybridisation of two modelling formalisms,
recurrent neural networks and half-systems, for the reconstruction
of gene regulatory networks from time-series gene expression
datasets. To the best of our knowledge, the proposed hybridis-
ation has not been attempted previously in this domain. Here,
recurrent neural networks and half-systems have been hybridised
to capture the underlying dynamics present in the temporal
gene expression profiles. The motivation behind this work is to
integrate the advantages of both the techniques in the proposed
model such that the problem of reverse engineering of gene
regulatory networks can be resolved more efficiently. Artificial
bee colony optimisation has been used for the estimation of the
model parameters. We have implemented the proposed hybrid
methodology on the real-world experimental datasets (in vivo) of
the SOS DNA Repair network of Escherichia coli. The obtained
results are comparable to or better than that of other reverse
engineering methodologies present in contemporary literature.

Index Terms—artificial bee colony, gene regulatory network,
half-system, recurrent neural network, reverse engineering

I. INTRODUCTION

This work proposes a hybrid mathematical formalism for the
reconstruction of biologically plausible gene regulatory netw-
orks (GRNs) from time-series gene expression datasets. Mod-
ern technological advancements has enabled us to generate an
enormous amount of gene expression data by monitoring the
expression levels of thousands of genes simultaneously under
a particular condition [1]–[3]. This monitoring process is also
known as gene expression analysis, and it involves:

• detection of the differences in the expression levels of
differentially expressed genes, at a particular time-point
(for time-course experiments [3]),

• discovery of the differences in the expression levels of a
specific gene over multiple time-points, and

• identification of the similarly expressed genes over nume-
rous time-points.

Acquiring biological data is becoming increasingly easier
with technological advancements. Nevertheless, biological in-
formation is meaningless until and unless it is analysed and
interpreted accurately. Various mathematical models have been

developed to serve this purpose, although achieving the desired
accuracy is still an open problem for researchers.

The expression values of genes denote the amount of mRNA
synthesised by genes during transcription. The value of gene
expression is a measure of how active or functional a gene
is [3]. mRNAs are translated to proteins, and a protein, or a
set of proteins, controls the expression level of other genes.
Thus, complex regulatory relationships exist amongst genes
that can be characterised using GRNs. These regulations are
of two types: (i) activation: the expression of a target gene is
initiated or the expression level increases, and (ii) inhibition
or repression: the expression of the target gene stops or the
level of expression reduces. Such regulatory relationships are
indirect in nature because transcription factors (proteins) act
as intermediary players by binding to specific regions in the
sequence of a target gene and induce changes in the rate of its
protein production. Two well-known difficulties faced during
the analysis of temporal expression datasets are the curse of
dimensionality [4] and noise [5].

Various mathematical formalisms have been used for the
reverse engineering of GRNs from time-series gene expression
datasets. Ordinary differential equations, Bayesian networks
(dynamic and static), linear additive models, recurrent neu-
ral networks (RNNs), S-systems, etc., are among the most
common techniques used by researchers for this purpose.
Reconstruction of GRNs is an ill-posed problem, and thus
suffers from over-fitting [6]. Therefore, a delicate balance is
needed between the reduction of prediction error and the actual
network topology. Real-world GRNs are sparse in nature [5],
[7], [8], i.e. there exist only a few regulators among the genes
in a network. However, most of the proposed methodologies
have thus far been unable to attain an entirely correct predicted
model, even for small-scale, real-world networks. Some of
the models have been successful in inferring all the actual
regulations, but also include a substantial number of incor-
rect predictions. Addition of biological information proves to
be somewhat useful towards improving the accuracy of the
inferred models [9]. However, accurate prediction of large-
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scale GRNs is still an open problem. The time required for
the reconstruction of large-scale GRNs is also huge.

Thus, in the present research endeavour, our motivation is to
develop a new computational framework for the reconstruction
of GRNs that are more biologically relevant. In this paper, we
have proposed a new computational formalism that is based
on the hybridisation of RNN and half-systems (HS). HS is
similar in nature to S-system [10]. However, as the name
suggests, HS requires exactly half the number of parameters
for modelling a GRN. To the best of our knowledge, the two
existing models, RNN and HS, have not been hybridised previ-
ously for the extraction of underlying network dynamics from
temporal expression datasets. We have employed artificial bee
colony (ABC) optimisation [11] to train the parameters of our
proposed hybrid model.

We have implemented the proposed hybrid methodology for
the reconstruction of the E. coli SOS DNA Repair network,
comprising eight genes, from four in vivo datasets [12]. The
obtained results clearly demonstrate that the performance of
the proposed technique is comparable or better compared to
other similar methods present in contemporary literature. Also,
for the sake of retaining uniformity, we have implemented the
state-of-the-art GRN inference tool, GENIE3 [13], on the data
and calculated the area under the curve or AUC scores, i.e.
the area under the precision-recall curve, AUPR, and the area
under the receiver operating characteristic curve, AUROC.
These form the basis of comparison between our proposed
technique and GENIE3 [13]. The hybrid GRN inference
formalism achieved better AUC scores than GENIE3 [13] for
all the four cases.

The rest of the paper has been organised as follows:
Section II presents an overview of earlier research works in
this domain, along with the basics of HS, RNN, and ABC.
Section III illustrates the proposed hybridisation of HS and
RNN and how it has been implemented for the reconstruction
of GRNs from temporal expression data. The experimental
results have been presented in Section IV, along with a detailed
discussion. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Scientific Background

In recent years, several techniques have been developed
to infer GRNs from time-series gene expression data based
on different mathematical formalisms, namely, ordinary dif-
ferential equations, Bayesian networks, Boolean networks,
linear additive models, recurrent neural networks, S-systems,
etc. Kim et al. [14] proposed a model based on ODEs,
whose performance was observed in the presence of noise
and time-delay, separately, as well as, in combination. Chen
et al. [15] proposed a differential equation based model using
two different methods: Fourier Transform for Stable Systems
(FTSS) and Minimum Weight Solutions to Linear Equations
(MWSLE).

Bayesian network (both static and dynamic) is another math-
ematical formalism that has been widely used in this domain
of reverse engineering GRNs. Dynamic Bayesian networks
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Fig. 1: The representation of a GRN using an RNN model. The
network shown is unfolded from t = t1 to t = t3. All possible
connections amongst the genes have been shown, whereas,
real-world networks are sparse.

(DBN) form the basis of different models proposed by various
researchers [16]–[19]. Zou and Conzen [16] described DBN as
a mathematical model that can identify regulator-target pairs
of genes based on some statistical analysis of their expression
relationships over different time-points. Husmeier et al. [18]
used a Markov Chain Monte Carlo, for Bayesian learning. On
the other hand, Friedman et al. [20] used a Static Bayesian
network to simulate the dynamic behaviour of GRNs in their
proposed model.

Researchers also proposed models based on Boolean netw-
orks [21]–[23], which is binary in nature. In this formalism,
nodes represent genes, and edges denote the regulatory in-
teractions amongst the genes. Genes are considered to be
binary devices, which can either be turned on or off under
the combined effects of regulator(s). The level of expression
of a gene is functionally related to the state of all the regulators
by some logical rules [23]. D’haeseleer et al. [24] proposed a
linear model that considers the different degrees of regulatory
effects by incorporating weights to each connection amongst
the genes in the network.

B. Recurrent Neural Network and S-System

Recurrent neural networks or RNNs are a special family
of an artificial neural networks. RNNs are popular because of
their ability to learn from data and robustness to noisy data
[25]. RNNs can capture the complex, dynamic, and temporal
behaviour of biological organisms. A simple RNN model has
been shown in Fig. 1.

Being the basic functional units of cells, genes participate
in the signalling and control of all processes necessary for
life. Genes encode proteins, one of the fundamental molec-
ular components the living cells are composed of. Protein
synthesis from a particular gene is carried out through two
essential sequential biological processes, namely, transcription
and translation. These two procedures change the state of
the cells and influence the expression of other genes. This
phenomenon can be modelled very well by a genetic network



of feed-forward type, where all the genes and their product
participating in one regulatory event are members of the
network. Based on this assumption, Vohradsky [26] proposed
a special type of RNN. The mathematical representation of
the RNN model is as follows:

τi
dxi
dt

=
1

1 + exp

−


N∑
j=1

wijxj + βi


 − xi, (1)

where τi is the constant coefficient; ∆t is the gap between two
consecutive time-points; xi (t+ ∆t) is the expression level of
gene i at next time-point, (t+ ∆t); xi (t) is the expression
level of gene i at the current time-point, t; wij is the weight
of the edge from a node (gene) j to another node (gene) i; βi
denotes an external input that may be visualised as a reaction
delay parameter; and N is the number of genes in the network.
Since the number of time-points is limited, we can assume
dxi

dt ≈
∆xi

∆t = xi(t+∆t)−xi(t)
∆t . Thus, we get the following:

xi (t+ ∆t) =
∆t

τi
· 1

1 + exp

−


N∑
j=1

wijxj (t) + βi




+

(
1− ∆t

τi

)
· xi (t) (2)

The expression value of a particular gene at any time-point
can be predicted using (2) from the expression values of the
other genes at the previous time-point. The total number of
parameters that need to be estimated for each gene in the RNN
formalism is (N + 2). Thus, the model requires N (N + 2)
parameters for a N -gene network.

Xu et al. [27] were one of the first to propose an RNN based
model for GRN reconstruction, and implemented two variants
of the particle swarm optimisation (PSO) algorithm, namely,
PSO-FIXEW and PSO-RADW, for model parameter training.
The authors replaced PSO with differential evolution (DE) in
one of their future works [28]. First, the authors observed the
performance of the model using DE and PSO separately. Then,
they employed a hybridised version of DE and PSO, termed
as DEPSO. Kentzoglanakis et al. [29], on the other hand,
used a decoupled strategy. First, the authors implemented the
ant colony optimisation algorithm to generate biologically
plausible candidate architectures by searching the discrete
space of network topologies. Next, PSO was used to train the
obtained RNN model by examining the continuous space of
parameters. Khan et al. [30] proposed a bat algorithm (BA)
inspired version of PSO, named BAPSO, for the reconstruction
of GRNs from time-series gene expression datasets.

S-system is a set of nonlinear differential equations of the
first order commonly used to reconstruct GRNs [10] from
time-series gene expression datasets. The ‘S’ in the name
stands for saturation and synergy, two essential characteris-
tics of biological systems. S-system is a power-law based
formalism and is found to be very suitable for representing

nonlinear biological systems like GRNs. The mathematical
representation of the S-system model is given as:

dxi
dt

= αi

N∏
j=1

x
gij
j − βi

N∏
j=1

x
hij

j , (3)

where αi and βi are the rate constants for the production and
degradation terms, respectively; gij and hij are the kinetic or-
ders of the system, also known as the exponential parameters;
and N is the number of genes in the network. Again assuming
dxi

dt ≈
∆xi

∆t = xi(t+∆t)−xi(t)
∆t , we get:

xi (t+ ∆t) = xi (t) + (∆t · αi) ·
N∏
j=1

[xj (t)]
gij

− (∆t · βi) ·
N∏
j=1

[xj (t)]
hij (4)

The expression value of a particular gene at any time-point
can be predicted using (4) from the expression values of the
other genes at the previous time-point. The total number of
parameters that need to be estimated for each gene in the
S-system formalism is (2N + 2). Thus, the model requires
2N (N + 1) parameters for the case of an N -gene network.

Palafox et al. [31] employed dissipative PSO or DPSO to
optimise the parameter values of a decoupled version of S-
system. Juang et al. [32] proposed an S-system based model
involving a hybrid algorithm for identifying the network struc-
ture with minimal connectivity and parameter estimation of the
determined network structure. BA was used by Mandal et al.
[33] for estimating the parameter values of a decoupled and
regularised S-system based model. A comprehensive review
on various methodologies for the reconstruction of GRNs from
time-series gene expression data can be found in [34], [35].

C. Half-System

RNNs are more resistant to noisy data than S-systems.
While, on the other hand, S-systems are more suited for mod-
elling the temporal dynamics of genetic expressions because
they can model both synergy and saturation. Hence, we have
attempted to combine the strengths of these two models to
create a new formalism that would be robust as well as have
better biological relevance.

Nevertheless, S-system modelling poses a few problems. It
is computationally expensive to train the model due to the
larger number of parameters required compared to RNN, i.e.
2N (N + 1) compared to N (N + 2). Also, in (4), gij > 0 or
hij < 0 denotes activation of gene i by gene j, while gij < 0
or hij > 0 signifies inhibition of gene i by gene j. However, a
problem arises when both the predicted gij and hij are of the
same sign, which suggests dual regulations. This is unrealistic,
as a gene cannot activate as well as inhibit another gene at
the same time. This poses a critical issue during network
reconstruction from the estimated model parameters. To avoid
such issues, we have employed the HS formalism [6], in place



of S-system, and hybridised it with RNN in this work. The
mathematical representation of HS is as follows:

dxi
dt

= αi

N∏
j=1

x
wij

j , (5)

where αi is the single rate constant; wij is the only kinetic
order of the system; and N is the number of genes in the
network. Again assuming dxi

dt ≈
∆xi

∆t = xi(t+∆t)−xi(t)
∆t , we

get:

xi (t+ ∆t) = xi (t) + (∆t · αi) ·
N∏
j=1

[xj (t)]
wij (6)

The total number of parameters required for training is thus
(N + 1). Thus, the model requires N (N + 1) parameters for
the case of an N -gene network, which is half of that in S-
system. The authors [6] have added two modifications to the
traditional HS formalism to improve the stability of the model
as well as increase the prediction accuracy. We have used the
same in this work.

Firstly, the traditional HS given by (5) does not have any
self-degradation term that is critical for its stability. Also, the
product of gene expression is not accumulated at the reaction
site but is used up in the process of regulating the expression
of other genes. The depletion of the expressed product is
dependent on the current level of expression of a gene. For all
these reasons, the traditional HS formulation given by (5) and
(6) has been further modified as given in (7) and (8) by adding
a new term γixi (t), where γi is assumed to be positive (> 0).
In this modified HS formulation, the change in the expression
level xi of gene i, varies with time according to:

dxi
dt

= αi

N∏
j=1

x
wij

j − γi · xi (7)

Again assuming dxi

dt ≈
∆xi

∆t = xi(t+∆t)−xi(t)
∆t , we get:

xi (t+ ∆t) = (∆t · αi) ·
N∏
j=1

[xj (t)]
wij

+ (1−∆t · γi) · xi (t) (8)

The HS model in (8) has been further modified as:

xi (t+ ∆t) = (∆t · αi) ·
N∏
j=1

[xj (t)]
wij

+ (1−∆t · γi) · xi (t) + qi · df, (9)

where df is the difference between the original and predicted
expression values of the associated gene at the last sampling
instance; and qi is a positive constant. The term qi · df , in
essence, is an error corrector, or in other words, a biologically-
motivated penalty term that has been introduced to prevent the
predicted expression profiles from diverging from the original
too much. The total number of parameters to be trained for
each gene in the modified HS formalism [6] is (N + 3), which
is still less than S-system.

D. Artificial Bee Colony Optimisation

Artificial Bee Colony (ABC) optimisation was introduced
by Karaboga [11], which emulates the collective foraging
behaviour of a swarm of honey bees. An artificial bee colony
consists of three groups of artificial bees: employed, onlooker,
and scout bees. Initially, each employed bee is associated with
a single randomly initialised food source leading to the equal-
ity of the number of employed bees and food sources. Each
food source is evaluated by the fitness (objective) function
under consideration to find out their profitability. The food
source with the best profitability or nectar amount is mem-
orised. From this point onwards, ABC performs everything
iteratively.

vi = xi + ϕi ·
(
xi − xj

)
, (10)

where vi is a new food source in the neighbourhood of the
ith food source, xi, such that i 6= j; ϕi is a random number
within the range [−1, 1]. Next, all the newly explored sources
are evaluated and compared with the old ones. If a new
source is found to be better, it replaces the earlier one. Each
employed bee then computes the probability of its associated
food source being selected for exploration by an onlooker
bee, and subsequently, shares the information with different
onlooker bees. In this paper, the probabilities are computed
using (11), as proposed by Babayigit and Ozdemir [36].

pi = exp

(
−1

ρ · f i

)
, (11)

where pi and f i denote the probability and normalised fitness
of the ith food source, respectively; ρ is a control (input)
parameter. In this work, ρ = 1. In the next step, the onlooker
bees search for new food sources in the neighbourhood of the
current best source [36] using (12).

vi = xbest + pi ·
(
xbest − xj

)
, (12)

where the current best solution is denoted by xbest. Unlike
(10), j can be the same as best (the index of the best
solution) as the current best may be the final best solution.
Each time new food sources are explored, each source is
evaluated and compared with the old one. If a source does not
improve in quality over a predefined number of iterations, that
source is considered as exhausted. The bee associated with the
exhausted source becomes a scout bee and randomly generates
a new solution. It should be noted that the population size and
the minimum number of iterations needed to declare a source
as exhausted are two other control parameters of ABC.

III. METHODOLOGY

A. The Proposed Hybrid Model

In this section, we have illustrated the proposed hybrid
model comprising the two formalisms: half-system and re-
current neural networks. The proposed hybridisation makes
it possible to combine the advantages of both the paradigms
in one model. Inherently, HS has all the benefits of S-systems
except its stability, which has been rectified by the authors [6].



We have proposed to combine (2) and (9) as a×(2)+b×(9),
which gives the following:

(a+ b) · xi (t+ ∆t)

= a ·


∆t

τi
· 1

1 + exp

−
 N∑
j=1

wijxj (t) + βi




+ a ·

[(
1− ∆t

τi

)
· xi (t)

]
+ b ·

(∆t · αi) ·
N∏
j=1

[xj (t)]
wij


+ b · [(1−∆t · γi) · xi (t) + qi · df ] ,

where a+ b = 1. In this work, we have assumed a = b = 0.5,
i.e. RNN and HS have been given equal weightage. Simpli-
fying the above, we get:

xi (t+ ∆t)

=
a

a+ b
· ∆t

τi
· 1

1 + exp

−


N∑
j=1

wijxj (t) + βi




+
b

a+ b
· (∆t · αi) ·

N∏
j=1

[xj (t)]
wij +

b

a+ b
· qi · df

+

(
1− a

a+ b
· ∆t

τi
− b

a+ b
·∆t · γi

)
· xi (t) (13)

B. Network Reconstruction using the Proposed Model

Researchers have previously [29], [30] employed a decou-
pled scheme, where the problem of reconstruction of GRNs
is divided into two sub-problems: (i) search for a suitable and
biologically relevant network structure, and (ii) proper training
of the corresponding HS model parameters.

We have also employed this strategy in this work. Bolouri
and Davidson [8] stated that in any genetic network, a gene is
likely to be regulated by a maximum of four to eight genes.
We have utilised this biological knowledge in this work. The
proposed technique has been implemented on a real-world
network comprising eight genes. Since it is a small-scale
network, the maximum number of regulators allowed for a
gene has been assumed to be four. This assumption reduces
the discrete search space of candidate network structures and
the computational cost, significantly.

Precisely, the search space dimension is reduced from an
unconstrained 2N to

(
N
m

)
, where N is the number of genes in

a GRN and m is the maximum number of regulators allowed
for a gene. We have assumed m = 4 in this work. This means
that the maximum number of parameters to be trained is also
reduced significantly. In other words, only four parameters of
wij in (13) can be non-zero and hence need to be estimated.
There are several other advantages of this approach as well.

Firstly, all possible combinations of regulators are taken
into account, which is expected to maintain the biological

reliability of the candidate network topologies to the maximum
extent possible. Moreover, over-fitting is also minimised by
putting a limit on the number of regulators because it leads to
simplification of the proposed model. If no restriction is put
on the number of regulators, ABC is likely to use all N values
of wij to train the model defined in (13). This would increase
the complexity of the proposed model needlessly, as well as
make the network architecture biologically improbable.

Next, the training of the parameters of the proposed hybrid
model has been explained. If there are N genes in a network,
N+5 parameters need to be estimated for each gene according
to (13), i.e. wij (N parameters), αi, βi, τi, γi, and qi. Thus, the
dimension of the optimisation problem becomes N (N + 5).
To simplify the training and reduce the computational cost
further, researchers [29], [30] have proposed a strategy to
decompose this N (N + 5)-dimensional problem into N sub-
problems of (N + 5) dimensions. Each gene can then be
investigated separately, and the corresponding (N + 5) model
parameters estimated for each case. Thus, the fitness/objective
function (MSE) for ABC has been defined here as:

MSE =
1

T

T∑
t=1

[xi (t)− x̃i (t)]
2
, (14)

where T is the number of available time points; xi (t) is
the original level of expression of gene i; and x̃i (t) is the
predicted expression level of gene i at time-point t.

In the present research endeavour, GRNs have been repre-
sented with the help of a directed graph G = (V,E), where V
is the set of all nodes (genes) and E is the set containing the
edges (the relationships amongst the genes). Here, we have
represented G computationally as G = [gij ]N×N , where N is
the number of genes in the network. The value of the element
gij depends on whether an edge exists from node j to node
i or not, i.e. gij = 1 if gene j regulates gene i; gij = 0,
otherwise.

Due to the stochastic nature of the ABC technique used
for parameter estimation, the predicted network structures are
likely to vary with each experiment. As a result, a cooperative
training approach has been employed, where K experiments
have been performed, and the resultant K GRNs have been
stored separately. Next, a selection process has been designed
technique based on an inclusion score, isij allocated to each
edge, according to (15):

isij =
1

K
·

K∑
k=1

gkij (15)

The final inferred network, GF =
[
gfij

]
N×N

has been
generated based on the inclusion score, isij , according to (16).

gfij =

{
0, if isij < φ

1, otherwise,
(16)

where φ is a threshold of the inclusion score, isij , based on
which gfij is either assigned a 0 or a 1, i.e. an edge is either
included or discarded from the final inferred topology.



TABLE I: Comparison of results obtained by the proposed methodology for the E. Coli SOS DNA Repair network [12] with
other results present in the contemporary literature.

TP FP Sn Sp PPV ACC F1 TP FP Sn Sp PPV ACC F1

Dataset 1 Dataset 2

eDSF [29] 3 10 0.33 0.82 0.23 0.99 0.27 8 5 0.89 0.91 0.62 0.98 0.73
Khan et al. (RNN) [30] 7 9 0.78 0.84 0.44 0.98 0.56 7 10 0.78 0.82 0.41 0.99 0.54
Khan et al. (HS) [6] 5 7 0.56 0.87 0.42 0.98 0.48 4 6 0.44 0.89 0.40 0.98 0.42
Proposed HS+RNN 5 13 0.56 0.76 0.28 0.73 0.37 7 9 0.78 0.84 0.44 0.98 0.56

Dataset 3 Dataset 4

eDSF [29] 4 10 0.44 0.82 0.29 0.99 0.35 0 9 0.00 0.84 0.00 0.98 0.00
Khan et al. (RNN) [30] 7 15 0.78 0.73 0.32 0.99 0.45 4 12 0.44 0.78 0.25 0.99 0.32
Khan et al. (HS) [6] 5 5 0.56 0.91 0.50 0.98 0.53 5 11 0.56 0.80 0.31 0.99 0.40
Proposed HS+RNN 9 11 1.00 0.80 0.45 0.99 0.62 4 9 0.44 0.84 0.31 0.98 0.36

uvrD

lexA

umuDC

recA

uvrY uvrA ruvA polB

Fig. 2: The original topology of the E. coli SOS DNA Repair
network [35]. The arrowheads represent activation, and the
T-heads denote inhibition.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this work, we have applied the proposed method based on
the hybridisation of RNN and HS for the reverse engineering
of the E. coli SOS DNA Repair network [12] from four
experimental (in vivo), time-series gene expression datasets.
The obtained results have been compared with those achieved
by other such network identification techniques present in the
contemporary literature. The comparison has been made based
on the following metrics:

• the true positive rate (TPR), sensitivity, or recall;
• the true negative rate (TNR) or specificity;
• the positive predictive value (PPV) or precision;
• the accuracy (ACC); and
• the F-score (F1);

which can be mathematically defined as follows:

TPR (Sn) =
TP

TP + FN
, (17)

TNR (Sp) =
TN

FP + TN
, (18)

PPV =
TP

TP + FP
, (19)

ACC =
TP + TN

TP + FP + TN + FN
, (20)

F1 =
2TP

2TP + FP + FN
, (21)

where TP stands for true positives, i.e. the number of existing
edges that have been identified correctly, while FP signifies
the false positives, i.e. the number of non-existent edges, which
have been inferred in accurately. Likewise, TN stands for true
negatives, i.e. the number of non-existent edges, which have
been inferred correctly, whereas FN stands for false negatives,
which is the number of existing edges that have been predicted
erroneously.

The GRN under investigation, in this work, is the SOS DNA
Repair network of the bacterium Escherichia Coli [12], shown
in Fig. 2. It is usually considered as a benchmark for GRN
reconstruction strategies present in contemporary literature.
Ronen et al. [12] studied this network comprising eight genes,
namely, recA, lexA, uvrA, uvrD, uvrY , umuDC, ruvA,
and polB, and analysed their temporal expression levels. Four
experimental setups were prepared by the authors, and in
each such experiment, they noted the expression levels of
all the genes for 50 instances at a temporal resolution of six
minutes. These generated datasets are amongst the most useful
ones for research on the computational modelling of reverse
engineering methodologies that can infer biologically plausible
GRNs from temporal expression data. The datasets are freely
available at http//wws.weizmann.ac.il/mcb/UriAlon/sites/mcb.
UriAlon/files/uploads/DownloadableData/sosdata.zip.

The gene expression values in the datasets mentioned
above have been normalised in the range [0, 1] in this work.
Also, we have removed the expression value of each gene
at the first time point from each dataset, as they are all
zero. Kentzoglanakis and Poole et al. [29] were one of the
early researchers to present their experimental results for the
individual datasets separately. Subsequently, other authors [6],
[30] have also given their results for the individual datasets.
Here, we have followed the same settings as these research
works, in setting the inclusion score threshold, φ = 0.9. The
comparison of results has been presented in Table I.

It can be clearly seen from Table I that the performance
of the proposed hybridised methodology is comparable to or
better than the other techniques used for comparison. The pro-
posed method is better than eDSF [29], except in the case of



TABLE II: Comparison of the AUC scores achieved by the proposed hybrid technique with those obtained by GENIE3 [13]
for the E. coli SOS DNA Repair network [12].

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Proposed GENIE3 Proposed GENIE3 Proposed GENIE3 Proposed GENIE3

AUPR 0.2071 0.1831 0.3518 0.2386 0.3818 0.1772 0.2168 0.1690
AUROC 0.6787 0.5263 0.8061 0.5384 0.8828 0.5162 0.6929 0.5283
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Fig. 3: Comparison of the proposed hybrid methodology with GENIE3 [13] based on Precision Recall (PR) and Receiver
Operating Characteristic curves for the E. coli SOS DNA Repair network [12].

Dataset 2, w.r.t the number of TPs, and thus has much better
TPR values. Similarly, the proposed technique can identify
the same or a greater number of TPs compared to the RNN
based technique [30], except for Dataset 1, and the HS based
technique [6], except for Dataset 4. Furthermore, for Dataset 3,
the proposed technique can infer all the genetic relationships,
i.e. 9 TPs, with the highest possible a TPR = 1, which is
one of the best results obtained by GRN inference strategies
proposed till date.

In addition to the above-mentioned results, we have also
implemented GENIE3 to compare our proposed methodology
with a state-of-the-art tool. We have compared the performance
of our framework with GENIE3 based on the area under
the receiver operating characteristic curve (AUROC) and the
area under the precision-recall curve (AUPR). The area under
the curve or AUC scores has been shown in Table II. The
corresponding curves have also been presented in Fig.3 for all
the datasets, separately.

V. CONCLUSION

In this work, we have investigated the reconstruction of
GRNs from temporal expression profile. For this, we have
developed a hybrid framework combining the characteristics of
two existing techniques: RNN and HS. The model parameters
have been estimated using ABC. The proposed methodology
has been used to reconstruct the E. coli SOS DNA Repair
network [12] from four experimental datasets. The obtained
results clearly show that the hybrid technique is comparable
to or better than the other network identification techniques
[29], [30] for almost all cases, from the point of view of TPs.

We have also implemented the state-of-the-art tool, GE-
NIE3 [11], to maintain uniformity. The proposed technique
also achieves better AUC scores compared to GENIE3 [11].
We have also implemented a restriction on the maximum
number of regulators allowed for a gene in a network, based
on biological information prevalent in the domain. This helps



in reducing the computational cost and also minimising over-
fitting. There is scope for future research on the proposed
methodology for its implementation in the reverse engineering
of large-scale genetic networks.
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