
Evolutionary Design of Hash Functions for IPv6

Network Flow Hashing

David Grochol and Lukas Sekanina

Brno University of Technology, Faculty of Information Technology

IT4Innovations Centre of Excellence

Brno, Czech Republic

Email: igrochol@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Fast and high-quality network flow hashing is an
essential operation in many high-speed network systems such
as network monitoring probes. We propose a multi-objective
evolutionary design method capable of evolving hash functions for
IPv4 and IPv6 flow hashing. Our approach combines Cartesian
genetic programming (CGP) with Non-dominated sorting genetic
algorithm II (NSGA-II) and aims to optimize not only the quality
of hashing, but also the execution time of the hash function. The
evolved hash functions are evaluated on real data sets collected
in computer network and compared against other evolved and
conventionally created hash functions.

Index Terms—Cartesian genetic programming, linear genetic
programming, hash function, network flow, Internet protocol.

I. INTRODUCTION

Network monitoring is an important collection of tasks that

has to be performed in any non-trivial computer network.

It is based on probing of device states, collecting of traffic

information and traffic analysis. Results of monitoring are

useful for administrators to improve network security, perfor-

mance and functionality. Current high-speed networks (with

40 Gbps and higher throughputs) require novel solutions to

traffic monitoring because the monitoring systems developed

for previous standards (10 Gbps and lower) do not have

enough throughput. As software solutions are often insuf-

ficient in terms of performance, hardware implementations

of monitoring systems, based on field-programmable gate

arrays (FPGA) or application-specific integrated circuits, are

currently employed to ensure a sufficient throughput. The

monitoring is conducted at the level of network flows, where a

network flow is a collection of packets having some common

features. One of the recent approaches is called Software

Defined Monitoring (SDM). In SDM most operations are

conducted in fast programmable hardware and the remaining

(more complex) operations are left for software processing [1].

Network flow hashing is one of the most frequently executed

operations in network monitoring systems. Hash functions are

typically used for searching in rule tables, for distributing the

flow data to process units and for storing the flow data to a

database. For example, in the distribution unit, a hash function

must be called for each incoming packet. Less than 7 ns can

be spent on a common processor to process this packet in a

100 Gbps network [1]. In order to maximize the performance

of network monitoring systems, hashing has to be not only of

a high quality, but also fast. For hashing of network flows, the

so-called XOR folding has been proposed [2]. In addition to

the human designs of hash functions, an automated approach

has been developed. It is based on linear genetic programming

(LGP) and single- as well as multi-objective LGP versions

were proposed [3], [4]. However, these methods consider IPv4

flow hashing only, which is a serious limitation for modern

computer networks utilizing Internet Protocol version 6 (IPv6).

In this paper, we propose a multi-objective evolutionary

design system capable of evolving fast and high quality hash

functions for IPv6 flow hashing. The system is based on

Cartesian genetic programming (CGP) which is combined with

Non-dominated sorting genetic algorithm II (NSGA-II) and the

aim is to optimize not only the quality of hashing, but also

the execution time of hash functions on a common processor.

Another challenge is that the CGP setup needed for IPv6

flow hashing increases the search space and the task becomes

more complex for genetic programming. In the IPv4 flow

hashing with LGP, the input vector dimension is 96 bits [3].

The proposed CGP-based solution works with a 320 bit input

vector as both the source and destination addresses are stored

on 128 bits and other bits are needed to store the source

and destination ports and transport protocol. This additional

complexity has to be appropriately handled during the design

of our CGP-based method.

The evolved hash functions are evaluated on real data sets

collected in IPv4 and IPv6 networks and compared against

hash functions evolved with LGP and other 11 commonly used

hash functions.

The rest of the paper is organized as follows. Section II

introduces the principles of hash functions and their design,

surveys the hash functions evolved in the past and discusses

evolutionary design of hash functions for network flow hash-

ing. In Section III, CGP is presented as a method suitable for

the evolutionary design of hash functions and, in connection

with NSGA-II, as a method capable of optimizing not only

the quality of hashing, but also the time of hashing in the

context of IPv4 and IPv6 networks. Results are presented

in Section IV, in which we first compare LGP and CGP

in the design of IPv4 flow hash functions and then present

evolved hash functions for IPv6 flows. Conclusions are given

in Section V.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

II. RELEVANT WORK

A. Hash Functions

For the scope of this paper, let us define the hash function

as a mathematical functions h that accepts an n-bit string and

produces another m-bit string, where n ≫ m. The resulting bit

string is usually interpreted as a natural number and called a

hash value (or a hash) [5]. In the case of network flow hashing,

the n bits are extracted from key features of each flow. The

number of output bits (m) determines the number of items

(i.e. 2m) that one needs to distinguish. For example, it is the

number of slots in the hash table. The use of a hash function

thus enables to quickly identify the flow in the incoming

packet, assuming that the hash is easy to compute. However,

as n ≫ m, many input vectors are inevitably mapped to the

same output value (hash). This situation is called a collision.

In the case of hash tables, colliding input vectors are usually

handled by means of a set of linear lists containing the flow

identifiers having the same hash. The flow is then recognized

either in constant time (no collision) or in linear time (with

respect to the number of flows in the list that are assigned to

a given slot). Other approaches to collision resolving are the

open addressing or cuckoo hashing [6].

A good hash function produces a low number of collisions.

It is also required that two similar input vectors produce very

different output vectors. That property is called an avalanche

effect and can be formalized in various ways. For crypto-

graphic applications, some additional requirements on hash

functions are specified. However, the network flow hashing is

usually implemented with non-cryptographic hash functions.

Literature offers many good hash functions created by ex-

perts, for example, DJBHash [7], DEKHash [5], FVN (Fowler-

Noll-Vo) [8], One At Time, Lookup3 [9], MurmurHash2, Mur-

murHash3 [10] and CityHash [11]. Specifically for the IPv4

network flow hashing the so-called xor folding (XORHash

function) was proposed. In this function, the items of the flow

identifier are shifted by a predetermined number of bits and

then aggregated with the xor operation [2]. Details of various

common hash functions are summarized in [12].

B. Evolved Hash Functions

Evolutionary algorithms (EA) have been applied to the

design of universal as well as application-specific non-

cryptographic hash functions for more than two decades.

EAs are popular in this domain as they excel in creating

complex non-linear functions and producing high-quality func-

tions optimized for a given application. Table I surveys the

most relevant EA-based methods available in the literature on

the subject. Because hash functions are usually constructed

using elementary arithmetic and logic operators, most EA

branches can easily be adopted for the hash function design,

including LGP, CGP, tree GP (TGP), grammatical evolution

(GE) and even GAs optimizing parameters of various FPGA-

based reconfigurable circuits implementing candidate hash

functions. The fitness function is usually defined by means

of collision counting for some training data; however; other

TABLE I
METHODS FOR EA-BASED DESIGN OF NON-CRYPTOGRAPHIC HASH

FUNCTIONS

Paper EA method Fitness Application

Damiani, 1998 [15] GA-FPGA collisions universal
Berarducci, 2004 [16] GE collisions universal
Estébanez, 2006 [17] TGP avalanche universal
Widiger, 2006 [18] GA-FPGA collisions packet classif.
Safdari, 2009 [19] GA collisions universal
Kaufmann, 2009 [14] CGP CPU runtime cache maps
Karasek, 2011 [20] GE collisions universal
Estébanez, 2014 [21] TGP avalanche universal
Grochol, 2016 [3] LGP collisions IPv4 flow hash
Dobai, 2017 [22] GA-FPGA collisions Cuckoo IP hash
Kidon, 2017 [23] TGP collisions Cuckoo IP hash
Grochol, 2017 [4] LGP+NSGA2 1. collisions IPv4 flow hash

2. exec. time
Grochol, 2018 [13] LGP+NSGA2 1. collisions universal

2. exec. time
Saez, 2019 [12] TGP collisions 4 applications

methods (such as formalizing and measuring the avalanche

effects) have also been proposed. In most cases, the problem

is formulated as a single-objective optimization problem, but

papers [4], [13] deal with a multi-objective approach in which

the number of collisions is minimized together with the hash

function execution time on a processor.

CGP was only used in one of the applications listed in

Table I, in particular, to evolve an application-specific hash

mapping for a processor cache [14]. CGP, in fact, evolved a

combinational gate-level circuit with a 27 bit input and a 15

bit output. However, the quality of hashing was not directly

evaluated (for example, by means of the collision counting) as

in the other case studies from Table I. The objective was to

minimized the execution time for a given application running

on the processor utilizing a given candidate hash function in its

cache. In our work, CGP is employed to evolve hash functions

that are directly evaluated, i.e. they can directly be compared

with other hash functions and reused.

C. Evolutionary network flow hashing

In our previous work, single- as well as multi-objective

LGP was used to evolve hash functions for IPv4 network flow

hashing [3], [4]. Collisions in the hash table were resolved

by introducing a linked list for each slot. The input to the

hash function was a 5-tuple identifying a network flow by the

source and destinations IP addresses (2× 32 bits), source and

destination ports (2× 16 bits) and transport protocol (8 bits).

This 104 bit input was read in one step. The hash function

was implemented as a sequence of several arithmetic/logic

operations without any loop in its body. LGP employed eight

32 bit registers (R0 – R7), 32 bit operators (logical XOR,

addition, multiplication and right rotation) over the registers

and returned a 16 bit hash (in low half of R0). In order to

fit the problem into this LGP setup, the 104 bit input vector

was reduced to 3 × 32 bits only. The source and destination

IP addresses remained in the original format, but the source

and destination ports (SP, DP) and transport protocol (tp) were

compressed into a new 32 bit vector as shown in Fig. 1(A).

Fig. 1. Creating the input vectors for the hash function from the source IP
address, destination IP address, source port (SP), destination port (DP) and
transport protocol (tp) in the case of IPv4 flow hashing (A) and IPv6 flow
hashing (B).

The three input vectors were stored to R0, R1 and R2. The

remaining registers were initialized to 0. The fitness function

was based on the weighted number of collisions produced

for a training data set. In the multi-objective scenario, the

second objective was to minimize the execution time which

was estimated as the weighted number of instructions. Detailed

comparison of evolved hash functions with state of the art hash

functions is given in [3], [4]

III. MULTI-OBJECTIVE CGP FOR FLOW HASHING

In order to evolve hash functions for network flow hashing,

we propose to combine CGP with NSGA-II.

A. Cartesian Genetic Programming

CGP is typically used to design or optimize digital cir-

cuits [24], [14] or solve symbolic regression problems [25].

In CGP, a candidate program is represented in a two-

dimensional grid of nodes consisting of nr rows and nc

columns. A candidate program accepts ni primary inputs and

returns no outputs. Every node is configured to perform one

of na-input functions defined in the function set Γ. As each

of the inputs of a node can be connected either to a primary

input or to a node placed in previous up to L columns, no

feedbacks are allowed in the resulting program, i.e. in the

phenotype. A unique address is assigned to every primary

input and every node output. By means of these addresses,

program’s encoding (genotype) is established as seen in Fig. 2.

One node is represented in the genotype using na+1 integers,

where na integers specify the connection addresses and one

integer encodes the node’s function. Finally, no integers are

employed to define the nodes serving as primary outputs of the

program. The genotype size is nr ·nc · (na+1)+no integers.

This encoding is redundant because some nodes, some of

their inputs or some primary inputs need not be used in the

phenotype.

The standard single-objective CGP utilizes a search method

known as 1+λ in which a new population consisting of λ+1
individuals is generated by applying the mutation operator

on the best individual of the previous population. Various

mutation operators have been proposed in the context of

CGP [26]. One of the most popular ones modifies each node

Fig. 2. Hash function h = (a xor RR(b)) + a represented in CGP with
ni = 3, no = 1, nr = 1, nc = 4, na = 2. Node 5 is not used. Genotype: 1,
2, 0; 0, 3, 1; 1, 2, 1; 0, 4, 2; 6. Γ = {RRotate(0), XOR(1),+(2)}

with the probability pm. If a node has to be mutated then either

one of input connections or its function is randomly modified.

B. Evolutionary design of hash functions

As one of our objectives is to compare CGP with LGP in

this task, the CGP setup is reflecting the approach described

in Section II-C, including the use of NSGA-II as an efficient

multi-objective EA for two objectives. CGP is used with one

row (nr = 1), nc > 1 and L = nc which enables all possible

connections among the nodes in the resulting directed acyclic

graphs (phenotypes). We will consider IPv4 flow hashing (in

the same setup as in previous studies [3], [4]) and, as a new

contribution of this paper, IPv6 flow hashing.

In the case of IPv4 flow hashing, a candidate hash function

will accept three 32 bit vectors and produce a 16 bit vector

by xor-ing low 16 bits with high 16 bits of the 32 bit output

vector, i.e. ni = 3, no = 1 in the CGP context. All primary

inputs, internal signals and functions of Γ will be defined on 32

bits. Γ consists of logical XOR, OR, addition, multiplication

and 1 bit right rotation. In CGP we will not employ any set

of constants because the hash functions obtained using LGP

do not usually contain any constants even if a set of constants

is defined for LGP.

NSGA-II needs a larger population than the standard CGP

(in which λ is usually 4 according to [25]). Hence, the

population size α will be at least 10 individuals. We replaced

the original (1+λ) mechanism of CGP in such a way that the

offspring population consists of α individuals if the population

size is α. Each individual from the parental population gen-

erates just one offspring by mutation. NSGA-II then creates

the new population from α parents and its α offspring. The

remaining operations such as the non-dominated sorting and

crowding distance calculations are as implemented in the

original NSGA-II [27].

The quality of candidate hash function h is measured exactly

as in [3], i.e. fitness function f1 is the weighted number of

collisions (with a quadratic penalty for collisions):

f1(h) =

s
∑

i=1

gi, where (1)

gi =

{

0 if Ki ≤ 1
∑Ki

j=2
j2 if Ki ≥ 2,

(2)

g is an auxiliary function, s is the number of slots and Ki is

the number of inputs (keys) mapped by h into i-th memory

slot.

The second fitness function f2 deals with the execution time

of a candidate hash function. It is defined as the number of

operations along the longest path from the input to the output

in the CGP grid. The rationale behind this definition is that the

hash function will be executed on a modern processor, where

several arithmetic operations are performed in parallel in the

so-called Single Instruction Multiple Data (SIMD) scenario,

for example, by means of the SSE and AVX instruction set

extensions. This definition provides more reliable estimate of

the real execution time than another metric – the number of

used nodes. It has to be emphasized that the real execution

time will be measured for the best evolved hash functions on

various data sets (at the end of evolution) and the proposed

estimate is used during the evolution only. In the proposed

method, the objective is to minimize f1 as well as f2.

In the case of IPv6 flow hashing, the input to the hash

function is a 5-tuple identifying an IPv6 network flow by the

source and destination IP addresses (2× 128 bits), source and

destination ports (2× 16 bits) and transport protocol (8 bits).

As Fig. 1(B) shows, this information is provided to CGP

via five 64-bit primary inputs and CGP operates with 64 bit

vectors. The function set is the same as for IPv4, but all the

functions operate over 64 bit operands. The 16 bit hash is

then obtained by xor folding of the 64 bit output vector (an

example will be given in Section IV-C). Two fitness functions

f1 and f2 are defined identically to IPv4 hashing, but different

training data sets are employed to obtain the fitness score(s).

C. Implementation Details

The implementation was created in C. The CGP-based

approach employed the CGP-library [28] and used 32 and

64 bit unsigned integers as the basic data types for all the

operations in the phenotype. The implementations of LGP and

NSGA-II were developed by the authors.

IV. RESULTS

After introducing the data sets used in our experiments

(Section IV-A), the experimental setup and the results obtained

from the comparison of LGP and CGP in the design of

IPv4 flow hash functions will be presented in Section IV-B.

Section IV-C is then devoted to the results obtained from the

evolutionary design of IPv6 hash functions using CGP.

A. Data Sets

The data sets utilized for the experiments were collected by

a network monitoring device installed in the CESNET network

in the Czech Republic.

For IPv4 flow hashing, we use the same data sets as

in [3], i.e. 20,000 (DataSet1), 50,000 (DataSet2) and 100,000

(DataSet3) identifiers of network flows. Note that these identi-

fiers of network flows are unique. While DataSet1 is employed

in the fitness function, remaining data sets are devoted to

testing of evolved hash functions.

For IPv6 hashing, the training data set (ipv6f0) used in

the fitness function contains 20,000 flow records with unique

source addresses. The remaining six data sets (ipv6f1 – ipv6f6)

Fig. 3. Box plots showing the weighted number of collisions (f1) during the
course of evolution. They were constructed from 100 independent runs of
LGP and CGP in the IPv4 hash function design.

contain 65536 flow records each. The data sets were collected

on the backbone CESNET-ACONET network in January 2018.

B. Comparison of Multi-objective LGP and CGP for IPv4

Flow Hashing

The baseline setup of LGP (with NSGA-II) is described

in Section II-C. LGP employs a 200 member population,

produces 1000 generations and new individuals are created us-

ing one-point crossover (with probability 0.9), mutation (with

probability 0.15) and a 4-member tournament selection. The

maximum program length is 20 instructions. This parameter

setup was identified as the most useful in [3], [4].

The baseline setup of CGP (with NSGA-II) is as proposed

in Section III-B, i.e. ni = 3, no = 1 nr = 1, nc = 20, L = nc,

pm = 0.8 and α = 10. The number of generations is 10000

to evaluate the same number of candidate solutions as LGP.

All experiments reported in this paper start with a randomly

generated initial population.

Fig 3 shows box plots with the weighted number of colli-

sions (f1) during the course of 100 independent LGP and CGP

runs (the best solution of a given generation is considered). On

our training data set, the quality of hashing provided by CGP is

better than LGP. All obtained trade-offs are depicted in Fig. 4

in which the size of circles represents the number of solutions

with particular values (f1, f2). It has to be emphasized that

the number of computational steps is only estimated and the

real execution time can be slightly different.

In order to validate the hash functions evolved with CGP

and LGP, we selected some of them from the Pareto front, im-

plemented them in C and compared the exact number of colli-

sions and the execution time with conventional hash functions.

For 7 hash functions evolved with LGP (NSGALGPHash1-7),

7 hash functions evolved with CGP (NSGACGPHash1-7) and

11 other hash functions, Tables II and III give the number of

collisions and the average execution time needed to process all

data sets 20 times on the Intel XEON E5-2620v3 processor.

These numbers are translated to three two-dimensional plots

constructed for our three data sets (Fig. 5). Clearly weak

hash functions are not displayed in the plots. Both CGP

and LGP provided many significantly faster hash functions

Fig. 4. Fitness values of all hash functions evolved for IPv4 flow hashing and
their frequency (shown as the circle size) in 100 CGP (blue) and 100 LGP
(red) runs for IPv4 flow hashing.

TABLE II
THE NUMBER OF COLLISIONS FOR COMMON HASH FUNCTIONS AND HASH

FUNCTIONS EVOLVED WITH LGP AND CGP (IPV4 FLOW HASHING).

Hash function
The number of collisions

DataSet1 DataSet2 DataSet3

DJBHash 2835 15113 48925
DEKHash 2926 15247 49017
FVNHash 2756 14957 48780
One At Time 2821 14988 48636
lookup3 2742 15009 48737
Murmur2 2800 15050 48749
Murmur3 2744 14911 48763
CityHash 2807 14990 48647
GPHash 2777 15052 48750
EFHash 5317 25266 63175
XORHash 2864 15011 48575

NSGALGPHash1 2923 15677 49336
NSGALGPHash2 2746 15170 48835
NSGALGPHash3 2689 15575 49292
NSGALGPHash4 2692 15010 48715
NSGALGPHash5 2759 14975 48749
NSGALGPHash6 2650 14839 48680
NSGALGPHash7 2639 14975 48650

NSGACGPHash1 2656 15073 48607
NSGACGPHash2 2618 15592 49130
NSGACGPHash3 2555 15103 48889
NSGACGPHash4 2617 14816 48624
NSGACGPHash5 2599 14864 48692
NSGACGPHash6 2636 14988 48703
NSGACGPHash7 2613 15082 48642

in comparison with common hash functions. In terms of the

quality of hashing, there is only one conventional solution –

the XORHash – which is (slightly) better than evolved hash

functions on DataSet3.

Regarding the parameter setup of LGP and CGP, we were

interested in the correct population sizing as the NSGA-II

algorithm usually requires larger populations. We fixed the

(a)

(b)

(c)

Fig. 5. Comparison of hash functions for IPv4 flow hashing on (a) DataSet1,
(b) DataSet2 and (c) DataSet3.

TABLE III
THE AVERAGE EXECUTION TIME FOR COMMON HASH FUNCTIONS AND

HASH FUNCTIONS EVOLVED WITH LGP AND CGP (IPV4 FLOW HASHING).

Hash function
Time [ms]

DataSet1 DataSet2 DataSet3

DJBHash 1.091 3.661 9.874
DEKHash 0.929 3.298 9.063
FVNHash 1.055 3.631 9.845
One At Time 1.396 4.687 12.494
lookup3 0.746 2.715 7.665
Murmur2 0.813 2.905 8.104
Murmur3 0.979 3.395 9.215
CityHash 0.804 2.829 7.862
GPHash 1.472 4.836 12.784
EFHash 1.927 13.461 50.690
XORHash 0.691 2.462 6.980

NSGALGPHash1 0.615 2.929 9.001
NSGALGPHash2 0.609 2.271 6.500
NSGALGPHash3 0.601 2.938 8.919
NSGALGPHash4 0.610 2.257 6.492
NSGALGPHash5 0.615 2.259 6.537
NSGALGPHash6 0.610 2.243 6.491
NSGALGPHash7 0.626 2.330 6.491

NSGACGPHash1 0.616 2.312 6.636
NSGACGPHash2 0.613 2.537 7.246
NSGACGPHash3 0.617 2.332 6.778
NSGACGPHash4 0.620 2.286 6.639
NSGACGPHash5 0.620 2.302 6.656
NSGACGPHash6 0.603 2.261 6.490
NSGACGPHash7 0.622 2.323 6.713

number of evaluations to 200 thousands and observed the

impact of the population sizing on obtained trade-offs. Figure 6

illustrates that the results of CGP as well as LGP are almost

insensitive to the population size. Our explanation is that the

number of computational steps (f2) in evolved hash functions

is usually very small (between 2 and 10) and, hence, even a

small population can lead to good results. This is an important

outcome, because the execution time of NSGA-II largely

depends on the population size and its good performance even

with a small population is a clear advantage.

C. IPv6 Flow Hashing

We have shown that CGP provides very competitive solu-

tions in comparison with LGP for IPv4 flow hashing. Hence,

the evolutionary design of hash functions for IPv6 flow hash-

ing is performed with CGP only. In Section III-B we proposed

that the hash function for IPv6 hashing will accept five 64

bit vectors and execute 64 bit operations over these inputs.

Because the design problem is more complex than in the case

of IPv4, we increased the number of nodes to 30 and the

population size to 20, i.e. ni = 5, no = 1 nr = 1, nc = 30,

L = nc, pm = 0.8 and α = 20. The number of generations is

10000.

One additional constraint has been introduced to CGP. A

candidate hash function is accepted only if it uses all five

inputs. This constraint should promote more general hash

functions over those well-tuned for a particular data set. A side

effect of introducing this constraint is that many candidate hash

functions are not evaluated (because the constraint is violated)

and the total execution time is reduced about 40% on average

in comparison with CGP imposing no constraint of this type.

Fig. 6. Trade-offs obtained using CGP and LGP for different population sizes
that are shown in the legend. We plot the median of the weighted number
of collisions obtained for a given number of computational steps. 200,000
evaluations were performed in each of 100 independent runs.

Figure 7 shows the parameters – the number of weighted

collisions (f1) and the estimated number of computational

steps (f2) of all hash functions that we obtained from 100

independent CGP runs. The circle size corresponds with

the number of occurrences of the hash function exhibiting

particular (f1, f2) pair. The solution showing the best trade-

off requires 4 computational steps, i.e. there are four layers

of nodes between the input and output. However, several

interesting solutions need only 3 layers.

We selected four interesting evolved hash functions for a

detailed analysis. One of them, IPv6Hash1, is depicted in

Fig. 8 and the corresponding C code is given in Fig. 9. In

this function, the addition operation is used three times in the

same way, i.e. as addition of two identical numbers, which is

in fact a 1 bit shift operation. This is probably a good strategy

to improve the non-linearity of hashing. Detailed explanation

of this phenomenon is left for future research.

Selected conventional hash functions and four evolved hash

functions were implemented in C and compiled under the same

setup. In Tables IV and V we report the number of collisions

and the average execution time needed to process all data

sets 20 times. These results are then graphically compared

in Fig 10, where the number of collisions is averaged across

all data sets. Note that hash functions with highly non-

competitive execution times or average number of collisions

are omitted from the plot. Evolved hash functions are much

faster than conventional hash functions. In terms of the quality

of hashing on the test data, the highest-scored function is

IPv6Hash1, which is closely followed by Lookup3. Fig. 10

also demonstrates the importance of evaluation on test data as

IPv6Hash1 scored worst on the training data.

Fig. 7. Fitness values of all evolved hash functions for IPv6 flow hashing and
their frequency (shown as the circle size) in 100 CGP runs.

Fig. 8. Example evolved CGP phenotype – IPv6Hash1 hash function

Fig. 9. C program for evolved hash function IPV6Hash1

(A)

(B)

Fig. 10. The average execution time and the average number of collisions for
conventional and evolved hash functions for IPv6 flow hashing on training
data (A) and test data (B).

TABLE IV
THE NUMBER OF COLLISIONS FOR CONVENTIONAL AND EVOLVED HASH

FUNCTIONS ON 7 DATA SETS (IPV6 FLOW HASHING).

Function
The number of collisions

ipv6f0 ipv6f1 ipv6f2 ipv6f3 ipv6f4 ipv6f5 ipv6f6

DJBHash 2732 24859 24247 24472 24634 24205 24198
DEKHash 2812 25574 24476 25618 26496 25133 24468
FVNHash 2770 24896 23968 24215 24320 24068 23973
One At Time 2759 24774 24047 24203 24202 24094 24116
lookup3 2733 24820 24002 24058 24080 24034 24004
Murmur2 2800 24885 24183 24183 24208 24142 24157
Murmur3 2827 24982 24093 23979 24146 24051 24127
CityHash 2794 24923 24150 24025 24118 24129 24074
GPHash 2777 24923 24085 23995 24088 23941 24081

IPV6Hash1 2837 24709 24026 24062 24095 24012 24058
IPV6Hash2 2782 24779 24054 24028 24296 24181 24133
IPV6Hash3 2793 24721 24239 24081 24062 24259 24284
IPV6Hash4 2689 24966 24265 24110 24105 24365 24081

TABLE V
THE AVERAGE EXECUTION TIME ON INTEL XEON E5-2620V3 FOR

CONVENTIONAL AND EVOLVED HASH FUNCTIONS (IPV6 FLOW HASHING).

Hash function
Time [ms]

test sets training set

DJBHash 10.983 2.719
DEKHash 9.639 2.389
FVNHash 11.825 2.877
One At Time 14.107 3.948
lookup3 7.743 1.699
Murmur2 6.643 1.401
Murmur3 7.803 1.711
CityHash 5.655 1.167
GPHash 18.646 5.408

IPV6Hash1 4.166 0.756
IPV6Hash2 4.199 0.767
IPV6Hash3 4.072 0.795
IPV6Hash4 4.069 0.746

V. CONCLUSIONS

We proposed an evolutionary design system based on CGP

and NSGA-II which is capable of providing high quality hash

functions in terms of the quality of network IPv4 and IPv6 flow

hashing and the execution time of the resulting hash function.

We showed that our CGP-based method provides competitive

results in comparison with the former approach based on LGP.

Evolved hash functions are the first hash functions solely

devoted to IPv6 flow hashing. They provide similar quality

of hashing as the state of the art hash functions, but reduce

the execution time of the hashing operation which is essential

in high speed computer networks.

Our future work will be devoted to detailed analysis of

evolved IPv6 hash functions and improving the proposed

search algorithm.

ACKNOWLEDGMENTS

This work was supported by The Ministry of Education,

Youth and Sports of the Czech Republic from the National

Programme of Sustainability (NPU II); project IT4Innovations

excellence in science – LQ1602.

REFERENCES

[1] L. Kekely, J. Kucera, V. Pus, J. Korenek, and A. Vasilakos, “Software
defined monitoring of application protocols,” IEEE Transactions on

Computers, vol. 65, no. 2, pp. 615–626, 2016.
[2] Z. Cao and Z. Wang, “Flow identification for supporting per-flow

queueing,” in Proc. of the 9th Int. Conf. on Computer Communications

and Networks. IEEE, 2000, pp. 88–93.
[3] D. Grochol and L. Sekanina, “Evolutionary design of fast high-quality

hash functions for network applications,” in Proc. of the 2016 Genetic

and Evolutionary Computation Conference. ACM, 2016, pp. 901–908.
[4] ——, “Multiobjective evolution of hash functions for high speed net-

works,” in IEEE Congress on Evolutionary Computation. IEEE, 2017,
pp. 1533–1540.

[5] D. E. Knuth, The Art of Computer Programming: Sorting and Searching,

2nd ed. Upper Saddle River : Addison-Wesley, 1998.
[6] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001,

ser. LNCS 2161. Springer, 2001, pp. 121–133.
[7] D. J. Bernstein, “Mathematics and computer science,”

https://cr.yp.to/djb.html.
[8] G. Fowler, P. Vo, and L. C. Noll, “FVN Hash,”

http://www.isthe.com/chongo/tech/comp/fnv/.
[9] B. Jenkins, “A hash function for hash table lookup,”

http://www.burtleburtle.net/bob/hash/doobs.html.

[10] A. Appleby, “Murmur hash functions,”
https://github.com/aappleby/smhasher.

[11] G. Pike and J. Alakuijala, “Introducing CityHash,” 2011.
[12] Y. Saez, C. Estebanez, D. Quintana, and P. Isasi, “Evolutionary hash

functions for specific domains,” Applied Soft Computing, vol. 78, pp.
58 – 69, 2019.

[13] D. Grochol and L. Sekanina, “Multi-objective evolution of ultra-fast
general-purpose hash functions,” in European Conference on Genetic

Programming, ser. LNCS, vol. 10781. Springer, 2018, pp. 187–202.
[14] P. Kaufmann, C. Plessl, and M. Platzner, “EvoCaches: Application-

specific Adaptation of Cache Mappings,” in Adaptive Hardware and

Systems (AHS). IEEE CS, 2009, pp. 11–18.
[15] E. Damiani, V. Liberali, and A. Tettamanzi, “Evolutionary design of

hashing function circuits using an FPGA,” in Evolvable Systems: From

Biology to Hardware, ser. LNCS, vol. 1478. Springer, 1998, pp. 36–46.
[16] P. Berarducci, D. Jordan, D. Martin, and J. Seitzer, “GEVOSH: Using

grammatical evolution to generate hashing functions,” in MAICS. Om-
nipress, 2004, pp. 31–39.

[17] C. Estébanez, J. C. Hernández-Castro, A. Ribagorda, and P. Isasi,
“Finding state-of-the-art non-cryptographic hashes with genetic pro-
gramming,” in Parallel Problem Solving from Nature – PPSN IX.
Springer, 2006, pp. 818–827.

[18] H. Widiger, R. Salomon, and D. Timmermann, “Packet classification
with evolvable hardware hash functions–an intrinsic approach,” in In-

ternational Workshop on Biologically Inspired Approaches to Advanced

Information Technology. Springer, 2006, pp. 64–79.
[19] M. Safdari and R. Joshi, “Evolving universal hash functions using

genetic algorithms,” in Proc. of the 2009 Int. Conf. on Future Computer

and Communication. IEEE, 2009, pp. 84–87.
[20] J. Karasek, R. Burget, and O. Morsky, “Towards an automatic design

of non-cryptographic hash function,” in Telecommunications and Signal

Processing (TSP), 2011 34th International Conference on. IEEE, 2011,
pp. 19–23.

[21] C. Estebanez, Y. Saez, G. Recio, and P. Isasi, “Automatic design of
noncryptographic hash functions using genetic programming,” Compu-

tational Intelligence, vol. 30, no. 4, pp. 798–831, 2014.
[22] R. Dobai, J. Korenek, and L. Sekanina, “Evolutionary design of hash

function pairs for network filters,” Applied Soft Computing, vol. 56,
no. 7, pp. 173–181, 2017.

[23] M. Kidon and R. Dobai, “Evolutionary design of hash functions for
IP address hashing using genetic programming,” in IEEE Congress on

Evolutionary Computation. IEEE, 2017, pp. 1720–1727.
[24] L. Sekanina and Z. Vasicek, “Approximate circuit design by means

of evolvable hardware,” in 2013 IEEE International Conference on

Evolvable Systems (ICES-SSCI). IEEE, 2013, pp. 21–28.
[25] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[26] B. W. Goldman and W. F. Punch, “Analysis of cartesian genetic program-

mings evolutionary mechanisms,” IEEE Transactions on Evolutionary

Computation, vol. 19, no. 3, pp. 359–373, 2015.
[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[28] A. J. Turner and J. F. Miller, “Introducing a cross platform open

source cartesian genetic programming library,” Genetic Programming

and Evolvable Machines, vol. 16, no. 1, p. 8391, 2015.

