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Abstract—Software product lines are an excellent mechanism
in the development of software. Testing software product lines
is an intensive process where selecting the right features where
to focus it can be a critical task. Selecting the best combination
of features from a software product line is a complex problem
addressed in the literature. In this paper, we address the
problem of finding the combination of features with the highest
probability of being requested from a software product line
with probabilities. We use Evolutive Computation techniques
to address this problem. Specifically, we use the Ant Colony
Optimization algorithm to find the best combination of features.
Our results report that our framework overcomes the limitations
of the brute force algorithm.

Index Terms—Software Testing, Evolutionary Computation,
Software Product Lines

I. INTRODUCTION

During the last years, software product lines (in short,
SPLs) have become a widely adopted mechanism for efficient
software development. They are a set of similar software-based
systems produced from a set of software features that are
shared between them using a common means of production.
The main goal of SPLs is to increase the productivity of
creating software products. They achieve this goal by selecting
those software systems that are better for a specific criterion
(e.g., a software system is less expensive than others; it
requires less time to be executed, etc.). Currently, different
approaches for representing the product line organisation can
be found in the literature, such as FODA [38], RSEB [30],
PLUSS [28] and SPLA [2]

The formal langage SPLA was introduced in [4]. The authors
present a formal language capable to express the FODA
diagrams (Figure 1 shows some examples). A recent work [14]
has proposed a probabilistic extension to SPLA: SPLAP . This
proposal includes a probability whenever there is a choice
in the representation of the SPL. This probability allows us
to know which features are requested more frequently and
which feature combinations are the most popular ones. This
knowledge is beneficial to make decisions about the SPL, the
resources destined to each feature, and the SPL updates.

Software testing [1] is the main validation technique to
assess the reliability of complex software systems. When
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Fig. 1: Examples of translation from FODA Diagrams into
SPLA.

testing SPLs [18], it is crucial to distribute the resources
between the different features of the line in a smart way. We
are particularly concerned about the testing resources assigned
to each component of the software system. These resources are
limited so, if we had information about the most requested
components of the software system (what we have called fea-
tures) we could assign them more testing resources. Therefore,
the information about the more requested features from the
SPL can be vital to distribute the resources during testing. This
problem has been addressed in [14]. Besides, when producing
SPLs, we want to pay attention to have a better engagement
between the features that are more commonly shipped together.
Therefore, more development and testing resources are ideally
focused on those features and their engagement. However, it is
not trivial (and sometimes not feasible) to know the probability
of use of all the possible feature combinations that a product
line can produce. Therefore, being able to know which feature
combinations are more used can be critical when testing SPLs.
In this paper, we present an approach to get those feature
combinations.

Heuristic search algorithms are techniques commonly used
in Mathematics and Computer Science either to optimize a
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function or to find the best possible solution for a given
problem. These techniques, also referred to as metaheuris-
tics, can be roughly divided into three categories: global
search techniques such as simulated annealing [40], evolutive
techniques such as genetic algorithms [29], and constructive
techniques such as Ant Colony Optimization [26], [27].

In this paper, we have used an Evolutionary Computation
technique to select features from a SPL. We have chosen
this particular family of techniques because it is well suited
for parallel searching, and it also combines the knowledge
obtained by each member of the population of candidate solu-
tions. Furthermore, by starting with a random set of candidate
solutions, the algorithm can quickly obtain a candidate solution
that suits our goal. More specifically, we have implemented a
variation of a typical Evolutionary approach: the Ant Colony
Optimization (ACO) algorithm [26], [27]. In this variation we
have combined the classical ACO algorithm with a SPLAP

expressions interpreter to be able to search, in an a priory
unknown search space, the feature combination with a higher
probability that the SPLAP expression can produce.

Then, we show the results of some experiments. In them,
we can clearly see how our framework can solve the feature
selection problem we have raise, beating in time (saving
around 67% of time) to the standard brute force algorithm.
Also, we show how our framework can obtain as good results
as the ones obtained by the brute force algorithm, getting in
mean feature combinations with only an 18% less probability.
We also analyse some extreme cases, where the randomisation
factors have had a high impact.

Finally, we would like to mention that the use of metaheuris-
tics in testing is not new [3], [5], [21], [23], [32], [33], [36],
[45]. In particular, there is some work on the application of the
swarm idea to testing [31], [48]. The novelty of our approach
resides in the fact that we are using this metaheuristics to the
feature selection problem as a previous step before properly
testing an SPL.

The rest of the paper is organised as follows. In Section II,
we present some theoretical concepts that we use along with
our paper. In Section III, we introduce our feature selection
framework. In Section IV, we present our experiments and
discuss the results. In Section V, we review some of the
possible threats to the validity of our results. Finally, in
Section VI, we give conclusions and outline some directions
for future work.

II. PRELIMINARIES

In this section we briefly introduce the concepts that will
be used along the work. First, we define the concepts of SPL,
software feature, and SPLAP process algebra.

A Software Product Line (SPL) is, as defined by The
Carnegie Mellon Software Engineering Institute, “a set of
software-intensive systems that share a common managed set
of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way” [42]. The idea of SPLs is
that they allow producing, from a set of predefined software

features, a piece of software that includes all those features.
SPLAP [14] extends these classic SPLs concepts with a notion
of probability. This probability indicates the preferences of the
users in front of a choice.

We have decided to represent SPLs using the SPLAP

process algebra [14]. In order to work with this algebra, we
will consider a set of features, denoted by F , and the elements
A, B, C, . . . will stand for elements of F . We have a special
feature X 6∈ F to mark the end of a product. We consider
non-degenerated probabilities in the syntax, that is, for all
probability p we have 0 < p < 1.

Definition 1: A probabilistic software product line is a term
generated by the following grammar:

P ::= X | nil | A;P | A;p P | P ∨p Q | P ∧Q |
A 6⇒ B in P | A⇒ B in P | P\A | P ⇒ A

where A, B ∈ F , X /∈ F y p ∈ (0, 1). The set of all software
product lines is denoted by SPLAP .

This probabilistic process algebra has an operational seman-
tics to guide how to interpret the expressions of the algebra.
The operational semantics rules are displayed in Figure 2. A
relevant property of this algebra is that each time we find
a probability, the feature from the left-hand side gets the
probability p, and the feature from the right-hand side gets
the probability 1 − p, but those are not the full probabilities
of each feature. In fact, the probability of a single feature in
a SPL is a measure of its occurrences in the set of products.

The operational semantics of an SPLAP expression P is
a tree structure. The set of products of P is computed by
traversing this tree.

Definition 2: Let P,Q ∈ SPLAP . We write P
s

==⇒p Q if
there exists a sequence of consecutive transitions

P = P0
a1−−→p1

P1
a2−−→p2

P2 · · ·Pn−1
an−−→pn

Pn = Q

where n ≥ 0, s = a1a2 · · · an and p = p1 · p2 · · · · pn. We say
that s is a trace of P .

Let s ∈ F∗ be a trace of P . We define the product bsc ⊆ F
as the set consisting of all features belonging to s.

Let P ∈ SPLAP . We define the set of probabilistic products
of P , denoted by prodP(P ), as the set

prodP(P ) =
{

(pr, p) | p > 0 ∧ p =
∑
{q | P sX

==⇒q Q
∧ bsc = pr}

}
However, computing this tree is computationally expensive,

and can be infeasible in some cases. That is the reason we
need to work with evolutive computation techniques. And as
this tree can be seen as a directed graph, then a convenient
evolutive technique to search this tree as a search space is the
Ant Colony Optimization algorithm.

The Ant Colony Optimization algorithm is a well known
algorithm in the Evolutionary Computation field. It is a
distributed algorithm of search in a graph-like search space.
It consists of a set of ants, that are the agents that explore
the search space. Then, each ant look for the shortest path
from the initial node to the target node, choosing their next
move based on a random choice modified by the weigh of each



[tick] X X−−→1 nil [feat] A;P A−−→1 P

[ofeat1] A;p P
A−−→p P [ofeat2] A;p P

X−−→ (1−p) nil

[cho1]
P A−−→p P1

P ∨q Q A−−→p·q P1

[cho2]
Q A−−→q Q1

P ∨p Q A−−→ (1−p)·q Q1

[con1]
P A−−→p P1

P ∧Q A−−→ p
2
P1 ∧Q

[con2]
Q A−−→q Q1

P ∧Q A−−→ q
2
P ∧Q1

[con3]
P X−−→q nil, Q

X−−→p nil

P ∧Q X−−→p·q nil

[con4]
P A−−→p P1, Q

X−−→q nil

P ∧Q A−−→ p·q
2
P1

[con5]
P X−−→p nil, Q

A−−→q Q1

P ∧Q A−−→ p·q
2
Q1

[req1]
P C−−→p P1, C 6= A

A⇒ B in P C−−→p A⇒ B in P1

[req2]
P A−−→p P1

A⇒ B in P A−−→p P1 ⇒ B

[req3]
P X−−→p nil

A⇒ B in P X−−→p nil

[excl1]
P C−−→p P1, C 6= A, C 6= B

A 6⇒ B in P C−−→p A 6⇒ B in P1

[excl2]
P A−−→p P1

A 6⇒ B in P A−−→p P1\B

[excl3]
P B−−→p P1

A 6⇒ B in P B−−→p P1\A
[excl4]

P X−−→p nil

A 6⇒ B in P X−−→p nil

[forb1]
P B−−→p P1, B 6= A

P\A B−−→p P1\A
[forb2]

P X−−→p nil

P\A X−−→p nil

[mand1]
P X−−→p nil

P ⇒ A
A−−→p X

[mand2]
P A−−→p P1

P ⇒ A
A−−→p P1

[mand3]
P B−−→p P1, A 6= B

P ⇒ A
B−−→p P1 ⇒ A

A, B, C ∈ F , a ∈ F ∪ {X}

Fig. 2: SPLAP operational semantics.

path and the pheromones released by other ants that previously
performed that move.

Formally, an Ant Colony Optimization algorithm [26] needs
a combinatorial optimization problem to be solved. This
problem can be defined as:

Definition 3: A model P = (S,Ω, f) of a combinatorial
optimization problem consists of:
• a search space S defined over a finite set of discrete

decision variables Xi, i = 1, . . . , n.
• a set Ω of constraints among the variables.
• an objective function f : S→ R+

0 to be minimised.
The generic variable Xi takes values in Di = v1i , . . . , v

|Di|
i . A

feasible solution s ∈ S is a complete assignment of values to
variables that satisfies all constraints in Ω. A solution s∗ ∈ S
is called a global optimum if and only if f(s∗) ≤ f(s) ∀s ∈ S.

Then, from this setup we can generate the construction
graph GC(V,E),where V is a set of vertices and E is a set
of edges. This graph can be obtained from the set of solution
components C in two ways: components may be represented
either by vertices or by edges. Artificial ants move from vertex
to vertex along the edges of the graph, incrementally building
a partial solution.

Additionally, ants deposit a certain amount of pheromone
on the components, that is, either on the vertices or on
the edges that they traverse. The amount of ∆τ pheromone

Set parameters;
Initialise pheromone trails;
while termination criterion not reached do

Construct Ant Solutions;
Update Pheromones;

end
Algorithm 1: Ant Colony Optimization algorithm: general
scheme

deposited may depend on the quality of the solution found.
Subsequent ants use the pheromone information as a guide
toward promising regions of the search space.

The ACO general scheme is presented in Algorithm 1. In
each iteration, each ant generates a solution. Then, the global
state updates the pheromones left by the ants in their solution
path. Following there is a more detailed explanation of each
step:

Construct Ant Solutions: At each iteration, a set of m
ants generates solutions taking elements from a finite set of
available solution components C = {cij}, i = 1, . . . , n, j =
1, . . . , |Di|. The construction starts from an empty solution set
sP = ∅ and, at each step, the ant extends its partial solution
adding a feasible solution element from the set N(sP ) ⊆ C,
that is the set of elements of C that can be added to the
partial solution sP without violating any constraint from Ω.



Fig. 3: Schema of the proposed feature selection framework

This process can be seen as a walk on the construction graph
GC(V,E). The choice of a solution component from N(sP )
is guided by a stochastic mechanism, which is biased by the
pheromone associated with each of the elements of N(sP ).
The rule for the stochastic choice of solution components vary
across different ACO algorithms but, in all of them are inspired
by the behaviour of real ants.

Update Pheromones: The pheromone update aims to in-
crease the pheromone values associated with good or promis-
ing solutions, and to decrease those that are associated with
bad ones. Usually, this is achieved by decreasing all the
pheromone values through pheromone evaporation, and by
increasing the pheromone levels associated with a chosen set
of good solutions.

III. FEATURE SELECTION FRAMEWORK

In this section, we present our feature selection framework.
Its main goal is to find a combination of features that have a
high enough probability for a given SPL, that is, a SPLAP

expression. As we have already explained, we decided to
rely on evolutionary computation techniques to compute these
feature combinations. Specifically, we decided to use an ACO
algorithm because we considered it to be the most suitable
one for this problem. In future work we will address the use
of other evolutionary computation techniques.

Below, we briefly describe the main components of our
framework:

• A software product line, it is the system that we are
working with. It is represented as a probabilistic algebra
expression, specifically, as a SPLAP expression [14].

• A SPLAP interpreter that allows us to explore the search
space generated by the SPLAP expression without fully
computing it.

• An Ant Colony Optimization algorithm. It leads the
search for a feature combination with high probability.

Fig. 4: Schema of the experiments flow

A graphical representation of our framework can be found in
Figure 3.

In our framework, we receive a SPL, expressed as a SPLAP

expression, intending to find a set of features that fulfil the req-
uisites of the SPL and at the same time has a high probability.
This probability, coming from the SPLAP expression, usually
represents the probability of each feature to be chosen, but it
does not have to be limited to that purpose [14]. However,
in our scenario, we assume that the probabilities represent the
likelihood of each feature to be chosen, because we are looking
for the feature combination that has the higher probability to
be selected and therefore the one that needs more testing focus
when testing the SPL.

Then, with the SPLAP expression, we interpret it to be able
to execute an ACO algorithm over it. As our target is to find
a set of features with a high probability, but without having to
compute all the probabilities of all the possible combinations
of features of the SPLAP expression, we need to have an
interpreter. This interpreter has to, given a feature of the SPLAP

expression, return the probability of that feature, but without
computing the full SPLAP expression tree.

For our ACO algorithm to work, we need to have a combi-
natorial optimization problem. Then, we need to express our
problem as a combinatorial optimization one, in the following
way:
• Search space S: it is the full SPLAP tree, whose decision

variables are the feature to choose next.
• Set of constraints Ω: it is composed by:

– A constraint that states that a valid path should end
in a X feature.

– A constraint that states that a valid path should fulfil
the SPLAP expression constraints.

• Objective Function f : it is the function assigning to each
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Fig. 5: Sorted obtained probabilities (blue = brute force, red
= ACO)

0 20 40 60 80 100
Product Line number

0

200

400

600

800

1000

Pr
od

uc
t L

in
e 
be

st
 ti
m
e

Fig. 6: Sorted obtained times (blue = brute force, red = ACO)

set of features their probability in the SPLAP expression.
In this case, we look to maximize it.

Then, with this well defined combinatorial optimization
problem, the ACO algorithm follows the general scheme
presented in Algorithm 1. The only modification is the fact
that, when exploring the search space, the ants are generating
it instead of having a memory variable storing all the informa-
tion. Thus, the ACO algorithm has to work with the SPLAP

interpreter in order to obtain the distances (in this case, the
probabilities).

Another important fact about the ACO algorithm is that
the distance between nodes is the probability of choosing
the feature associated with the target node. This implies that
the total distance travelled by an ant is the product of the
probabilities of each step, instead of the sum of the weights
as in the classical ACO algorithm.

IV. EXPERIMENTS

In this section, we present an experiment we performed
intending to evaluate the suitability of our proposed frame-
work. The schema of the experiment (graphically presented
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Fig. 7: Sorted probability loss
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Fig. 8: Sorted time saving

in Figure 4) is very similar to our general framework (see
Figure 3). There is, however, a slight difference. To be able
to compare the performance of our ACO algorithm with
respect to computing the full tree from the SPLAP expression,
we decided to also compute the feature combination with
higher probability by a brute force algorithm so that we can
compare the performance in time versus the difference in the
probabilities obtained. However, although we have computed
all the probabilities from the SPLAP expression, we should not
use those probabilities for the ACO algorithm, but instead, it
should compute their own probabilities based on which paths
the ants take.

For our experiments, we needed four elements:
• A set of SPLAP expressions as experimental subjects.
• An interpreter of SPLAP expressions.
• A brute force algorithm to find the set of features with

the highest probability.
• An Ant Colony Optimization algorithm implementation1,

modified to be able to work with the SPLAP probabilistic

1We used the code from https://github.com/pjmattingly/
ant-colony-optimization as a starting point for our adapted ACO algorithm.



process algebra.
The experimental subjects set consists of 100 SPLAP ex-

pressions automatically generated using the BeTTy tool [47]
and stored in an fodaA format in .xml files. The interpreter
allows us to compute the probabilities of each feature in an
ad-hoc way, so we do not fully compute the SPLAP expression
tree. The brute force algorithm is an algorithm that asks
the interpreter, for each feature of the SPLAP expression,
which is its probability. It returns the feature with the highest
probability, but at the cost of a longer computation. Therefore,
we need to work with small SPLAP expressions to end in a
reasonable time. The ACO algorithm is an ACO algorithm that
searches the set of features with maximum probability from
the SPLAP expression, using the interpreter to compute the
probabilities. For our ACO algorithm, we decided to use 5
ants, and perform a maximum of 10 iterations over the main
loop. The pheromone evaporation coefficient was 0.4, and the
pheromone constant was 1000. Finally, the α and β values
used to calculate the attractiveness of each path where 0.5
and 1.2 respectively. The ants and iterations values are so low
because we are working with small SPLAP expressions (as
explained before), and therefore higher values are unnecessary
and a waste of resources.

With the interpreter and the ACO algorithm, we were able
to implement our framework and test it against the SPLs rep-
resented as SPLAP expressions coming from the experimental
subjects set. To perform interesting experiments, we took the
100 SPLAP expressions and computed their best selection of
features, that is, the one with the highest probability. We com-
puted those selections both with the brute force algorithm and
the ACO algorithm and compared the probabilities obtained
and the computation times. The code and results of the exper-
iments can be found at https://github.com/Colosu/FSACO.

In Table I we can find the probabilities obtained for each
SPLAP expression, as well as the computation times. In Fig-
ure 5, we can compare the probabilities obtained graphically.
The same happens for times in Figure 6. In both figures, the
results from the brute force algorithm are in blue and the
results from the ACO algorithm are in red. They are sorted
to facilitate the display of the results. Finally, in Figure 7 we
can observe the sorted probability losses obtained, that is, the
difference (in percentage) between the probabilities of the best
feature combination and the one obtained by our framework.
And in Figure 8 we can see the sorted time savings achieved.
In mean, we have loss an 18.2318% of probability saving at
the same time a 67.33% of time. This shows that our method
is not only useful to save time. We also obtain good feature
combinations: those whose probability is close to the best
combination (in terms of probability).

From the results, we can make some interesting remarks.
First, it is interesting to see that there are some cases where
the ACO algorithm saves more than 97% of the time while
losing no probability (that is, giving the feature combination
with the highest probability). This is the case of trials number
8 or 34. Another interesting remark is the fact that there are
around 40% of the cases where there is no loss of probability,

while there is always at least a 30% of time-saving. Moreover,
there are only 3 cases (trials 22, 32 and 70) where the loss of
probability is proportionally higher than the time saving, what
can be a result of the randomization factors. However, also
due to the randomization factors, there are cases where the
time saving comes with a high probability loss, being the case
of the trial number 32 the clearest case (although the saving
in time is still high). In fact, there are only 2 cases (trials 17
and 32) where the loss of probability surpass the 60%.

V. THREATS TO VALIDITY

In this section, we briefly discuss some of the possible
threats to the results of our experiments validity. Concerning
threats to internal validity, which consider uncontrolled factors
that might be responsible for the obtained results, the main
threat is associated with the possible faults in the developed
experiment because they could lead to misleading results. To
reduce the impact of this threat, we tested our code with
carefully constructed examples for which we could manually
check the results. Besides, we repeated the experiment with
many subjects to diminish the effect of randomization factors.

The main threat to external validity, which concerns condi-
tions that allow us to generalize our findings to other situations,
is the different possible SPLs to which we could apply
our framework. Such a threat cannot be entirely addressed
since the population of possible SPLs is unknown, and it
is not possible to sample from this (unknown) population.
To diminish this risk, we considered different SPLs in the
experiments.

Finally, we considered threats to construct validity, which
are related to the reality of our experiments, that is, whether
our experiments reflect real-world situations or not. In our
work, the main construct threat is what would happen if we
use our framework with much more complex SPLs, which is
a matter of future work.

VI. CONCLUSIONS

We have proposed a new framework for feature selection
in software product lines with probabilities. Our framework
strongly relays on Evolutionary Computation techniques to
perform feature selection. Specifically, we have used a novel
variant of ACO to deal with an a priory unknown search
space. With this new framework, we can obtain new feature
combinations for a given SPL without computing all the
possible feature combinations, which is a time-consuming
task. Besides, to present the new framework, in this paper,
we have reported some of our experiments. Their goal was
to show that the loss in the feature combination probabilities
produced by our framework pays back with the saving of time
when computing those combinations.

For future work we have already identified several research
directions concerning applicability, scalability, suitability and
adaptability of our framework. First, we plan to adapt our
framework to perform feature selection in SPLs where instead
of probabilities we have costs. Since there are similarities, but
also differences, between probabilities and costs we will try to



Brute Brute
Trial Force ACO Probability Force ACO Time

Number Probability Probability Loss Time Time Saving
1 0.9568 0.7458 0.2204 14.1544 3.6634 0.7411
2 0.9868 0.7558 0.2341 14.7537 4.2998 0.7085
3 1.0 1.0 0.0 7.5902 3.0380 0.5997
4 0.9578 0.5 0.4780 67.1252 4.0392 0.9398
5 1.0 0.8333 0.1666 35.2642 5.9373 0.8316
6 1.0 0.5 0.5 17.3872 3.9101 0.7751
7 1.0 0.7317 0.2682 12.4005 4.4771 0.6389
8 1.0 1.0 0.0 152.1496 3.223 0.9788
9 0.9971 0.9968 0.0003 19.8590 4.3838 0.7792
10 1.0 1.0 0.0 8.7878 3.5475 0.5963
11 0.9952 0.5 0.4976 17.9624 3.1754 0.8232
12 1.0 0.7843 0.2156 52.3167 6.2011 0.8814
13 1.0 0.9226 0.0773 15.1992 7.4489 0.5099
14 1.0 1.0 0.0 6.8014 2.9485 0.5664
15 0.9 0.5833 0.3518 7.3125 3.4301 0.5309
16 1.0 0.75 0.25 9.5622 3.5962 0.6239
17 0.9034 0.3289 0.6359 22.9624 5.5561 0.7580
18 1.0 1.0 0.0 11.3242 3.6242 0.6799
19 1.0 0.9037 0.0962 11.4791 4.2828 0.6269
20 0.9978 0.8925 0.1055 13.5067 3.6242 0.7316
21 1.0 0.8 0.1999 5.7608 3.0709 0.4669
22 1.0 0.6153 0.3846 5.5168 3.5669 0.3534
23 1.0 0.8344 0.1655 26.4979 9.5484 0.6396
24 1.0 1.0 0.0 8.0393 3.3579 0.5823
25 1.0 0.5 0.5 8.0977 3.1421 0.6119
26 1.0 0.6222 0.3777 7.4093 3.9446 0.4676
27 1.0 1.0 0.0 9.6065 3.5982 0.6254
28 1.0 1.0 0.0 12.3441 2.9144 0.7638
29 0.9910 0.9268 0.0647 260.5862 30.8953 0.8814
30 1.0 1.0 0.0 31.9025 4.7426 0.8513
31 1.0 0.9190 0.0809 52.2687 26.1559 0.4995
32 0.9978 0.0158 0.9840 36.01 3.4776 0.9034
33 0.9836 0.9696 0.0141 8.9961 3.3452 0.6281
34 1.0 1.0 0.0 120.6549 3.4089 0.9717
35 1.0 1.0 0.0 15.8293 3.2840 0.7925
36 1.0 0.8695 0.1304 7.9836 3.5726 0.5525
37 1.0 1.0 0.0 5.4251 3.2981 0.3920
38 1.0 1.0 0.0 10.4942 4.4392 0.5769
39 0.9409 0.8346 0.1129 11.1994 4.4170 0.6056
40 1.0 1.0 0.0 67.2651 5.0123 0.9254
41 1.0 0.8982 0.1017 8.8722 4.0693 0.5413
42 0.875 0.875 0.0 8.7718 3.7987 0.5669
43 1.0 1.0 0.0 6.9869 3.1898 0.5434
44 1.0 0.5 0.5 9.7102 3.1239 0.6782
45 1.0 0.4883 0.5116 6.4319 2.8708 0.5536
46 0.9983 0.9461 0.0523 110.5130 13.4314 0.8784
47 0.6666 0.6666 0.0 7.6843 3.3206 0.5678
48 1.0 1.0 0.0 101.6822 3.1101 0.9694
49 1.0 0.5625 0.4375 16.2177 4.0925 0.7476
50 1.0 1.0 0.0 8.5078 3.0497 0.6415

(a) First part.

Brute Brute
Trial Force ACO Probability Force ACO Time

Number Probability Probability Loss Time Time Saving
51 1.0 0.7258 0.2741 6.6376 3.6591 0.4487
52 1.0 0.8709 0.1290 9.8265 4.0051 0.5924
53 0.9359 0.5 0.4657 12.2820 3.0111 0.7548
54 1.0 0.9768 0.0231 32.4471 8.1153 0.7498
55 1.0 1.0 0.0 6.4097 3.2232 0.4971
56 1.0 1.0 0.0 10.5378 3.1247 0.7034
57 0.5 0.5 0.0 18.9448 3.5220 0.8140
58 1.0 1.0 0.0 27.3563 3.5678 0.8695
59 0.9882 0.9523 0.0362 256.0567 4.7459 0.9814
60 1.0 0.9375 0.0625 19.6477 7.1258 0.6373
61 1.0 0.7472 0.2527 1013.2517 12.8199 0.9873
62 1.0 0.5 0.5 14.2741 3.7750 0.7355
63 1.0 0.6590 0.3409 11.5821 4.0514 0.6502
64 1.0 0.5 0.5 10.0417 2.8096 0.7201
65 1.0 0.5 0.5 6.7181 2.8282 0.5790
66 1.0 1.0 0.0 9.9793 4.1015 0.5889
67 0.8269 0.5 0.3953 8.0312 3.2244 0.5985
68 1.0 0.5 0.5 12.9420 3.5798 0.7233
69 1.0 1.0 0.0 598.2494 3.8589 0.9935
70 1.0 0.4912 0.5087 6.3343 3.2288 0.4902
71 1.0 0.5 0.5 8.2636 3.4499 0.5825
72 1.0 1.0 0.0 27.9893 3.0902 0.8895
73 0.9714 0.5 0.4852 9.0948 4.4819 0.5071
74 1.0 0.5 0.5 23.3201 3.3990 0.8542
75 0.9212 0.7804 0.1528 8.8912 4.2803 0.5185
76 1.0 0.6153 0.3846 8.9465 3.1816 0.6443
77 1.0 0.5 0.5 14.1738 3.4967 0.7532
78 1.0 0.7787 0.2212 10.4757 4.3059 0.5889
79 1.0 1.0 0.0 7.6632 3.6695 0.5211
80 1.0 0.68 0.3199 10.5954 3.6948 0.6512
81 1.0 1.0 0.0 9.1105 2.9731 0.6736
82 1.0 1.0 0.0 7.3558 3.3774 0.5408
83 1.0 1.0 0.0 7.8904 3.0344 0.6154
84 0.9858 0.5 0.4928 170.1517 4.5620 0.9731
85 1.0 1.0 0.0 12.7440 3.4231 0.7313
86 0.75 0.75 0.0 5.2166 2.9751 0.4296
87 1.0 1.0 0.0 11.8614 3.6342 0.6936
88 1.0 1.0 0.0 14.9899 3.0819 0.7943
89 1.0 1.0 0.0 13.2409 3.4413 0.74
90 0.9393 0.4477 0.5233 10.1325 4.2891 0.5766
91 1.0 0.8505 0.1494 18.3256 5.1875 0.7169
92 1.0 0.9012 0.0987 15.5291 9.4323 0.3926
93 0.9690 0.9690 0.0 46.3790 31.8633 0.3129
94 1.0 1.0 0.0 20.1493 3.0774 0.8472
95 1.0 0.8892 0.1107 20.3595 6.3576 0.6877
96 0.5 0.5 0.0 7.6664 3.8037 0.5038
97 0.9870 0.875 0.1134 19.4409 5.9538 0.6937
98 1.0 0.8437 0.1562 16.5696 4.0402 0.7561
99 1.0 1.0 0.0 28.0511 7.1120 0.7464

100 1.0 0.5 0.5 19.6242 3.0028 0.8469

(b) Second part.

TABLE I: Results of the experiments.

incorporate into our framework recent work on formal testing
of fuzzy systems [12], [13], where probabilities are replaced
by confidences, and on testing using Information Theory
concepts [37]. Second, concerning scalability, we would like
to consider more complex SPLs and check whether our
technique scales well. In addition, we would like to use current
approaches to mutation testing [15], [20], [22] to efficiently
generate and process big amount of mutants representing either
non-optimal or faulty selections of features. Concerning suit-
ability, we have two orthogonal lines of work. First, we would
like to compare our ACO approach with other metaheuristics
such as Bee Swarm [39] and Water Based [46] metaheuristics
and Collective Intelligence [24], [25], [43], [44]. Second, we
would like to consider SPLs with existing feature selections,
produced by an expert, and compare the quality of the existing
feature selections and the ones produced by our framework.
Concerning adaptability, we would like to assess the useful-

ness of our methodology in other frameworks. In particular,
we consider more complicated feature selection frameworks
where we have to work with deadlock avoidance/analysis [9]–
[11], [19], so that we can scale the feature selection from
single systems to entire software families. A second line of
work consists in applying our framework to formal models of
cloud [6], [7], [16] and distributed [34], [35] systems because
they are highly configurable and, therefore, will induce SPLs
with many features. Finally, it is interesting the possibility of
integration of our feature selection framework to existing tools
like ProFeat [17], to represent product lines, PRISM [41], to
analyse probabilistic systems, and MEdit4CEP-CPN [8], to
represent complex events.
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