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Abstract—Image thresholding is a crucial image processing
task. Most of the time, it plays a pivotal role in an image
processing chain, therefore, any error in image thresholding can
propagate to other steps such as edge detection, area/volume
estimation, or object recognition. Multi-level image thresholding
is a popular method for image segmentation, dividing an image
into homogeneous regions. Conventional algorithms are time-
consuming due to utilising an exhaustive search, especially when
the number of threshold levels increases. On the other hand,
population-based metaheuristic algorithms have been successfully
applied to this problem. In this paper, we propose a center-based
differential evolution (DE) algorithm for high-dimensional multi-
level image thresholding (many-level image thresholding). While
DE has been shown to yield satisfactory performance for various
real-world optimisation problems, in our algorithm, DE is further
boosted with a center-based sampling strategy. We evaluate our
algorithm on a set of benchmark images on high-dimensional
search spaces and with regards to an entropy-based objective
function and peak signal-to-noise ratio (PSNR). The obtained
results demonstrate that the proposed algorithm can improve
upon the performance of other metaheuristic image thresholding
techniques.

Index Terms—Image thresholding, optimisation, differential
evolution, center-based sampling.

I. INTRODUCTION

Image segmentation plays a fundamental role in machine
vision applications and divides an image into non-overlapping
groups so that pixels located in the same region share similar
characteristics, while pixels from distinct regions exhibit more
differences. Image thresholding represents a popular approach
to image segmentation due to its simplicity, robustness, and
accuracy [1]. Bi-level thresholding selects a single threshold,
whereas multi-level thresholding selects multiple thresholds
and represents a challenging task that has attracted much
research attention in recent years.

Conventional image thresholding algorithms work effi-
ciently for bi-level thresholding, but their efficiency decreases
dramatically for multi-level thresholding since an increasing
number of thresholds leads to a significant increase in term
of computational complexity of an exhaustive search. To
overcome this problem, population-based metaheuristic algo-
rithms such as genetic algorithm (GA) [2], particle swarm
optimisation (PSO) [3], differential evolution (DE) [4] and
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human mental search (HMS) [5] can be employed and various
such approaches have been recently reported for multi-level
image thresholding. For example, [6] proposes a PSO-based
image thresholding method based on minimum cross-entropy
and compares it with other methods for £ = 2, 3,4 where k
is the number of threshold levels. DE is employed for image
thresholding in [7] using an Otsu-based objective function.
In [8], teaching-learning-based optimisation (TLBO) is used
for image thresholding and evaluated for £ = 2, 3,4, 5. Other
population-based algorithms such as salp swarm algorithm
(SSA) [9], sine cosine algorithm (SCA) [10], and HMS [11]
have also been employed for image thresholding. Most studies
have concentrated on fewer than 6 thresholds, while higher-
dimensional image thresholding, many-level image threshold-
ing, is not often considered [1]. Here, the task becomes much
more challenging due to the curse of dimensionality whereby
the search space expands exponentially when increasing the
number of dimensions while good solutions are sparsely
distributed.

Differential evolution is an effective population-based meta-
heuristic algorithm that has been successfully employed for a
variety of applications [12], [13]. DE is based on three main
operators, mutation, crossover, and selection. Mutation is the
core operator in DE and generates a mutant vector based on
a linear combination of distinct candidate solutions. The role
of the crossover operator is to combine a mutant vector with
its target vector to yield a trial vector. Finally, the selection
operator employs a greedy strategy to select the better of trial
vector and target vectors.

In the center-based sampling strategy introduced in [14], it
was shown that the probability of closeness to an unknown
solution for the center point is significantly higher than for
other points and that consequently, the center point is a
valuable point compared to any point generated randomly. A
center-based sampling strategy is used to improve DE in [15]
by employing the center of three best candidate solutions as the
base vector for mutation, while [16] proposes a center-based
SHADE (success history-based parameter adaptation DE) al-
gorithm, with mutation employing a center-based candidate
solution using a normal distribution. [17] uses a center-based
initialisation algorithm to tackle deceptive optimisation algo-



rithms, whereas [14] shows that the probability of the center
point being close to the optimal solution increases sharply with
an increasing number of dimensions. As a result, we can say
that a center-based sampling strategy has a potential ability to
boost the performance of high-dimensional multi-level image
thresholding.

In this paper, we propose a center-based differential evolu-
tion algorithm for high-dimensional multi-level image thresh-
olding (many-level image thresholding). We use an entropy-
based objective function and evaluate our algorithm on a set
of benchmark images to demonstrate excellent thresholding
performance superior to several other population-based meta-
heuristic algorithms.

The remainder of the paper is organised as follows. Sec-
tion Il provides some background on the underlying tech-
niques, while Section III presents our proposed algorithm.
Experimental results are reported in Section IV and Section V
concludes the paper.

Input : D: dimensionality of problem; NF' E,,,x:
maximum number of function evaluations;
Np: population size, F": scaling factor, C'R:
crossover rate

Output: 2*: the best solution

generate initial population Pop randomly;
evaluate fitness for each candidate solution;
NFE = Np ;

while NFE < NFE,,, do

for 1 < 1 to Np do
select three parents, x,1, Zr2, and z,3,

randomly from current population, with
Tr1 7é L2 7é Tr3;
V; = Tp1 + F * (r2 — 2r3);
for j < 0 to D do
if rand;[0,1] < CR or j == jrqna then
Ui,j = Vijgs
else
| wiy =iy
end
end
calculate objective function of wu;;
‘ T < U
else
‘ T < x4
end
Pop(i) < T;

end
NFE = NFE + Np;

end
x* < best candidate solution in Pop
Algorithm 1: Pseudo-code of DE.
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Fig. 1: Probability of center point closeness to solution versus
the number of dimensions [14].

II. BACKGROUND
A. Multi-level Image Thresholding

The aim in multi-level image thresholding is to find thresh-
old values to yield pixel ranges that allow to separate an image
into non-overlapping regions. More specifically, multi-level
image thresholding can formally be formulated as

My {9(z,y) € 1|0 < g(x,y) < t1 — 1}

My = {g(z,y) € |ty < g(z,y) <ta — 1}

M; = {g(z,y) € Ilt; < g(w,y) <tipr — 1}

My = {g(z,y) € Iltm < g(z,y) <2 =1} (D)

where t;,7 = 1,...,m is the ¢-th threshold value, m is the
number of threshold values, [ is the original image and g(z, y)
denotes the pixel value at location (x,y).

B. Canonical Differential Evolution

Differential evolution (DE) [4] is a population-based algo-
rithm which has shown notable performance to tackle different
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Fig. 2: Data representation example in a three-level image
thresholding.
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Fig. 3: Test images and their histograms.

optimisation problems. DE starts with Np randomly generated
candidate solutions and proceeds based on three operators,
mutation, crossover, and selection.

Mutation generates a mutant vector as

v, = Tp1 + F % (l‘rg — .’Erg), 2

where x,1, x,9 and x,3 are three candidate solutions and F'
is a scaling factor.

The aim of crossover is to generate a new candidate solution
based on a combination of a mutant vector with a parent vector
to yield a trial vector as

_ J Vi
Uij =
i,

where C'R is the crossover rate, and j,.q,q is @ random integer
number in [1 : D] with D the dimensionality of the search
space.

Finally, the selection operator selects the best candidate
solution between the new candidate solution (trial vector) and
the previous one (its parent).

Algorithm 1 summarises DE in terms of pseudo-code.

if rand(0,1) < CR or j = jrand
otherwise,

3)

C. Center-Based Sampling Strategy

The probability of points being closer to an unknown
solution is found to be remarkably higher for the center point

than for uniformly generated points, while this probability
increases with an increasing number of dimensions. This is
investigated using Monte Carlo simulations in [14], while a
mathematical proof is provided in [18].

Fig. 1 investigates the probability of closeness of the center
point (p.) to the solution in comparison to a random point.
The probability rises steeply with an increasing number of
dimensions which verifies that center-based sampling is can
significantly aid to solve optimisation problems and in partic-
ular higher-dimensional ones.

The center point for a search space is defined as
a; +b;

5 O
where a and b are the lower and upper bounds, ¢ = 1,..., D,
and D is the number of dimensions.

A center-point sampling strategy has been succesfully em-
ployed to boost metaheuristic algorithms in [16], [17], [19].

III. CENTER-BASED DE FOR MANY-LEVEL IMAGE
THRESHOLDING

In this paper, we propose a center-based differential evolu-
tion algorithm (CenDE) for many-level image thresholding.
For that, we will first define a data representation and an
objective function, and then explain the center-based DE
algorithm.



TABLE I: Parameter settings for the experiments.

parameters value
DE scaling factor 0.5
crossover rate 0.9
PSO  cognitive constant (C1) 2
social constant (C2) 2
inertia constant (w) 1to0

SCA a 2
SSA  no parameters

A. Data Representation

The data representation defines the structure of each can-
didate solution. We employ a real-valued encoding strategy
with lower and upper bounds of each component set to 0 and
2™ — 1 where n is the bitdepth. Fig. 2 gives an example for a
problem with 3 threshold levels in an 8-bit image.

B. Objective Function

We evaluate the quality of each candidate solution based on
maximising the entropy of the thresholded image. In particular,
we employ Kapur’s entropy [11], which has been previously
used for thresholding [20], and is defined as

f([t1,t2, o tm]) = Ho+ Hy + ...+ Hp, (5)
with

t1—1 t1—1

Ho = = (pi/wo)in(pi/wo),wo = Y p;
i=0 i=0
to—1 to—1

Hy = - Z(pi/wl)ln(pi/wl)awl = Z
i=ty i=tq
tz—1 tz—1

Hy = =) (pi/w2)in(pi/ws),w2 = Zpi
i=to i=to
L-1 L—1

Hyp = = (0i/wm)in(pi/wm),wm = > pi (6)
tm

1=ty

where m is the number of threshold values, N is the total
number of pixels in the image, L indicates the number of
grey levels, and p; is calculated as p; = h;/N, where h; is
the probability of occurrence of grey level .

C. Center-based DE algorithm

As mentioned above, mutation in conventional DE is based
on three candidate solutions selected randomly from the cur-
rent population. In contrast, in center-based DE, a new base
vector is introduced at the center of three candidate solutions.

Inspired by [16], [19], the new mutation operator selects
five candidate solutions, x,1, Zr2, r3, Zr4, and x5, randomly
from the current population. Then, the average of three can-
didate solutions is computed as

Tyl + Tro + Tr3
Lcenter — 3 , @)

and mutation performed as

Vi = Teenter + F($7»4 - xr5) (8)

TABLE II: Objective function results for all algorithms and
all images.

image D PSO SSA SCA DE CenDE
Lenna 10 32.09 3176 30.70 32.18 32.50
15 4025 40.04 3851 4045 40.99
20 47.04 4646 4472 46770  47.57
Boat 10 32.68 3248 3145 3277 32.82
15 4132 4099 3928 41.25 41.65
20 48.02 47.67 4573  47.68 48.06
Peppers 10 3196 31.76 3042 32.13 32.49
15 40.00 39.75 37.80 3991 41.10
20 4634 4581 4332 4587 47.35
Goldhill 10 1841 17.21 1638 18.87 21.28
15 2130 1996 18.84 21.71 26.32
20 2342 2205 2078 23.73 30.72
House 10 3148 3129 2999 31.65 32.23
15 3945 3924 36.85 3938 40.37
20 4558 45.15 4330 4524  46.23
12003 10 33.02 3286 31.82 3310 3343
15 4149 41.19 40.01 4142  42.02
20 48.16 4785 4599 47.78 48.47
181079 10 3230 3209 31.09 3251 32.89
15 4095 40.66 3929 41.09 4145
20 4790 4750 45.80 47.65 47.71
175043 10 3273 3252 3144 3283 32.47
15 41.32 40.84 3954 4112  41.17
20 4791 4735 4591 4744 4772
101085 10 3329 33.17 3227 3334 32.02
15  42.07 41.83 4047 42.02  40.01
20 4885 4850 46.76 4849 < 46.74
147091 10 3325 33.09 3236 3340 33.15
15 4195 41.68 40.17 4193 41.78
20 4870 48.06 46.74 48.46  48.07
101087 10 3175 3141 3049 3181 32.25
15  40.77 4034 3893  40.65 40.65
20 47.88 47.02 4539 4730  47.16
253027 10 3193 31.63 3047 32.03 32.95
15 4028 3994 38.12 4025 41.29
20 46.63 4626 4422 46.12  47.52

Our algorithm begins with an initial population of Np
candidate solutions. Then, during each iteration, five candidate
solutions are randomly selected from the current population.
Three of these are employed to calculate z.cnter and a mutant
vector is generated based on Eq. (8). Crossover is then applied
based on Eq.( 3), and finally, selection is performed based
on a greedy selection strategy. This process is repeated until
a stopping condition is satisfied (a maximum number of
objective function evaluations in this paper).

IV. EXPERIMENTAL RESULTS

In our experiments, we evaluate our proposed algorithm on a
set of benchmark images. We select five commonly employed
images, namely, Lenna, Boat, Peppers, Goldhill, and House,
as well as some images previously used for thresholding
evaluation [1], [11], [20] from the Berkley Segmentation Data
Set and Benchmark [21], namely, 12003, 181079, 175043,
101085, 147091, 101087, and 253027. All images as well as
their corresponding histograms are shown in Fig. 3. As can be
seen from there, some images such as Lenna and Peppers have
multiple peaks and valleys in their histograms, while others
such as /75045 have only one peak. Images such as 101087
have a smooth histogram, while Goldhill has a histogram with
abrupt alterations.



TABLE III: Friedman ranks based on objective function value.

image D PSO SSA SCA DE CenDE

Lenna 10

Boat 10

Peppers 10

Goldhill 10

House 10

12003 10

181079 10

175043 10

101085 10

147091 10

101087 10
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We compare our proposed CenDE algorithm with conven-
tional DE, as well as some state-of-the-art and recent methods,
including PSO [6], SSA [9], and SCA [10]. The same data
representation and objective function is used for all algorithms.

The population size and maximum number of function
evaluations are set to 50 and 10000, respectively, for all
algorithms, while other parameter settings are given in Table I.
To evaluate high-dimensional multi-thresholding, we set D to
10, 15, and 20 [1], while due to the stochastic nature of the
algorithms, we run each 25 times.

Table II gives the results in terms of mean objective function
value for all algorithms and all images. From there we can see
that CenDE yields significantly better objective function values
in comparison to all other algorithms giving the best result for
24 out of 36 cases.

Table III reports the resulting Friedman ranks (p-value is
6.32E-21) and further demonstrates that CenDE is clearly the
best algorithm overall.

To assess the robustness of our algorithm, we list the
standard deviations of the algorithms in Table IV. CenDE
yields the lowest standard deviation for 23 of the 36 cases
indicating superior robustness compared to the other methods.

We further employ a two-sided Wilcoxon signed-rank
test [22] with a significance level of 95% to evaluate the

TABLE IV: Standard deviation of objective function value for
all algorithms and images.

image D PSO SSA SCA DE CenDE
Lenna 10 022 027 039 0.12 0.16
15 049 053 068 032 0.31
20 071 054 071 055 0.41
Boat 10 0.19 020 045 0.12 0.12
15 051 029 058 034 0.19
20 079 051 069 052 0.51
Peppers 10 027 025 052 0.14 0.13
15 051 039 076 0.33 0.36
20 060 040 094 0.67 0.42
Goldhill 10 039 053  0.62 041 0.56
15 076 0.87 089 049 0.68
20 066 071 083 0.70 0.64
House 10 020 023 0.6l 0.12 0.16
15 036 045 063 0.36 0.36
20 074 051 0.73 0.54 0.35
12003 10 020 0.18 036 0.12 0.11
15 027 031 0.7 0.32 0.29
20 050 061 1.05 049 0.33
181079 10 023 025 040 013 0.24
15 048 033 092 031 0.31
20 077 082 093 0.63 0.52
175043 10 020 024 049 012 0.12
15 047 025 077 034 0.24
20 064 056 083 0.64 0.43
101085 10 0.16 0.18 040 0.14 0.14
15 032 029 0.60 0.36 0.62
20 054 049 078 042 0.57
147091 10 0.19 0.18 054 0.12 0.08
15 030 032 077 028 0.27
20 050 058 074 048 0.38
101087 10 0.16 024 050 0.11 0.10
15 033 035 056 031 0.28
20 065 056 083 048 0.50
253027 10 0.15 021 051 012 0.18
15 039 044 067 0.26 0.40
20 065 040 094  0.59 0.52

proposed algorithms statistically based on objective function
results and the manner explained in [22]. The results are
given in Table V and show that with p-values below 0.05
CenDE is statistically significantly better compared to the
other algorithms.

Peak signal-to-noise ratio (PSNR) is a commonly employed
measure to evaluate image quality and calculated as

PSNR = 20log,,(255/ RMSE), 9)

where RM SE is the root mean squared error defined as

M N PR
RMSE = \/Zi—l > =1 L1, 5) — 1(i, )

N ) (10)

where M and N are the image dimensions, and I and I are the
original and thresholded images, respectively. A higher PSNR
signifies better image quality.

TABLE V: Results of Wilcoxon signed rank tests.

CenDE vs. p-value
DE 0.0218
SCA 3.8429E-04
SSA 3.4045E-04
PSO 0.0048




TABLE VI: PSNR results for all algorithms and all images.

image D PSO SSA SCA DE CenDE
Lenna 10 31.23 3088  29.52 31.32 31.59
15 3322 3324 3179 33.19 33.36
20 3445 3484 3305 3448 34.68
Boat 10 3075 31.18 2949 31.14  31.22
15 3317 33.06 32.17 3323 3348
20 3420 3468 3333 3451 34.69
Peppers 10  31.04 30.88 29.64 31.29 30.85
15 3321 3318 31.63 33.39 3292
20 3477 3465 3334 34.88 34.27
Goldhill 10 24.96 26.59 2437 2501 23.49
15 2634 2829 2682 27.08 26.66
20 2817  30.68 2854  28.62 30.09
House 10 3050 3057 29.66 30.82 31.15
15 3280 3260 3144 32.61 33.52
20 3446 3407 3387 34.67 34.75
12003 10 31.10 30.85 29.04 31.24 31.07
15 3318 33.08 31.68 33.00 33.07
20 3421 3443  32.81 33.86 34.60
181079 10 30.09 30.75 28.79 3041 30.91
15 3241 3282 3099 3270  33.46
20 3459 3413 3334 34.07 35.24
175043 10 3098 3092 29.03 3131 30.81
15 3280 33.14 3152 3232 33.18
20 3446 3470 3262 33.84 34.74
101085 10 3049 30.05 2922 30.46 25.55
15 3288 3245 3139 32.62 26.78
20 34.00 34.09 32770 3391 28.93
147091 10 31.00 30.84 29.66 31.09 31.24
15 3292 3280 31.17 32.89 33.20
20 3439 3419 33.14 3434 3448
101087 10 3134 3136 29.88 31.74 31.40
15 3382 3426 3198 33.66 32.84
20 3511 3559 3384 35.14 34.58
253027 10 3119 31.10 3023 31.34 31.08
15 3288 3387 3206 33.31 33.33
20 3472 3524 3344 3448 34.69

Table VI shows the mean PSNR values for all algorithms
and all images', whereas Table VII reports the correspond-
ing Friedman ranks (p-value is 2.7787E-12). These results
further demonstrate the strong performance of our proposed
CenDE thresholding algorithm in comparison with the other
techniques. CenDE gives the highest PSNR for 17 of the 36
cases and the second highest for a further 4 cases, and is thus
clearly ranked first overall.

Finally, we compare our algorithm visually on image
385028 as a representative example. Fig. 4 shows the manual
segmentations provided in the Berkley Segmentation Data Set
as well as the 10-level thresholded images by the various meth-
ods and further illustrates the good performance of CenDE
which for example is able to segment the lake regions with
less noise.

V. CONCLUSIONS

In this paper, we have proposed a novel algorithm based
on differential evolution (DE) to tackle the challenging many-
level image thresholding problem. Our proposed CenDE al-
gorithm employs a center-based sampling strategy, using the
center of three randomly selected candidate solutions as the

IDifferent from e.g. [1] where pixel values were replaced with threshold
values, we here replace pixel values by the weighted average within threshold
intervals to yield the best possible quality of a thresholded image.

TABLE VII: Friedman ranks based on PSNR.
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base vector for mutation, to boost the performance of DE.
Extensive experimental results on a set of benchmark images
and in terms of both objective function value and PSNR
demonstrate CenDE to delivery very good thresholding per-
formance and to outperform, also statistically, a number of
competing algorithms.
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