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Abstract—Since their introduction, Estimation of Distribution
Algorithms (EDAs) have proved to be very competitive algorithms
to solve many optimization problems. However, despite recent
developments, in the case of permutation-based combinatorial
optimization problems, there are still many aspects that deserve
further research. One of them is the influence of the codification
employed to represent the solutions on the overall performance of
the algorithm. When considering classical EDAs, optimizing per-
mutation problems is challenging, and specific mechanisms are
needed to hold the restrictions associated with the permutation
nature of solutions.

In this paper, in addition to the permutation-vector codi-
fication, we investigate alternative representations to describe
solutions of permutation problems in the context of EDAs. In
order to evaluate their influence, we adopted a classical EDA and
conducted an experimental study on two different permutation
problems and representations for codifying solutions. The results
revealed a narrow relationship between the type of combinatorial
problem optimized and the selected representation used to codify
its solutions. Moreover, the results point out that choosing
the appropriate representation to codify solutions of the given
permutation problem is critical for the performance of the
algorithm.

Index Terms—estimation of distribution algorithm, permuta-
tion, codification, inversion vector, UMDA

I. INTRODUCTION

In optimization, problems can be divided into two categories
depending on the space they are defined on: continuous or
combinatorial problems. In continuous problems, solutions are
defined over a real-valued space Rn, n being the dimension of
the problem. In contrast, in combinatorial problems, the search
space of solutions is described as a finite set of objects.

In the last few decades, Evolutionary Algorithms (EAs) have
been a popular tool to solving optimization problems, and have
been postulated as a powerful option when approaching either
continuous or combinatorial problems. As their name suggests,
EAs are inspired by the evolution of species in nature. Their
ability to approach complex, noisy or not completely defined
optimization problems makes them suitable for very diverse
problems [19]. Although numerous types of EAs exist, the
most popular kind are Genetic Algorithms (GAs) [8]. GAs
iterate over two steps: firstly, a set of solutions is selected
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as parents, then offspring are created from the parents by
means of crossover and mutation. This process is repeated
until a maximum number of iterations is reached or some other
stopping criteria are met.

However, the selection of the right parameters for a GA
is sometimes very difficult, and it can be considered an
optimization problem itself. As a response to this drawback, in
the last decades, multiple improvements have been proposed
leading to different metaheuristic paradigms. To name but
a few, we can find Ant Colony Optimization [13], Particle
Swarm Optimization [17] or Differential Evolution [25]. In this
paper, we are particularly interested in another metaheuristic
paradigm proposed for the first time in [23], and later exten-
sively investigated by [19], [21], we refer to Estimation of
Distribution Algorithms (EDAs).

Unlike GAs, instead of applying crossover and mutation
operators to create offspring solutions, EDAs first build a
probability model from the set of selected solutions that
defines a probability distribution on the solutions of the search
space. Then, in a second step, new solutions are obtained by
sampling the probability distribution estimated in the previous
step. This procedure allows EDAs to efficiently capture and
exploit the information of the variables of the problem in
order to create better solutions. This characteristic makes
EDAs very flexible and, as a consequence, applicable to
many optimization problems, including either continuous or
combinatorial problems. On the contrary, the performance of
EDAs relies completely on the ability of the probability model
to capture and preserve the dependencies among the variables
that make a solution be of high quality. Nevertheless, as noted
in [26], the chosen codification can greatly influence the final
results of the EDA, regardless of the class of probability model
selected.

When approaching permutation-based problems, due to the
permutation nature of solutions, there is a constraint related to
the codification of solutions that the algorithm needs to hold in
order to create feasible solutions [7]. In this type of problems,
solutions are usually described as permutations of n items, the
fact that permutations do not have repeated items is denoted
as mutual exclusivity constraint, and has been a difficult task
to deal with when developing EDAs. Until recently, for such
problems, EDAs had not been extensively developed, and
classical EDA approaches have been adapted ”naively” in
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order to hold the mutual exclusivity constraint associated to
the solutions represented as permutation vectors [8].

With illustrative purposes, let us consider a combinatorial
optimization problem whose solutions are codified as permu-
tations, and a Univariate Marginals Distribution Algorithm
(UMDA) [24] that is going to be used to optimize it. In
the classical design of UMDA, this algorithm optimizes a
vector over a given objective function and calculates a joint
probability distribution that factorizes over the positions in the
vector as a product of the marginal probabilities of the values
in each position. In other words, it assumes independence
among positions. In UMDA, the characteristics of a set of
selected solutions to be passed onto the next generation depend
on the first order marginal probabilities of each position of the
solution.

Sampling a distribution to make a new generation is there-
fore done by sampling each position of the vector indepen-
dently. This results in a vector that may not satisfy the mutual
exclusivity constraint because of replicated items. A straight-
forward solution consists of modifying the sampling method to
avoid non-permutation solutions. However, many recent works
in the literature have considered using probability models that
define probability distributions on Sn, such as Mallows and
Generalized Mallows models [9], [16] (based on distance-
metrics) or Bradley-Terry and Plackett-Luce models [2], [11]
(based on order statistics).

In this paper, we study alternative representations for cod-
ifying solutions in permutation problems that permit classical
EDAs to be implemented without adaptations that denaturalize
their application. Specifically, we consider recodifications that
map every permutation in the search space of solutions to
a vector of integers. Conveniently, the new search space
might allow repeated values inside the same vector, and thus
remove the constraints observed previously with the permuta-
tion representation of solutions. Moreover, summary statistics
learnt from the set of selected solutions is different for each
codification, and so we expect the performance of the EDA to
vary between codifications.

This work is motivated by the lack of literature to under-
stand how and why different codifications affect the behaviour
and performance of an EDA depending on the problem to
solve. In fact, most of the literature in EDAs focuses on
the research of probability models, in many cases ignoring
the implications of choosing an adequate representation. Con-
ducted experiments in this work show the vast superiority
of the algorithm when operating with suitable codifications1.
Specifically, we considered a classical EDA, the Univariate
Marginal Distribution Algorithm (UMDA), and two permuta-
tion problems, the Quadratic Assignment Problem (QAP) and
the Permutation Flowshop Scheduling Problem (PFSP).

The remainder of the paper is organized as follows, in the
next section some background on the UMDA is provided,
and its adaptation to deal with permutation-coded solutions

1The terms codification and representation will be used interchangeably
throughout the paper.

is described. Afterwards, Section III is devoted to describing
alternative representations to codify the solutions in Sn. Next,
the conducted experiments on the PFSP and QAP, and the
posterior analysis of the results are presented in Section IV.
In Section V, a discussion on the different representations and
other research lines to extend this work are introduced. Finally,
the conclusions of the work are exposed in Section VI.

II. UNIVARIATE MARGINAL DISTRIBUTION ALGORITHM

The Univariate Marginal Distribution Algorithm (UMDA)
was proposed by Pelikan and Mühlebein in 1999 [24]. Given
a population of integer valued vectors of length n, at every
iteration, a high-quality set of solutions X = {x1, x2, . . . , xn}
is chosen, and univariate marginal frequencies of solutions in
X are calculated. This is done by counting the number of times
a specific item appears in a certain position in the solutions
of X. Thus, for every solution x in the search space Ω, its
probability is calculated as,

P (x) =

n−1∏
i=0

p(x(i) = j) (1)

where j denotes the item in the i-th position of x, and
p(x(i) = j) is the probability of j appearing in the i-th
position of x. It is denoted first order marginal probability.

Once the parameters of the UMDA are learnt, the next
step consists of sampling solutions from this distribution by
adapting the classical sampling method for integer vectors.
The classical UMDA samples a new vector x following the
next iterative procedure: for each position 1 ≤ i ≤ n, a value
is randomly chosen in the range of x(i) with probabilities
p(x(i)). This trivial approach does not guarantee that the
sampled vector is a permutation. Thus, a direct solution to
this problem is the following: once the item x(i) is sampled
in the i-th position, the probability of sampling item x(i) again
in any other position is negated and the probabilities of the
rest of the items are normalized (see Fig. 1).

This trivial adaptation does not necessarily generate a sam-
ple with the first marginals given by the probability matrix.
Indeed, the marginals of the first position of the permutation
will be accurate but, since the matrix is updated at each step,
the last positions can accumulate large biases. To overcome
this situation, and limit the bias produced by this sampling
mechanism, a possibility consists of choosing the positions
to sample uniformly at random (instead of starting from 1
and visiting all the positions until n) for each solution to be
sampled. This way, the first order marginals of the generated
sample converge to P (x).

III. ALTERNATIVE CODIFICATIONS FOR PERMUTATIONS

When representing solutions in permutation-based prob-
lems, the usual and natural option is to use the permutation
representation. A permutation σ is formally defined as a
bijection from the set of natural numbers [n] = {1, . . . , n}
onto [n] and is usually represented as an ordered list of the
set [n]. We denote by σ(i) = j that item j is in the i-th
position of permutation σ. Alternatively, we say that σ−1 is



Fig. 1: Illustration of the sampling step in the UMDA

the inverse of σ, if and only if, σ(i) = j and σ−1(j) = i for
all i, j = 1, . . . , n. For instance, the inverse permutation of
σ = (2, 4, 3, 1) is σ−1 = (4, 1, 3, 2).

Even though permutations are intuitive and apparently the
obvious representation for permutation-based problems, when
considering classical EDAs some issues arise.

Given a permutation σ of length n, the only possible
items are {1, .., n}, and these cannot be repeated. In the
previous section we have seen that the classical sampling
method for vectors has to be adapted to sample permutations.
Although the first order marginal of the sample is maintained,
some problems emerge. For example, the need of updating
the probabilities at each step is time consuming. Moreover,
the information of the first order marginals might not be
relevant for the problem at hand. Therefore, we propose to
use a different representation for permutations for which the
mutual exclusivity constraint does not arise. Furthermore, this
representation allows us to extract different summary statistics
from the sample.

Alternatively to the classical representation, other types
of numeric vectors that codify permutations have also been
reported in the literature [3], [12]. In this paper, we focus on
the inversion vector representation of permutations, equivalent
to Lehmer vectors [20].

Given a permutation σ, its inversion vector is
I = (I(1), . . . , I(n− 1)) where I(i) =

∑
j>i I[σ(i) > σ(j)],

being I the indicator function. In other words, each item
I(i) in the inversion vector I counts the number of items
lower than σ(i) at its right. For a permutation of length n,
its inversion representation is a vector of length n, however,
by definition, the last item of the inversion vector is always
zero, thus we will omit this item and consider the inversion
vector of length n − 1. For instance, given a permutation
σ = (3, 1, 4, 2), its inversion vector representation is defined
as I = (2, 0, 1). Following its definition, having I(1) = 2 and
σ(1) = 3 means that there are two values lower than 3 in σ
on its right. Likewise, I(2) = 0 indicates that there are no
values lower than σ(2) on its right in σ.

The algorithm to decode an inversion vector I to its per-

Algorithm 1 Inversion vector to permutation representation.

i ← 1
e ← (1, 2, . . . , n)
while i < n do

σ(i) ← e(Ii + 1)
e ← delete item at Ii + 1 from e
i ← i+ 1

end while
σ(n) ← e(1)
return σ

mutation representation σ is described in Algorithm 1. This
algorithm and the one that transforms a permutation into its
inversion vector are run in O(n2), however there exist variants
that do the same procedure in O(n log n) [22].

A. The central permutation σ0

In the previous paragraphs, the inversion representation of
any permutation is naturally calculated with respect to the
identity permutation. However, according to the literature, the
appropriate way to compute the inversion representation of
a set of permutations is to do it with respect to a consen-
sus reference of the set to codify [14]. Following previous
reference, in this paper, the Borda algorithm [5] is used to
compute the consensus (central) permutation of a given set of
permutations. Specifically, the Borda algorithm first calculates
the Borda scores for each item, and then returns the ranking
that orders the items by increasing Borda score. Finally, the
resulting ranking is taken as the central permutation, denoted
as σ̂0.

In order to compute the inversion representation of every
permutation σ, firstly, these are composed on the right with the
central permutation σ̂−1

0 (the inverse permutation of σ̂0), then
the inversion vector of the resulting permutation is calculated.
In summary, to represent a set of permutations as inversion
vectors, the inversion vector of the i-th permutation σi is
computed from σi ◦ σ̂−1

0 .



On the other hand, after transforming an inversion vector to
its permutation representation, the obtained permutation has to
be composed with the central permutation. This step is needed
to recover the original permutation, as the inversion vectors
(when learning the model) were calculated from σi ◦ σ̂−1

0 , and
not directly from σi. As composing the inverse of the central
permutation σ̂−1

0 with the central permutation σ̂0 is equal to
the identity permutation, composing on the right the sampled
permutation with σ0 will return the original permutation, i.e.,
σi ◦ σ̂−1

0 ◦ σ0 = σi. Finally, it is worth mentioning that
a probability distribution learned from inversion vectors is
equivalent to the multistage model described in [14].

B. I and I∗ vectors

When it comes to approaching permutation problems, it is
not clear whether using σ or σ−1 is more suitable with regard
to the estimation of the parameters of the probability model. In
our case, when computing the inversion vector of a solution of
the problem (see Algorithm 1) the same problem arises. The
inversion vector I can be computed from σ (the representation
of the solutions that is given as input to the objective function,
i.e., see Equations 2 and 3) or from σ−1. As we do not have
intuition regarding their suitability, we will test both options.
In order to clarify the notation and avoid confusion in later
sections, from now on, we will refer to inversion vectors that
use σ as input as I , and I∗ to the inversion vector that is
computed from σ−1.

By using either I or I∗ inversion, each of the permuta-
tions in Sn is mapped to one vector of integers and vice-
versa (the transformation is bijective). Conveniently, the new
search space compound by vectors of integers of size n − 1
removes any constraint related to the codification as repeated
items inside the vectors are allowed. Thus, the probability
distributions, such as in UMDA, can easily be learned, and
solutions sampled without caring about any information loss
or bias in the procedure.

The scheme that we propose works as follows. After
evaluating the population and selecting a set X of permu-
tation solutions, every solution in X is encoded, creating
a representation of X in another vector space, I (or I∗).
Next, we learn p(Iσ(i) = j)2, the first order marginals of
I (or I∗). Then, new solutions are sampled inside the new
vector space. Note that the position dependency does not
occur for the inversion vectors, each position is sampled
independently. Finally, samples are decoded and converted into
their permutation representation for later evaluation. Fig. 2
depicts the proposed scheme for the case of UMDA.

IV. EXPERIMENTAL STUDY

In order to evaluate the influence of the representation
considered to codify the solutions to the behavior of the
EDA, a set of experiments were conducted. Specifically, we
tested various representations, the permutation-vector σ, the
inversion vector I and the inversion vector of the inverse

2Iσ denotes the inversion vector corresponding to σ permutation. For the
sake of clarity, this representation was simplified to I in the previous chapters.

Fig. 2: Example of a UMDA operating on inversion vectors
as the representation of solutions

permutation σ−1, I∗. As a test bed, we considered two per-
mutation problems that have been reported of very different
nature [10]: the Permutation Flowshop Scheduling Problem
(PFSP) and the Quadratic Assignment Problem (QAP). In
what follows, before presenting the conducted experiments,
the definition of the two problems are given (which will be
needed later).

A. Two cases of study

The Quadratic Assignment Problem (QAP) [18] is an as-
signment or location analysis type problem. It consists of
allocating n facilities in n different locations in the map, while
minimizing the cost function Eq. 2. For each pair of positions
i and j there is a distance di,j parameter. In addition, for each
pair of facilities there is a flow parameter hk,l associated. The
sets of distances and facilities are described by the matrices
of real values D = [di,j ]n×n and H = [hk,l]n×n, respectively.
The objective value of any solution (allocation) σ is calculated
as:

f(σ) =

n∑
i=1

n∑
j=1

di,jhσ(i),σ(j) (2)

For the purposes of this section, we selected a set of 20
instances obtained from QAPLIB [6] with sizes that range
from 20 to 175.

In the Permutation Flowshop Scheduling Problem (PFSP)
[1], [4] a set of n jobs needs to be processed on m machines.
Every job must pass through every machine with no interrup-
tion, and jobs have to be scheduled in such an order that the
cost function in Eq. 3 is minimized. Any job is available at
time zero, and a job is processed in the j-th machine if the
operation in the previous j−1 machine is finished and the j-th
machine is free. Given a permutation σ of length n, the i-th
job is scheduled in the σ(i) position. Finally, the processing
time of a job in a particular machine is defined by the matrix
P = [pi,j ]n×m.

Different objective functions has been proposed when opti-
mizing PFSP. However, in this work we will only approach the
minimization of the makespan. The makespan is the time that
it takes to finish all jobs. Given a solution σ, the makespan is
defined as follows:

f(σ) = cσ(n),m (3)



where cσ(n),m is the time it takes to finish the last job, n, in
the last machine. This time is calculated recursively as

cσ(i),j =


pσ(i),j i = j = 1

pσ(i),j + cσ(i−1),j i > 1, j = 1

pσ(i),j + cσ(i),j−1 i = 1, j > 1

pσ(i),j + max{cσ(i−1),j , cσ(i),j−1} i > 1, j > 1

For this experimentation, we considered a subset of instances
of the PFSP from the well-known benchmark of Taillard [27].
Particularly, 22 instances that range between 20 and 200 jobs
were selected.

B. Experimental setup

Regarding the UMDA, n being the size of the problem, the
population size was set to 10n, 5n best solutions were selected
by truncation and 10n new solutions were sampled from the
probability model at each iteration. The algorithm stops after
100n iterations. This parameters were set following the usual
trends and without fine-tuning the behavior of the algorithm.

In order to draw solid conclusions, each algorithm (UMDA
under the different representations) was run on each instance
20 times, and median values were collected.

C. Results for σ, I and I∗

In the first experiment, the UMDA was run under σ, I and
I∗ representations. In the case of σ, when sampling solutions,
using the classical procedure it is possible to draw unfeasible
solutions (non-permutation) because of the repetition of the
items. Therefore, the sampling was adapted to hold the per-
mutation nature of solutions (once an item has been sampled,
set the probability of sampling that item in any other position
to zero, as described in Fig. 1).

Results can be observed in Tables I and II. When optimizing
PFSP instances, the UMDA over I∗ obtains better results
in almost every tested PFSP instance, being the best option
in 18 instances out of 22. In contrast, when solving QAP
instances, the performance of the UMDA over the permutation
representation, σ, is better, thus, being the permutation-vector
representation systematically the best option for this problem.

D. Understanding the results

In order to better understand the behavior of the UMDA
under the three representations, in this section, a more precise
analysis of the results is carried out in terms of convergence
of the UMDA. Particularly, two instances of the PFSP and
QAP were chosen respectively (small and large), and for each
instance-representation pair two logs were plotted: 1) the best
fitness value obtained in the population across the iterations,
and 2) the standard deviation of the fitness of the solutions
sampled at each iteration. The first log provides information
about the degree and speed of the optimization, and the second
gives information about the level of concentration of the
probability model related to the quality of the solutions. In
all the cases, the results of 20 repetitions were aggregated.

Regarding the results of PFSP (see Fig. 3), starting with the
small instance, the UMDA over I∗ obtains the best results.

TABLE I: Median values obtained by the UMDA using the
three representations across the 20 repetitions on the instances
of PFSP. Boldfaced results denoted the best result among the
three representations.

Instance Size σ I I∗

tai20 5 8 20 1.44e4 1.47e4 1.44e4
tai20 5 9 20 1.31e4 1.35e4 1.30e4
tai20 10 8 20 2.04e4 2.13e4 2.05e4
tai20 10 9 20 2.14e4 2.23e4 2.14e4
tai20 20 8 20 3.39e4 3.42e4 3.39e4
tai20 20 9 20 3.26e4 3.32e4 3.26e4
tai50 5 8 50 6.68e4 7.08e4 6.40e4
tai50 5 9 50 7.29e4 7.54e4 6.99e4
tai50 10 8 50 9.22e4 9.68e4 8.81e4
tai50 10 9 50 9.39e4 1.00e5 9.04e4
tai50 20 8 50 1.29e5 1.36e5 1.24e5
tai50 20 9 50 1.31e5 1.35e5 1.27e5
tai100 5 8 100 2.70e5 2.88e5 2.62e5
tai100 5 9 100 2.65e5 2.85e5 2.57e5
tai100 10 8 100 3.31e5 3.51e5 3.21e5
tai100 10 9 100 3.23e5 3.44e5 3.12e5
tai100 20 8 100 4.12e5 4.31e5 4.03e5
tai100 20 9 100 4.19e5 4.38e5 4.08e5
tai200 10 8 200 1.15e6 1.21e6 1.12e6
tai200 10 9 200 1.15e6 1.23e6 1.12e6
tai200 20 8 200 1.38e6 1.44e6 1.35e6
tai200 20 9 200 1.39e6 1.46e6 1.36e6

TABLE II: Median values obtained by the UMDA using the
three representations across the 20 repetitions on the instances
of QAP. Boldfaced results denoted the best result among the
three representations.

Instance Size σ I I∗

chr20a 20 2.58e3 4.69e3 3.57e3
chr20b 20 2.72e3 4.63e3 3.63e3
chr20c 20 1.86e4 3.84e4 1.89e4
tai20a 20 7.22e5 7.84e5 7.82e5
tai20b 20 1.23e8 1.27e8 1.24e8
tai45e01 45 3.25e4 1.60e5 1.37e5
tai45e02 45 3.26e4 1.40e5 1.45e5
tai45e03 45 3.27e4 2.35e5 2.21e5
tai45e04 45 1.45e4 1.33e5 1.60e5
tai45e05 45 1.90e4 1.44e5 1.72e5
sko100a 100 1.61e5 1.71e5 1.63e5
sko100b 100 1.63e5 1.73e5 1.66e5
sko100c 100 1.57e5 1.67e5 1.59e5
tai100a 100 2.34e7 2.35e7 2.35e7
tai100b 100 1.30e9 1.54e9 1.32e9
tai175e01 175 6.42e5 6.04e6 6.45e6
tai175e02 175 5.51e5 6.12e6 5.99e6
tai175e03 175 5.62e5 5.77e6 6.01e6
tai175e04 175 7.30e5 6.44e6 6.69e6
tai175e05 175 5.64e5 6.10e6 6.29e6

Observing Fig. 3a, the objective value of the UMDA over I∗

drastically drops in the first iterations. This corresponds to the
rapid fall of the standard deviation of the sampled solutions
from the UMDA over the same representation, Fig. 3b. This
suggests that the model over I∗ gives high probability to high-
quality solutions, enabling the model to rapidly optimize its
solutions. While the models over σ and I tend to create more
sparse solutions, as can be deduced from Fig. 3b.

In the case of the larger instance size of PFSP, the
UMDA over I∗ starts following the same behaviour as in the
previous experiment. The standard deviation of the sampled



(a) Best fitness and n = 20. (b) Std. dev. and n = 20. (c) Best fitness and n = 100. (d) Std. dev. and n = 100.

Fig. 3: Best population fitness and standard deviation of the fitness of the sampled solutions observed throughout the optimization
of two instances of the PFSP: tai20 20 9 and tai100 20 0. In each plot, data obtained in 20 repetitions has been aggregated.

(a) Best fitness and n = 20. (b) Std. dev. and n = 20. (c) Best fitness and n = 100. (d) Std. dev. and n = 100.

Fig. 4: Best population fitness and standard deviation of the fitness of the sampled solutions observed throughout the optimization
of two instances of the QAP: tai20a and tai100a. In each plot, data obtained in 20 repetitions has been aggregated.

solutions rapidly drops unlike with the other codifications
(see Fig. 3d), and high-quality solutions are generated
(see Fig. 3c). After completing more iterations, unlike the
models over the other representations, the UMDA over I∗

does not converge and continues to optimize its objective
value. Finally, following the results from Table I, the model
over I∗ obtains the best results. On the contrary, models
over the other representations seem to follow the opposite
path. Besides generating great quality solutions in the
beginning, the standard deviation of the solutions increases,
thus being unable to continue sampling high-quality solutions.

With respect to the QAP (see Fig. 4), the results are clear for
the small sized instance, the model over σ is the codification
that best suits this type of problem, as shown in Table II.

Regarding Fig. 4a, the algorithm with the model over σ
representation optimizes its solutions efficiently, and rapidly
converges. On the other hand, unlike to the previous case,
EDAs over I and I∗ do not perform so well. In fact, their
convergence is slower and worse results are returned. As
can be seen in Fig. 4b, the standard deviation of the EDAs
over inversion codifications is very low from the beginning,
suggesting a premature convergence of these models. In the
greater instance size, the performance of the model over σ
continues being superior compared to the models over other
codifications, Fig. 4c. However, as opposed to the small in-
stance size, the performance of the considered models over the
different codifications is quite similar. Moreover, the standard
deviation of the sampled solutions is practically the same (see
Fig. 4d) and the final results are not as different as in the case
of the small instance, Fig. 4a.

In summary, in the case of PFSP instances, as can be

seen in Fig. 3, the minimum fitness of the population rapidly
drops in models over I∗, and the standard deviation of the
results is always lower than the other models over σ and
I . This indicates that models over I∗ are able to generate
very high-quality solutions for PFSP problems. Sometimes,
this behavior, (mainly in small instance sizes) led the models
over I∗ to prematurely converge and lose performance, as seen
in few instances in Table I. When considering QAP instances,
regardless of the size of the problem, models over σ show
clear superiority when compared to models over I and I∗.

V. DISCUSSION

Previous experiments demonstrated the influence of the
representation used to codify the solutions when optimizing
the problem. On one hand, we observed that in the case of the
PFSP, the inversion vector allows the UMDA to obtain better
results. On the other hand, contrarily to the PFSP, in the QAP
the usual permutation codification turned out to be clearly
preferred. Based on these results, it is obvious that when
converting a permutation to its corresponding inversion vector,
the explicit information that the model receives changes, and
this affects the performance of the algorithm. Some times this
effect is beneficial (such as in PFSP), and other times it is
negative (like for QAP).

An interesting point is that the distribution over permu-
tations learnt and sampled by UMDA under the different
representations differs drastically. Under the permutation vec-
tor representation, the information that is propagated across
generations is the first order marginal, i.e., the probability
of the items to appear at each position of the solution σ,
p(σ(i) = j). Conversely, when using the inversion vector
representation I , for each position i, the number of items



smaller than σ(i) that lie to the right of position i are counted,
and p(

∑
j>i I[σ(j) < σ(i)]) is propagated.

Nevertheless, beyond the propagated information for each
representation, the reason for the variations observed in the
results is not clear. Moreover, the influence of each type of
representation for each problem is a pending task. Ultimately,
the relevant questions is: which is the best representation to
codify my solutions?

This paper aims at throwing light in a wide research line
that analyze the characteristics of the solutions that have to
be taken into account so that a standard algorithm (local
search, probabilistic evolutionary algorithms, . . . ) successes
at optimizing a particular problem. For example, in an EA
the best solutions are selected and the next generation is
supposed to keep the characteristics that made the solutions
well adapted. In this way, the question is which are the
characteristics of the solutions that the EA should preserve
in order to improve the current solution?

In this paper, the inversion vector was used, however, there
exist other types of representation that could be also used
under the same setting. One of them is the codification of per-
mutations used in the Repeated Insertion Model (RIM) [12].

The representations introduced previously are bijective,
which means that for each permutation there is a unique
transformation, and this holds also in the opposite direction.
Nevertheless, there are transformations that are not necessarily
bijective and could be used in the context presented in this
paper. Other possible representations are the decomposition
vectors of the Cayley [15] and Hamming [16] distances in
the permutations space. The first one is related to the cycle
structure of permutations and the second one with the fixed
points of the permutation.

In the case of the Cayley and Hamming transformations,
unlike with Inversion vectors or RIM, there are multiple
permutations that can generate the same decomposition vectors
(the transformations are not bijective). Then, using such trans-
formations may introduce large redundancies in the codifica-
tion that usually provoke a poor performance of the algorithm.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we use the UMDA over two representation
of permutations in two different optimization problems. The
UMDA is an optimization algorithm originally developed
for integer vectors. It is based on the assumption that the
joint distribution over all the positions in the vector can be
approximated as the product of the distributions of each of the
positions, i.e., UMDA assumes independence of the positions.

Permutations of n items are usually represented as vectors
but have the peculiarity that the items [n] are not repeated.
We denote this characteristic along this paper as the mutual
exclusivity constraint. It is the reason because the UMDA
can no be directly applied to permutation problems. Indeed,
the problems arise when sampling a permutation, where the
sampling process has to be adapted so that the sampled vector
is a permutation.

In this paper, we propose to use an UMDA over an alter-
native representation of permutations, the inversion vectors.
Inversion vectors are n− 1 length vectors in which position i
ranges in [0, n − j]. It it easy to see that there is a bijection
between permutations of n items and inversion vectors of
n − 1 and the conversion from one to the other can be done
efficiently. Interestingly, inversion vectors do not suffer from
mutual exclusivity constraints, which means that when permu-
tations are represented as inversion vectors it is trivial to define
an UMDA over them: (1) instead of learning a probability
distribution over the set of the best permutations, we learn
a probability distribution over the inversion vectors of the
permutations and (2) to sample a new population we sample
inversion vectors and then transform them to permutations.

We have run several experiments to compare the original
UMDA setting adapted to permutations, which is denoted as
σ along the paper, and two UMDA over the inversion vectors,
called I and I∗. The optimization problems considered have
been QAP and PFSP. It is interesting to notice that the first
UMDA is very adequate to solve the QAP while the other
two are suited for the PFSP. Indeed, this paper is devoted
to throw light in this direction, and show why probabilistic
evolutionary algorithms that use certain summary statistics
are well fitted for certain problems while those that use other
summary statistics are well fitted for others.

This work was the first step in the evaluation of different
representations, and there is still room for future investigations.
On one hand, in addition to the permutation and inversion
vectors, the literature has published other representations to
codify permutation/ranking solutions that could be similarly
used in this context. The Repeated Insertion Model (RIM),
Fixed points, the pairwise representation or the factoradic rep-
resentation [26] are some examples that could be investigated
in the future. Going beyond already published representations,
a relevant research line could be designing ad-hoc represen-
tations for the permutation problem at hand. On the other
hand, the work presented in this paper used the UMDA as a
benchmark algorithm. However, it would be interesting to see
whether other classes of EDAs may be as equally influenced
as the UMDA.
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