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Abstract—We propose a novel approach to extract audio
features based on evolutionary approximation of instrumental
texture in polyphonic audio recordings. A population of mixtures
of samples from 51 instruments with 165 individual instrument
bodies or playing styles is evolved with the help of musically
meaningful genetic operators to produce chords which are as
similar as possible to unknown signals. Our algorithm allows for
a simultaneous approximation of all onsets/chords from a given
audio track. The fitness function is designed to retain mixtures
which are not directly comparable because they approximate
different segments of a track like intro or verse. Another advan-
tage is that no labelled signals are required to learn supervised
models for instrument prediction, and the sample database can
be easily extended with further instruments. Although the multi-
label classification performance of instrument recognition still
has room to be improved, the derived instrumental and pitch
statistics are comparable to the best selected semantic features
from a large set of 566 descriptors including not only instrument
and pitch statistics, but also chord, harmony, structure, temporal,
dynamics, emotional, vocal, and further characteristics, even
outperforming them for a half of tested music categories.

Index Terms—Evolutionary music approximation, instrument
recognition, genre recognition, semantic features

I. INTRODUCTION AND RELATED WORK

Instrument recognition in polyphonic audio is a very chal-
lenging classification task in music data analysis. In contrast
to the recognition of individual samples in earlier works [1],
[2], simultaneously played instruments contribute to the audio
signal with very different individual properties of distributions
of overtones and non-harmonic frequencies, temporal change
of sound during attack, decay, sustain, and release tone phases
[3], playing style, or applied effects like reverb or distor-
tion. More recent works introduced enhanced techniques, like
engineering of specific domain features [4], optimisation of
classification models with feature selection [5], source signal
separation [6], or deep neural networks [7], [8].

A common approach to recognise instruments starts with the
audio time signal and tries to identify relevant properties of
given instruments after various transforms, like the estimation
of spectrum or cepstrum. However, an oppositely directed
procedure based on synthesis can be also considered, namely
the combination of individual tone samples to a polyphonic
mixture which should approximate an unknown chord. As the
number of possible combinations of instruments and individual
bodies, pitches, playing styles, loudness levels, and applied ef-

fects can be theoretically infinite (e.g., if loudness is measured
by continuous values), evolutionary algorithms (EAs) can be
considered as a method to explore such a huge search space
trying to identify polyphonic mixtures which will approximate
the unknown sound as perfect as possible.

There exist many systems which applied EAs for music
composition, e.g., Jazz solo generation [9], adjustment of
parameters of granular synthesis [10], or generation of back-
ground music [11]. A good overview of earlier applications
is provided in [12]. However, to our knowledge, in none of
the published studies EAs were applied to approximate “real-
world” classical or popular polyphonic music pieces with the
target to identify underlying instrumental and pitch texture.

In this work, we introduce a method how this can be
implemented with an EA. However, it is important to mention
that such optimisation task can not always be solved, not
only because there exist different instruments with similar
sounds (like violin and viola), but also because the boundaries
between instruments may vanish when instrument samples
are synthesised by software (as in digital pianos) or strongly
augmented during production in studios.

That’s why the primary goal of our algorithm is not to
achieve the perfect performance in instrument recognition, but
to derive mid-level relevant properties of instrumental texture
in audio tracks which may improve further related appli-
cations: genre recognition, personal music recommendation,
audio structure analysis, etc. Thus, the features extracted after
our evolutionary approximation should not be directly treated
as exactly identified instruments, but rather as similarities to
concrete instrument samples in our database which neverthe-
less makes them semantically and musically meaningful.

In Section II, we describe the operating principle of a
proposed EA to approximate polyphonic audio recordings.
To get a better insight into the complexity of instrument
recognition task, in the first study we measure the quality
of multi-label instrument recognition in artificially generated
music pieces, see Section III. In Section IV, we describe how
instrumental and pitch properties can be extracted and applied
to genre recognition and evaluate them for the prediction of
14 music genres and styles. The classification performance is
also compared to a simple baseline and an extensive set of
various high-level semantic descriptors. Section V provides a
summary of results and ideas for future work.
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II. ALGORITHM

A. Sample Database

Our database of instrument samples [13] is compiled from
several sources: the instrument sample database from [5],
Ethno World 5 Professional and Voices samples [14], and
Komplete 11 Ultimate samples [15]. Because many of 51 in-
struments are represented with different individual instrument
bodies and playing styles (e.g., Alicia’s Keys, The Gentleman,
The Giant, The Grandeur, The Maverick pianos), the overall
number of sample categories is 165. Table I provides an
overview of all instruments with numbers of corresponding
styles and sources.

B. Operating Principle and Parameters

Obviously, in some meaningful feature space the distances
between feature vectors which represent same or similar
instruments should be smaller than distances between feature
vectors which represent very different instruments. An exam-
ple is shown in Figure 1. The feature domain is built with the
chromagram or pitch class profile [16] which measures the
strengths of halftones. Subfigure (b) shows the chromagram
around the approximated chord from the original recording
which is marked with a red rectangle in the score, Subfigure
(a). Subfigure (c) shows the chromagram for the mixture of
instrument samples which are also present in the original
chord, (d) for the mixture with one tone removed, (e) for the
mixture with two pitches shifted, and (f) for the mixture with
one sample played by piano and not violin. As a distance mea-
sure, we calculated the average absolute difference between all
chroma values for each time window of the corresponding plot
matrices. Subfigure (g) illustrates that the approximation with
correct instruments and pitches has the smallest distance to
the original chord for time windows 1 and 4-9. Note that the
tones of the mixture come from our database and belong to
other instrument bodies than in the original audio recording.

Now consider that we have some mixture of tones which
should approximate an unknown chord. The distance to audio
features of this chord can act as a fitness function which
evaluates the quality of the given mixture. With the help of
evolutionary operators, the mixture can be changed: e.g., a
new tone may be added or an existing one removed, a pitch
of a particular tone can be shifted, or an instrument can
be replaced by another one. For instance, a mutation which
adds a tone could produce approximation 1, Subfigure (c),
from approximation 2, Subfigure (d), where the approximation
1 has a smaller distance to the approximated chord in the
chromagram feature domain.

The evolutionary algorithm for the approximation of poly-
phonic recordings operates as follows. During the initialisation
stage, µ individuals (mixtures of one to five instrument tone
samples) are created. The instrument, the style, and the pitch
are drawn randomly. The probability to use only one sample
is set to 10%, two samples to 30%, three samples to 30%, four
samples to 20%, and five samples to 10%. In each iteration
step, λ offsprings are generated from randomly selected parent

solutions. In the final experiments for this study, the best
results were achieved with µ = 400 and λ = 1. These and
also later mentioned parameter values were carefully selected
based on the first experiments and must not be the optimal;
an exhaustive evaluation of many possible settings was beyond
the scope of this study but should be addressed in future.

Three different mutation operators are currently imple-
mented. The first one changes the number of mixed samples.
The probability to increase the number of samples P (m1)
changes from 100% to 80%, 40%, 10%, and 0% for mixtures
of 1, 2, 3, 4, and 5 samples, respectively. If the drawn random
number is below P (m1), then exactly one randomly selected
sample is added to the mixture. If this number is equal to or
above P (m1), then a randomly selected sample is removed
from the mixture. The second mutation shifts the pitch of a
random sample, adding b15 ·Gc to the current pitch, where
G is a Gaussian number with mean 0 and standard deviation
1. In case the new pitch is below the lowest or above the
highest possible pitch of the instrument of that sample, the
new pitch is set to the corresponding boundary. The third
mutation exchanges an instrument for a randomly drawn
sample, keeping its pitch, and selecting a new style by chance.
For our initial study, we have restricted the genetic operators
to these three, but plan to implement more operators in further
experiments, like loudness change mutation or crossover.

For each offspring, the number of applied mutations is
set to bG · α+ βc, with a restriction that at least lbound
and at maximum ubound mutations are applied. After the
initial experiments, we found the settings α = 6, β = 3,
lbound = 1, and ubound = 10 to perform quite well. For
instance, the application of exactly one mutation for each
offspring reduced the scale of search space exploration and
led to worse performance.

To approximate a complete audio track with all notes/chords
for which no exact score or symbolic representation like MIDI
is available, at first all onset events must be extracted (i.e., all
time positions where at least one new tone begins). For the
fitness evaluation, we measure the absolute distance between
normalised feature values of the approximated onset and a
candidate mixture. The estimation of feature vectors is based
on two parameters: a feature domain and a feature processing
method. Among several examined feature domains, the Mel
spectrum was found to be the significantly best method (see
Section III for details). For feature processing, we estimated
the attack phase with librosa [17] (the time interval between
the beginning of the new tone or chord and the time point
with the next energy peak). In the “complete” processing,
the distance is measured across all feature values from time
frames between the approximated onset and the the next onset.
For the final experiments on genre recognition, we also tested
the “attack-release” (“AR”) processing, where only the feature
values from the middle of the attack phase, the end of the
attack phase, and from the middle of the release phase are
stored. This is motivated by the assumption that non-harmonic
frequencies like piano key stroke during the attack phase may
be useful to identify instruments and should not be mixed with



TABLE I
LIST OF INSTRUMENT SAMPLES USED IN THE STUDY. COLUMN “NO.” LISTS THE NUMBER OF STYLES.

Name No. Source Name No. Source Name No. Source
Acoustic guitar 12 [5] Drums 12 [15] Panflute 1 [14]
Balalaika 1 [14] Dung dkar trumpet 1 [14] Piano 11 [5], [15]
Bandura 1 [14] Egyptian fiddle 1 [14] Pinkillo 1 [14]
Banjo framus 1 [14] Electric bass 7 [15] Pivana flute 1 [14]
Banjolin 1 [14] Electric guitar 9 [5] Saxophone 5 [15]
Bass 2 [15] Electric piano 6 [15] Scale changer harmonium 1 [14]
Bassoon 2 [15] Erhu 1 [14] Shakuhachi 1 [14]
Bawu 1 [14] Flute 8 [5], [15] Sitar 1 [14]
Bouzouki 1 [14] Fujara 1 [14] Tampura 1 [14]
Cello 9 [5], [15] Horn 4 [15] Tanbur 1 [14]
Ceylon guitar 1 [14] Jinghu opera violin 1 [14] Trombone 4 [15]
Clarinet 2 [15] Kantele 1 [14] Trumpet 11 [5], [15]
Contrabassoon 1 [15] Melodica 1 [14] Tuba 3 [15]
Cumbus 1 [14] Morin khuur violin 1 [14] Turkey saz 1 [14]
Dallape accordion 1 [14] Oboe 2 [15] Ukulele 1 [14]
Dilruba 1 [14] Oud 1 [14] Viola 9 [5], [15]
Domra 1 [14] Organ 6 [15] Violin 10 [5], [15]

a more stable and harmonic sound after the end of the attack
phase (cf. [18]). We have also conducted further experiments
storing values from the onset frame, the end of the attack phase
and the last frame of the release phase, however, the results
were not better or even worse.

A problematic issue is that the evolutionary approximation
of each onset in a music track may be very time consuming,
because a typical popular music piece may contain more than
thousand onsets. However, we can assume that many of them
have the same or closely related instrument tones, because
chord, harmonic, and instrumental properties repeat within an
individual music piece. Therefore, our approach approximates
all onsets simultaneously. For each candidate mixture, we
measure distances to all onsets in the music piece. Then,
we sort these distances in ascending order and estimate the
mean value of φ per cent of the smallest distances between
a candidate mixture and the best approximated onsets. The
value of φ should be chosen carefully. Setting it to a too
low value will prioritise solutions which are very specific
and approximate at best a sole onset or a couple of similar
onsets. Setting it to a too high value will prioritise very general
solutions which approximate a large number of onsets and the
general structure of the music piece, but are not very precise
to recognise individual onsets. Assuming that the shortest
segments of typical popular tracks like intro or bridge may
continue for around 5-10 per cent of track length, we have
experienced with different φ values and set them to 5% and
10% for the final study.

An illustration to fitness estimation is provided in Figure
2. The horizontal axis corresponds to 100 of 520 best ap-
proximated onsets in Vivaldi’s The Spring - I. Allegro, sorted
by ascending order with respect to the mean absolute distance
between the Mel spectrograms of the approximation and onsets
(vertical axis). The height of dark grey shaded rectangles is
equal to the mean distance to 5% (26) of the best approximated
onsets and the height of light grey shaded rectangles to
the mean distance to 10% (52) of the best approximated
onsets. This mean distance is used as a fitness function for

evolutionary selection. As we observe, the first approximation
with correct instruments and pitches (the left subfigure) has
smaller (better) fitness values than the approximation with
less tones (the middle subfigure) or with shifted tones (the
right subfigure). Again, it is important to mention that the
instrument bodies and playing styles in the approximations
are not the same than in the original recording of the music
track.

It can be also thinkable to keep mixtures in the population
which approximate well a larger number of onsets in a music
track. Therefore, we extended our method to support several
subpopulations with different evaluation scopes, some of them
targeted to be rather specific (with a smaller φ) and some
rather generic (with a larger φ). We have tested the following
implementation. For each of µ initial mixtures, we decide
with the equal probability whether it should be a “specialist”
(φ ∈ [1, ..., 5] , φ ∈ N), “allrounder” (φ ∈ [6, ..., 20]), or
“generalist” (φ ∈ [21, ..., 100]). The value of φ is randomly
drawn from the corresponding intervals and is kept for each
individual during the complete optimisation process. It is also
inherited to its offspring, so that the sizes of all subpopulations
remain the same. During the selection of a new generation,
we compare the fitness values of offsprings to fitness values
of their subpopulations only, so that a better fitness of a
“specialist” mixture which very well optimises some particular
onset but poorly approximates almost all other onsets should
not replace an “allrounder” mixture with a larger fitness
but other optimisation scope. In the following, we mark the
setting for variable fitness estimation with subpopulations with
φ = VAR.

After the evaluation of offsprings, µ individuals with the
smallest fitness values are selected for the next generation. The
evolutionary loop continues for a given number of generations
g. In the final study, g = 3000 was found to be a good
compromise between the runtime and convergence behaviour.



Fig. 1. Approximation of a chord in Vivaldi’s The Spring - I. Allegro. (a): The score (the chord to approximate is marked with a rectangle); (b): chroma
domain from the original recording; (c)-(f): chromagrams of several approximations; (g): distances between approximations and the original recording in
chroma domain.

III. EXPERIMENT 1: SELECTION OF FEATURE DOMAIN
FOR INSTRUMENT RECOGNITION

A. Setup

To measure the instrument recognition performance of our
method, we need polyphonic music pieces with exact anno-
tations of played instruments. For that sake, we created an
artificial database of 8 tracks with two simultaneously playing
istruments with the help of JFugue [19], one half of tracks
with additional drums and another one without. The generated
MIDIs were transformed to audio with Kontakt Player using
Komplete 11 samples with smooth transitions between onsets
and a more natural sound compared to a simple assignment
of individual instrument samples to MIDI events.

We tested four feature domains for the estimation of
distance between approximations and onsets. Mel frequency
cepstral coefficients (MFCCs) [20] (13 dimensions, jAudio
implementation [21]) and the complete Mel spectrum (128
dimensions, librosa implementation [17]) are based on the
cepstrum (a product of the inverse Fourier transform applied
to the logarithm of the squared spectrum [22]) which is further
adjusted to the Mel scale, so that the distances between pitches
should be perceived as similar by human listeners [23]. The
chromagram (12 dimensions, Yale implementation [24]) and
the semitone spectrum (85 dimensions, NNLS Chroma imple-
mentation [25]) measure the strengths of individual halftones.

After some preliminary trials, we tested two different mu-
tation strengths: weak (α = β = lbound = ubound = 1) and



Fig. 2. Example for the fitness evaluation of three approximations applied to a complete Vivaldi’s The Spring - I. Allegro. For details, see the text.

strong (α = 6, β = 3, lbound = 1, ubound = 10).
As an evaluation measure (error e), we calculated the share

of present instruments which are not contained in the best
approximation for each onset. As discussed before, multi-label
recognition of instruments is very challenging because of the
large number of instruments and also different instruments
with similar sounds. To illustrate this, let us estimate the
error of a random classifier for instrument recognition in a
mixture of two samples from two different instruments for
our experiment setup. Among all combinations of available
instruments, the number of possible candidate mixtures with
two different instruments and e = 1 (no instrument was
correctly predicted) is equal to 49·48

2 = 1176 (the complete
number of available instruments is 51, two of them are already
in the mixture to approximate). The number of possible ap-
proximations with exactly one correctly predicted instrument
(e = 0.5) is equal to 49 + 49 = 98 (for each of two present
instruments, 49 other instruments remain in the database). The
number of possible approximations with e = 0 is equal to
1. Then, the overall number of possible candidate mixtures
is 1176 + 98 + 1 = 1275 = 51·50

2 . Under a simplified
assumption that all combinations of two instrument samples
have equal probabilities to appear in a candidate mixture, the
mean expected error of a random classifier would be equal to
1176·1+98·0.5+1·0

1275 = 0.96078.
After the similar calculation, the error of a random clas-

sifier which approximates one sample with another one is
e = 0.98039 and three samples with a mixture of exactly three
samples is e = 0.94084; note that the exact theoretic analysis
is very complex because, e.g., two sample mixtures can be
approximated by three sample mixtures, etc., and the numbers
of samples in the mixtures after the optimisation depend on
the parameters of an EA and on a concrete classification task.

B. Results

Table II presents the errors. The instrument recognition
performance of the Mel spectrogram significantly outperforms
all three other feature domains, as confirmed by the Wilcoxon
signed rank test applied for errors from different music tracks.

TABLE II
PERFORMANCE OF MULTI-LABEL INSTRUMENT RECOGNITION FOR

ARTIFICIAL POLYPHONIC TRACKS. THE SMALLEST ERROR IS MARKED
WITH THE BOLD FONT.

Mutation
strength

Chromagram Semitone
spectrum

MFCCs Mel
spectrum

weak 0.8942 0.8631 0.8671 0.7845
strong 0.8990 0.8474 0.8359 0.7558

The stronger mutation led also to smaller errors, however the
difference was not significant. Although the best achieved error
of 0.7558 is rather high, it is still significantly lower than
the error of a random classifier (see the example above). The
main challenge is here that samples of different instruments
are sometimes very similar (this depends also on the pitch).
For instance, in one observed case, a replacement of a violin
sample with a piano sample for a string recording led to a
small decrease of distance between the candidate mixture and
the onset to approximate.

However, a large difference of errors between the worst
value with the chromagram (e = 0.8990) and the best value
with the Mel spectrum (e = 0.7558) points out a high
potential for a further optimisation of feature domain, i.e.
the identification of the most representative and distinctive
features.

IV. EXPERIMENT 2: GENRE RECOGNITION

A. Setup

For genre recognition, we follow the setup of [26], where
6 music genres and 8 styles are predicted, and only small
training sets of 20 tracks are used, so that this situation very
well matches a real-world scenario when a user wants to
spend less efforts to define a rather small training set of some
personal category. For the identification of the smallest feature
sets with smallest errors by means of evolutionary multi-
objective feature selection, other 120 tracks (optimisation set
OS120 [27] are used. The final validation is done on the
album-independent test set TAS120 with 120 tracks which



had the same genre distribution as OS120 tracks, but are
represented with other artists and albums.

With regard to the results from Section III, we estimated
the fitness measure with respect to distances in the Mel
spectrum and used a stronger mutation for all experiments on
genre recognition. Two different feature processing methods
(“complete” and “AR”), as well as three φ ∈ {5, 10,VAR}
values were used, see Section II.

To focus our study more on different statistics of evo-
lutionary approximations of music pieces, we restricted the
classification algorithm to only random forest [28] with 100
trees, because this method is very robust, fast, has only few
parameters to setup, and is capable to deal with very small
training sets, in contrast to deep neural networks, which
typically require larger training sets and are not so optimal for
our application scenario. As in [26], the classification windows
are 4s with 2s overlap, and the music tracks are assigned to
categories by majority voting.

The following statistics are proposed as approximative fea-
tures. For each instrument and each onset in the approximated
music track, we save the smallest distance between the best
candidate mixture which contains this instrument and the onset
to approximate. These smallest distances are kept during the
complete evolutionary loop in an archive and do not represent
the final population only. Then, we estimate the mean, the
minimum, and the maximum values for each of 51 instrument
and 88 theoretically possible pitches for two different analysis
frames of 10s and 3s. Additionally, we sort the recognised
instruments based on the smallest distances, and assign ranks
to corresponding approximative features, e.g., value of “rang
of acoustic guitar” = 1 means that acoustic guitar had the
smallest mean distance between approximations with this
instrument and unknown onsets in the analysis frame. This
leads to an overall number of feature dimensions equal to
(51 · 3 + 88 · 3 + 51) · 2 = 9361.

We compare the approximative features to semantic features
from the previous work [29] which are summarised in Table
III. Note that this baseline set contains a large number of very
different music properties. Further details and references to
individual features are provided in [26].

Because the distribution of genres in optimisation and test
sets was not balanced, the evaluation measure is the balanced
relative error:

mBRE =
1

2

(
FN

TP + FN
+

FP

TN + FP

)
, (1)

with TP denoting the number of true positives (classifica-
tion instances which are correctly predicted as belonging to
the positive category in supervised binary classification), TN
the true negatives (correctly predicted negative instances), FP
the false positives (wrongly predicted negative instances), and
FN the false negatives (wrongly predicted positive instances).

1Please note that this calculation is done for simplicity reasons; because
many instruments have a smaller range of pitches compared to piano, the
number of meaningful dimensions is less than 936.

B. Results

Table IV presents the summary of classification errors for
6 genres (Classic–R’n’B) and 8 styles (AdultContemporary–
Urban). As a simple baseline, the second column (“Mel
spect.”) contains mBRE values for the classification with
random forest using the Mel spectrum (recall that this feature
domain is also used for the estimation of fitness values for evo-
lutionary approximations of audio tracks). The second baseline
(“Semantic”, the third column) contains values from [26]
achieved with the best selected semantic features from a large
set with very different interpretable harmonic, instrumental,
temporal, melodic, emotional, and other properties. As it can
be expected, these features are significantly better than the Mel
spectrum baseline (p = 1.2207e−4, the Wilcoxon signed rank
test for the comparison of values across the categories, with
the default level of significance of 5%).

In the 4th column (“All”), the errors are reported for all
estimated approximative features, as described in the previous
subsection. The corresponding best configuration of a feature
processing method and a fitness evaluation method is provided
in the 5th column. Although mBRE is better (smaller) than for
the Mel spectrum baseline for 9 of 14 categories, the difference
is not significant (p = 0.1573), and these features are worse
than the semantic baseline (p = 1.2207e−4).

However, the situation changes after the application of
evolutionary multi-objective feature selection2 with the goal
to identify the smallest subsets with as low as possible errors
among all approximative features. To avoid overfitting, the
models are always created from training sets, feature selection
is validated on the optimisation set OS120, and the best errors
on the independent test TAS120 are stated in the 6th column
of the table. Again, the corresponding configuration of feature
processing and fitness evaluation strategy is provided in the
table (7th column).

First of all, feature selection leads to significantly smaller
test errors compared to all approximative features (p = 0.0031).
Only for the category SoftRock, the test error increases after
the feature selection which means that the best features identi-
fied for the optimisation set have a poor generalisation ability
(overfitting effect). Second, the best selected approximative
features outperform the 1st baseline (Mel spectrum) in all
cases (p = 1.2207e−4). Third, the classification performance
of the best approximative features is not significantly different
from the second baseline (p = 0.2958), and the best selected
approximative features are better than the best selected seman-
tic features for a half of categories: Classic, Electronic, Jazz,
AlbumRock, HeavyMetal, ProgRock, and Urban.

Such a good performance is particularly surprising because
our approximative features describe only instrumental and
pitch properties, in contrast to the large semantic feature
set with very different musically meaningful characteristics
partly based on previously trained and optimised supervised

2We applied S-metric selection evolutionary multi-objective algorithm
(SMS-EMOA) [30] to minimise mBRE and the number of selected features;
for further details and parameters we refer to [26].



TABLE III
SEMANTIC BASELINE FEATURES FROM THE PREVIOUS WORK [26] (DIM.: NUMBER OF DIMENSIONS).

Group Examples Dim.
Chord statistics Number of different chords and chord changes in 10s, shares of the most frequent chords 5
Chroma and harmony Consonance, key, strengths of pitch intervals, tonal centroid 258
Instruments Share of guitar, piano, strings, wind instruments in 10s 32
Moods Aggressive, earnest, energetic, sentimental 64
Structural complexity Complexity of chords, harmony, instruments 70
Tempo, rhythm, and structure Beats per minute, duration of a music piece, rhythmic clarity 9
Various features Activation level, vocal descriptors, characteristics of melodic range 128

TABLE IV
BALANCED CLASSIFICATION ERRORS FOR GENRE AND STYLE RECOGNITION. BASELINES: MEL. SPECT.: CLASSIFICATION WITH THE RANDOM FOREST

USING THE MEL SPECTRUM (128 DIMENSIONS); SEMANTIC: BEST MODELS FROM THE FOUR CLASSIFICATION METHODS AND A LARGE SET OF
HIGH-LEVEL SEMANTIC DESCRIPTORS AFTER [26] (566 DIMENSIONS). APPROXIMATIVE FEATURES: ALL: ALL APPROXIMATIVE FEATURES (936

DIMENSIONS, ESTIMATED SEPARATELY FOR 6 COMBINATIONS OF FEATURE PROCESSING AND FITNESS EVALUATION METHODS); BEST: BEST
APPROXIMATIVE FEATURES FOUND AFTER FEATURE SELECTION (VARIABLE NUMBER OF DIMENSIONS). FEATURE PROCESSING METHODS: A: “AR”; C:

“COMPLETE”. THE SMALLEST mBRE VALUES FOR EACH CATEGORY ARE MARKED WITH THE BOLD FONT.

Category Baselines Approximative features
Mel spect. Semantic All FP, φ Best FP, φ

Classic 0.0286 0.0276 0.0619 A,VAR 0.0238 C,10
Electronic 0.2238 0.1610 0.2762 A,5 0.1476 C,VAR
Jazz 0.1952 0.1400 0.1810 C,10 0.1286 C,VAR
PopRock 0.4778 0.1575 0.4200 A,10 0.3178 C,VAR
Rap 0.2762 0.0642 0.2095 A,5 0.0857 A,10
R’n’B 0.2571 0.1458 0.2238 A,VAR 0.2095 A,5
AdultContemporary 0.3818 0.2417 0.4045 A,10 0.3318 A,10
AlbumRock 0.2909 0.2316 0.2591 A,10 0.1227 C,5
AlternativePopRock 0.4039 0.2251 0.3063 C,5 0.2673 A,VAR
ClubDance 0.2594 0.1760 0.2925 C,VAR 0.2170 A,10
HeavyMetal 0.3750 0.1213 0.3705 C,VAR 0.1205 A,5
ProgRock 0.4886 0.2309 0.3508 C,VAR 0.2080 C,VAR
SoftRock 0.4535 0.1862 0.3093 C,5 0.4048 A,VAR
Urban 0.2130 0.2061 0.2348 A,VAR 0.1652 A,VAR

classification models: statistics of chords, harmonic properties
like key and consonance level, shares of several recognised
instruments, rhythmic and beat properties, model-based en-
semble predictions of emotions, vocal characteristics, digital
effects, etc., as well as the structural complexity of many
semantic features (a method to measure temporal progress of
feature time series after [31]). Essentially, as the approximative
features are restricted to instrument and pitch properties, we
can not expect that they can be the best for individual genres,
but it seems that they are indeed comparable to the best
selected features from a large semantic feature set, despite of a
far from perfect performance to exactly recognise instruments
in artificial polyphonic tracks. This suggests that a further
optimisation of the instrument recognition performance may
as well improve also the classification performance for genre
prediction.

With regard to the last column of Table IV, all combinations
of feature processing and fitness value estimation methods
contribute to the best identified feature sets. This means that
the best parameters depend on the classification task. When
we fix the processing method and compare the best feature
sets identified with φ ∈ {5, 10,VAR}, there is no statistical
difference between the errors (with the Wilcoxon signed rank
test). When we fix the fitness estimation method, the only
significant difference is observed for φ = 10, here the “AR”
processing seems to be better than “complete” processing, with

p = 0.0437 which is rather close to the boundary value of 0.05.
Therefore, we can not recommend a particular setting for these
parameters which would perform at best for different genre
categories.

V. CONCLUSIONS AND OUTLOOK

In this work, we have proposed a novel method to ap-
proximate polyphonic audio recordings with the help of an
evolutionary algorithm which combines individual instrument
tone samples and measures distances between candidate ap-
proximations and onsets of unknown recordings.

The first evaluation of instrument recognition performance
in artificial tracks showed that the proposed method outper-
forms a random classifier, but still requires further improve-
ment. However, in the second experiment, the best approxima-
tive features (similarities to instruments and pitches), identified
with the help of evolutionary multi-objective feature selection
for the recognition of music genres and styles, were compa-
rable to the best selected semantic features from a large and
diverse set which contained much more musically meaningful
information than instrument and pitch properties only: those
features comprised also temporal, structural, melodic, vocal,
dynamics, emotional, and further characteristics, partly created
with ensembles of supervised classifiers. For exactly one half
of 14 genres and styles, our new approximative features were



better, and there was no statistical difference between the best
selected features from both sets.

There exist a lot of possibilities to further improve the
proposed algorithm which were beyond the scope of this study.
In future, for instance, we plan to optimise feature domains
for a better classification quality of recognised instruments,
to add more musically meaningful genetic operators like the
change of sample loudness or application of further signal
augmentations, to apply classification ensembles, and to adjust
the fitness evaluation which should better correlate with the
instrument recognition performance.
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