

Evolutionary Algorithms for the Traveling
Salesman with Multiple Passengers and High

Occupancy Problem

Ranmsés Emanuel Martins Bastos,
Marco César Goldbarg,

Elizabeth Ferreira Gouvêa Goldbarg
Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte
Natal, Brazil

ranmses@ufrn.edu.br, gold@dimap.ufrn.br, beth@dimap.ufrn.br

Matheus da Silva Menezes
Departamento de Ciências Exatas e Naturais
Universidade Federal Rural do Semi-Árido

Mossoró, Brazil
matheus@ufersa.edu.br

Abstract—As a generalization of the Travelling Salesman
Problem, the Travelling Salesman with Multiple Passengers and
High Occupancy Problem considers real-world aspects with
environmental implications. This paper presents a set of
features concerning the study of this new optimization problem,
including a mixed-integer programming model and its
linearization, a group of artificial instances, and four heuristics
based on the Genetic, Memetic, and Transgenetic
metaheuristics. The instances are submitted to Gurobi solver to
establish a benchmark. Heuristics’ parameters are tuned using
the Irace tool and later compared through a computational
experiment. A statistical analysis based on Friedman tests
pointed to a superior performance of TGALS.

Keywords—Ridesharing, vehicle routing, metaheuristics.

I. INTRODUCTION

The Travelling Salesman with Multiple Passengers and
High Occupancy Problem (TSMPHOP) is an extension of the
Traveling Salesman Problem (TSP). The latter is one of the
most traditional and well-known mathematical programming
problems [1]. TSP’s objective is to find the lowest cost route
that travels across a given set of cities. The TSMPHOP
leverages this scenario and adds some real-world aspects to it:
cities are visited by the salesman’s vehicle, which has seats
available; the salesman offers rides to passengers along the
TSP route to share expenses; roads connect cities, and some
of them are toll roads; tolls are said to be of the High-
Occupancy type since vehicles are exempt from paying the
fare if they have no seats available; when charged, toll’s
expenses are not shared: they are entirely paid by the
salesman; lastly: shared costs are equally divided between the
salesman and all riding passengers on their respective paths.
TSMPHOP’s objective is to find the Hamiltonian cycle with
the lowest cost, which is defined by the sum of expenses paid
by the salesman along the route. We also consider that there
are no passengers available for pickup at the salesman origin
since routes always start at it. Besides the aforementioned
aspects, there are also passenger-related restrictions. The first
one is that each of them has specific pickup and drop-off

cities. The second is that the share of expenses due to a
passenger is subject to his budget limit. Those restrictions are
mandatory; all passengers’ transportation must be done in
conditions that respect them.

It should be noted that the collaborative bias in the
problem is remarkable since the salesman has the incentive to
share his means and thus decrease the overall cost by
providing transport to third party individuals. To present the
definition of TSMPHOP, Section II contains the mathematical
formulation and the linearization of the nonlinear expressions
involved. The linearized model’s implementation comprises
the exact solving method. Section III introduces four
algorithms designed to heuristically solve the problem, which
are based on the Genetic, Memetic, and Transgenetic
metaheuristics. To demonstrate the generation of
TSMPHOP’s artificial instances and the test methodology
adopted in this paper, Section IV follows. Computational
experiments’ results are discussed in Section V, while Section
VI conveys conclusions of the work.

II. TSMPHOP

Since the TSP is a particular case of the TSMPHOP, the
latter belongs to NP-hard [2] [3]. TSMPHOP is a model that
includes routing and ride-sharing problems. It belongs to the
class of green transportation problems since it can produce
results that benefit environmental preservation.

The TSMPHOP consists of finding a Hamiltonian cycle in
a complete and nondirectional graph ! and the list of
passengers whose transport requests are satisfied throughout
the route. Restrictions shall ensure the conditions required by
the passengers, such as pickup and drop-off points and budget
limits, are successfully met. The vehicle capacity also has to
be respected. The vehicle has " seats available to passengers.
The expenses for going from a city to another are composed
by the inherent edge cost, such as fuel and vehicle
maintenance, and the toll cost, which may or may not exist.
When there is a toll occurrence in a given edge, such an edge
is from now on called a hov edge (from high-occupancy

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

vehicle lane). The toll fare is closely related to the vehicle
occupation: it is only charged to the salesman if it is not full
in its maximum occupation !. If all seats are occupied, the
vehicle is exempt, and the toll fare is zero.

The object is to minimize (1), where "!" denotes the cost
of edge ($, &); (!" is a binary variable equal to 1 if the edge
($, &) belongs to the Hamiltonian cycle and 0 otherwise; +!" is
a binary variable with value 0 whenever the vehicle passes by
($, &) with maximum occupancy and value 1 otherwise; ,!" is
the cost of the toll associated with the edge ($, &), which is
nonzero for hov edges and zero otherwise. - is the set of
people demanding transportation; .!"# is a binary variable
equal to 1 if passenger / is in the vehicle in edge ($, &) and 0
otherwise. 0# is the pickup point of passenger /. 1# is the drop-
off point of passenger l. The first term in the objective function
accomplishes the division of expenses between the salesman
and the car occupants. The second term ensures maximum
incentive for the salesman to share its means since the toll fare
is not shared with the passengers but can be zero if all seats
are occupied.

min	 %
&!"'!"

∑)!"
##∈% + 1

+ ,!"-!"'!"
!,"	∈	(

	 (1)

%'!"

)

"*+
= 1	 ∀0 ∈ 2	 (2)

%'"!

)

"*+
= 1	 ∀0 ∈ 2	 (3)

3+ = 1	 	 (4)
3! − 3" + 1 ≤ (7 − 1)(1 − '!")	 ∀0, : ∈ 2\{1}	 (5)

%)!"
,

%

,*+
− >'!" ≤ 0	 0 ≠ : ∀0, : ∈ 2	 (6)

%%
)!"
, &!"

∑)!"
#%

#*+ + 1

)

"*+
"-!

)

!*+
	− A, ≤ 0	 ∀B ∈ C	 (7)

,!" = 1 − D
∑)!"

,%
,*+ + 1

> + 1
E	 0 ≠ : ∀0, : ∈ 2	 (8)

%)!"
,

)

"*+
"-!

−%)"!
,

)

"*+
"-!

= 0	 0 ≠ F, ,	G,			∀0 ∈ 2
∀B ∈ C (9)

%)!.!
,

)

!*+
!-.!

+ %)/!!
,

)

!*+
!-/!

= 0	 ∀B ∈ C	 (10)

%)+!
,

)

!*0
= 0	 ∀B ∈ C	 (11)

)!"
, ≤ '!" 	 0 ≠ :			∀0, : ∈ 2 ∀B ∈ C (12)

'!" ∈ {0,1}	 ∀0, : ∈ 2	 (13)
3! ∈ 2\{1}	 ∀0 ∈ 2\{1}	 (14)
)!"
, ∈ {0,1}	 ∀0, : ∈ 2 ∀B ∈ C	 (15)

,!" ∈ {0,1}	 ∀0, : ∈ 2	 (16)

Equations (2) and (3) ensure that all cities are visited once.

Expressions (4) and (5) prevent subcycles, which came from
the MTZ formulation for the TSP [4]. Constraint (5) ensures

that each city has a unique associated visit order. Constraint
(6) requires that at most ! passengers are boarded on any edge
of the route. Constraint (7) ensures that each passenger pays,
at most, the maximum rate agreed, 2#. Equation (8) models the
toll exemption, making the toll rate ,!" to be charged to the
salesman whenever there are unoccupied seats in the vehicle
and edge ($, &) is part of the cycle. Equation (9) ensures that
embarked passengers are always disembarked. Constraint
(10) ensures that passenger l is not in the vehicle on an edge
that arrives at 0# or leaves 1#. Equation (11) ensures that no
passenger that arrives at the salesman origin city continues in
the route. Constraint (12) ensures that no passenger is in the
vehicle on an edge that is not in the cycle. Constraints (13) to
(16) define the decision variables’ domains.

A. Linearization
Expressions (1), (7), and (8) are nonlinear. The

linearization of such is based on the following mathematical
formulas.

i. Product between binary variables 3 and 4 [5].

H = IJ	 I, J, H ∈ {0,1}	 (17)
H ≤ I	 	 (18)
H ≤ J	 	 (19)

H ≥ I + J − 1	 	 (20)
ii. Product between binary variable 3 and continuous

positive variable 4 with constant upper limit 5 [6].

H = IJ	 I ∈ {0,1}	 (21)
H ≤ IL	 0 ≤ J ≤ L	 (22)
H ≤ J	 H ≥ 0	 (23)

H ≥ J − (1 − I)L	 	 (24)
iii. Floor function mathematical definition [7].

I = ⌊J⌋	 I ∈ 2	 (25)
0 ≤ J − I J > 0 (26)
J − 	I ≤ P	 P = 0.999	 (27)

1) Linearization of (8). Based on the discontinuity shown
in (iii), equation (8) can be expressed in a linear way by
means of expressions (28) and (29).

0 ≤
∑)!"

,%
,*+ + 1

> + 1
− S1 − ,!"T	

0 ≠ :
∀0, : ∈ 2	

(28)

∑)!"
,%

,*+ + 1

> + 1
− S1 − ,!"T ≤ 0.999	 	 (29)

2) Linearization of (7). The occupancy of the vehicle on
edge ($, &), given by 6∑ .!"

$%
$&' + 19, can only assume a single

integer value in the interval [1, ! + 1]. It is possible to
leverage this fact to decompose the inverse of the occupancy
expression into a sum. By introducing the binary variable U!"(,
expressions (30) and (31) demonstrate how it can be done.

1

∑)!"
#%

#*+ + 1
= % U!"

1 V
1

W
X

23+

1*+
	

U!"
1 ∈ {0,1}
∀0, : ∈ 2

∀W ∈ 1…> + 1	
(30)

% U!"
1

23+

1*+
= 1	

0 ≠ :	
∀0, : ∈ 2	

(31)

Equation (30) is nonlinear; therefore, we need to find a
way to express it in a linear form. We start by rearranging it to
obtain a sum of products indicated by the equation (32).

%ZU!"
1 [%)!"

#
%

#*+
+ 1\V

1

W
X]

23+

1*+
	= 1	

0 ≠ :	
∀0, : ∈ 2	

(32)

To linearize the new products in (32), the variable <!"(is
introduced in equation (33).

!̂"
1 = U!"

1 [%)!"
#

%

#*+
+ 1\	

∀0, : ∈ 2
∀W ∈ 1…> + 1	

(33)

Equation (32) is rewritten as (34).

% !̂"
1 V

1

W
X

23+

1*+
= 1	

0 ≠ :	
∀0, : ∈ 2	

(34)

Applying (ii) and the car maximum occupancy as upper
limit =!"$ = 6∑ .!"

$%
$&' + 19 ≤ ! + 1, the products of (33) are

now linear as displayed by the expressions (35) to (38):

!̂"
1 ≤ U!"

1(> + 1)	 ∀0, : ∈ 2	 (35)
!̂"
1 ≤ _!"

#	 ∀W ∈ 1…> + 1	 (36)
!̂"
1 ≥ _!"

− (1 − U!"
1)(> + 1)	 	 (37)

!̂"
1 ≥ 0	 	 (38)

Combining 6∑ .!"
$%

$&' + 19 ≥ 1 with (33), it is possible to
replace (38) by (39).

!̂"
1 ≥ U!"

1	 ∀0, : ∈ 2
∀W ∈ 1…> + 1	

(39)

So far, the term '
∑ *!"#$
#%& +' can be correctly expressed by

∑ λ!"
(B

'
(C

,+'
(&' . For the complete linearization of (7), it is

necessary to treat the slightly different expression as follows:
*!"'

∑ *!"#$
#%& +' = .!"

B∑ λ!"
(B

'
(C

,+'
(&' C. Variable D!"# is introduced in

equation (40) for this purpose.

!̀"
, =)!"

, [% U!"
1 V

1

W
X

23+

1*+
\	

∀0, : ∈ 2
∀B ∈ C	

(40)

Observing that (30) implies ∑ λ!"
(B

'
(C

,+'
(&' ≤ 1, it is

possible to apply (ii) to (40) and obtain the linear expressions
(41) to (44).

!̀"
, ≤)!"

, 	 ∀0, : ∈ 2 (41)

!̀"
, ≤ [% U!"

1 V
1

W
X

23+

1*+
\	 ∀B ∈ C	 (42)

!̀"
, ≥ [% U!"

1 V
1

W
X

23+

1*+
\− (1 −)!"

,)	 	 (43)

!̀"
, ≥ 0	 	 (44)

Equation (30) also implies ∑ λ!"
(B

'
(C

,+'
(&' ≥ '

,+', which
provides a way to replace (44) by (45).

!̀"
, ≥

)!"
,

> + 1
	

∀0, : ∈ 2	
∀B ∈ C	

(45)

Finally, (7) can be expressed by (46).

%% !̀"
, &!"

)

"*+
"-!

)

!*+
	− A, ≤ 0	 ∀B ∈ C	 (46)

3) Linearization of (1). First, the variable E!" is
introduced by equation (47). It is possible to obtain its
linearization by applying the same approach used for D!"# ,
which gives expressions (48) to (51).

a!" =
'!"

∑)!"
#%

#*+ + 1
= '!" [% U!"

1 V
1

W
X

23+

1*+
\	 ∀0, : ∈ 2	 (47)

a!" ≤ '!" 	 	 (48)

a!" ≤ [% U!"
1 V

1

W
X

23+

1*+
\	 	 (49)

a!" ≥ [% U!"
1 V

1

W
X

23+

1*+
\− (1 − '!")	 	 (50)

a!" ≥ 0	 	 (51)
Employing an analogous argument to what was used to

obtain (45), restriction (51) can be replaced by (52):

a!" ≥
'!"
> + 1

	 ∀0, : ∈ 2	 (52)

Second, equation (53) defines the binary variable F!". By
applying (i) to linearize it, expressions (54) to (56) are
obtained.

b!" = '!",!" 	 ∀0, : ∈ 2	 (53)
b!" ≤ '!" 	 	 (54)
b!" ≤ ,!" 	 	 (55)

b!" ≥ '!" +,!" − 1	 	 (56)
Ultimately, the objective function (1) is now linear:

min	 % a!"&!" + b!"-!"
!,"	∈	(

	 (57)

In short, the nonlinear constraints were replaced as
follows: equation (8) by expressions (28), (29); expression (7)
by expressions (31), (34) to (37), (39), (41), (42), (43), (45),
(46); and expression (1) by (48), (49), (50), (52), (54) to (57).

III. ALGORITHMS
This section comprises the methods developed to obtain

the heuristic solutions of TSMPHOP, including standardized
auxiliary procedures and metaheuristic algorithms.

A. Auxiliary Procedures
The procedures described in this section deal with aspects

related to neighborhoods and methods used to manipulate
solutions, being common to all algorithms.

1) Neighborhood Structures – Operators. Fig. 1
illustrates the neighborhood structures utilized in the
algorithms presented in this research. The salesman origin,
city	1, is omitted for simplicity, but it is considered to be at
the beginning and the end of each route in the examples.

The change operator exchanges the positions of two cities
in the route. Let H = (I', … , I-.') be a permutation that
represents a route and H′ = 6I! , … , I"9	a substring of H, 1 <
$ < & ≤ M − 1. The insertion operator replaces the substring
H′ by H′′ = 6I!+', … , I" , I!9. The inversion operator reverts
the order of H′′. These operators change the order of the cities
disregarding any quality information of the problem.

Fig. 1. Neighborhood operators.

The change operator exchanges the positions of two cities
in the route. Let H = (I', … , I-.') be a permutation that
represents a route and H′ = 6I! , … , I"9	a substring of H, 1 <
$ < & ≤ M − 1. The insertion operator replaces the substring
H′ by H′′ = 6I!+', … , I" , I!9. The inversion operator reverts the
order of H′′. These operators change the order of the cities of
a route disregarding any quality information of the problem.

The other three operators seek to reduce the total cost of
the route. Let O! be a city in H, 1 < $ < M − 1, the nearest
neighbor operator computes the nearest city from O!, say O",
and swaps O!+' and O". The #embarks operator aims to place
cities that are the pickup point of the highest number of
passengers at the beginning of the route. First, we choose a
city at random and check the number of passengers available
for pickup on it. In the example, this is the city 3, which has
four embarking passengers (indicated by 4e). Then, starting
from the route’s beginning, we search for the first occurrence
of a city with less embarking passengers. This is city 5 in the
example, which has three embarking passengers. Once both
cities are determined, we switch their positions in the route.

Similarly, the #disembarks operator aims to place cities
that are the drop-off point of the highest number of passengers
at the end of the route. The only difference here is that we look
for a second city that has more disembarking passengers than
the first one. In the example, the first one is city 9, which has
one disembarking passenger (symbolized by 1d), and the
second is city 8, which has four disembarking passengers.

2) Passenger Loading procedure. The standard routine to
assign passengers to a defined route, named PL, is semi-
greedy. Since there are no passengers available for pickup in
the first city (the salesman’s origin), we analyze the route
going city by city starting from the second one and
proceeding until the end or until we find a stopping condition.
In each city, we try to load the most passengers into the
vehicle whenever there are empty seats. To optimize the
search for passengers, we only consider viable passengers for
this specific route, i.e., those who have the pickup city being
visited before the drop-off city. This pre-selection
mechanism prevents the undesirable condition of allowing
passengers to board without being capable of providing
transportation until the destination.

To define the order on which passengers will be first
selected for embark, we randomly chose one of three

mechanisms beforehand: P' – every passenger has an equal
probability; P/ – the higher the passenger’s maximum fare,
the higher the probability; or P0 – the larger the number of
cities between passenger’s pickup and drop-off points, the
higher the probability. When we have no free seats or there
are no more passengers to load in a given city, we verify the
budget limit restraint for each passenger on board. If a
passenger paying more than its maximum fare, said passenger
is marked as prohibited, and we have encountered a stopping
condition. In that case, we restart the procedure from the
beginning (second city), but now excluding any marked
passenger. We accept the passenger loading scheme as
successful when we reach the route’s end satisfying all
passenger-related restrictions.

Algorithm 1 shows the pseudocode of the PL, where -∗ is
the set of prohibited passengers; H, the route comprised by
cities I', … , I-; -*, the set of viable passengers for route H; P,
the mechanism that defines the order of passengers we analyze
for embarkation; and .3/$"OIℎRPR, a boolean variable. The
outer loop executes while there is a budget nonconformity. In
every iteration of the outer loop, -* excludes marked
passengers (line 5) and sets the control variable as 2STR. The
algorithm assigns passengers to the vehicle in the inner loop
(line 6) on a per city basis. First, the procedure removes
passengers that drop off at the i-th city (lines 7-8). If there are
empty seats, passengers are picked up in the order defined by
U$SO2(-*, P! , I!) (lines 9-10). Routine 4T"VR2IℎRIW()
checks budget violations for passengers in the vehicle,
updating /∗. Lines 12-15 check if the loop continues to the next
city or if it stops.

3) Optimal Passenger Loading. In order to improve
solution quality, we utilize an exact procedure called RX0Y
in the heuristics. This procedure is a reduced version of the
linearized model. Both of them are solved using Gurobi [8].
Since we have a defined route in this scenario, the model’s
variables (!" and T! become constants. Then, all related
equations and expressions are greatly simplified or even
cease to exist. We also only consider the viable passengers
for the route (as defined in PL). Hence, we have a routine
specially designed to, starting from a previously defined route
and a set of passengers, mathematically determine the
optimal passenger loading scheme. Since this method is
computationally costlier than PL, only a small number of the
generated individuals are submitted to it. In all of the

Algorithm 1 Passenger Loading procedure (PL)
1 C∗ ← ∅; e ← (H+, … , H)); C5 ←)0IJBf(e)
2 W ← gI7&hW(W+, W0, W6);)IB0&iHℎfWf ← kIBif
3 While)IB0&iHℎfWf = kIBif do
4 0 ← 2; B∗ ← 73BB
5 C5 ← C5\C∗;)IB0&iHℎfWf ← Ag3f
6 While 0 ≤ 7 do
7 If (there are passengers to drop off at H!) then
8 &0ifWJIgm()
9 For B ∈ k0giA(C5, W, H!) do
10 If (there are empty seats) then fWJIgm(B)
11 B∗ ← J3&nfAHℎfHm()
12 If B∗ is 73BB then 	0 ← 0 + 1
13 Else
14 0 ← 7 + 1; C∗ ← C∗ ∪ {B∗}
15 &0iHIg&iHℎfWf();)IB0&iHℎfWf ← kIBif

developed heuristics, RX0Y receives the current generation
best individual Z(!- and the current best global solution O∗.
The routine takes O∗ as an upper bound, creates a new solution
with Z(!- route loaded with the optimal scheme, and updates
O∗ if the new solution is better.

4) Initial Population. We produce the starting set of
solutions by running the VRM0[Z procedure, described as
follows. The first element is a route generated by the Lin-
Kernighan heuristic [9] applied to a random cycle. We obtain
the next elements by submitting the original one to random
movements until we have the desired population size. Last,
we apply PL to each generated route to load them.

B. Genetic and Memetic Algorithms
The first algorithm developed is a Genetic Algorithm

(GA). It has the following input parameters: 20[Z – the
number of individuals in the population; V\3(– the
maximum number of generations; S]/$2R – the percentage of
elite solutions; Z!S – the crossover probability; and Z\T2 –
the mutation probability.

We implemented the following mechanisms: Selection,
executed by binary tournament, Crossover, Mutation, and
Elitism. Crossover simulates the reproductive process
according to a pre-defined probability. It ensures that each of
the parent solutions provides genetic material to the
generation of two child solutions, being chosen as the
offspring the best among them. To implement the Crossover
mechanism, we applied the so-called ordinal representation
presented by [9], which is a special representation for
maintaining the feasibility of a population composed of tours.
Once we have the route of both parent solutions converted to
this format, we execute the process by choosing the routes’
half as the crossover point. We obtain two new routes by
interchanging their parents’ halves. Next, we decode the new
routes back to the original representation and assign
passengers to them by applying PL, creating two child
solutions as a result. Last, we select the best between them.
Mutation happens through the application of one randomly
chosen operator from Fig.1 to the offspring according to a pre-
defined probability. Elitism ensures that a percentage of the
best solutions of a given generation always remain in the next
one.

Algorithm 2 illustrates GA’s pseudocode. The initial
population 0 is generated on line 1, and O∗ is initialized in line
2 with the best solution so far, Z(!-. Lines 3-13 denote the
outer loop, which controls the generations’ number. In line 4,
the next population 0′ is initialized with a percentage of the
best individuals from the current population 0. Lines 5-10
contains the inner loop, which creates new individuals in 0′
until we get to the desired population size. Lines 6-7 select a
pair of solutions Z' and Z/ to serve as parents in line 8, which
implements the crossover mechanism to obtain an offspring
Z0. Line 9 executes the mutation process, lastly creating Z2,
which is, in line 10, included in 03. In lines 11 and 12, the
newly formed population becomes current as a preparation for
the start of a new generation. Line 13 tries to improve the
quality of the best solution in the current population by
optimally loading its route through RX0Y and updating the
best global solution if needed. Last, line 14 returns the solution
O∗ as the algorithm’s result.

Being very similar to the GA, the Memetic Algorithm
(MA) simulates the phenotypic manifestation by replacing the
mutation process with a local search procedure named [Z-H.
First, we randomly select one of the operators from Fig.1.
Next, instead of stopping the search for the second city at the
first occurrence (as noted in section III, subsection A.1), we
let the search cover all cities, thus obtaining a local search. We
then accept the best solution generated as the search’s result.
Besides Z\T2, all of GA’s parameters are also present in MA.
The pseudocode of MA is the same of Algorithm 2 except for
line 9, which is replaced by Z2 ← [Z-H(Z0).
Algorithm 2 Genetic Algorithm (GA)
1 F ← nf7Fhp(AFhp)
2 i∗ ← p1!)
3 For 0 ← 1 to nqI' do
4 F′ ← fB0A0iW(F, gsB0Af)
5 While |F′| < AFhp do
6 p+ ← ifBfHA0h7(F)
7 p0 ← ifBfHA0h7(F)
8 p6 ← Hghiih)fg(p+, p0, p>g)
9 p7 ← W3AIA0h7(p6, pq3A)
10 F′ ← F′ ∪ {p7}
11 F ← F′
12 F′ ← ∅
13 fvFw(i∗, p1!))
14 Return i∗

C. Transgenetic Algorithms
The Transgenetic Algorithm (TGA) is an evolutionary

metaheuristic proposed by [11]. It mimics genes horizontal
transfer. The strategy is to apply the transfer of genetic
material between endosymbionts and host. The TGA
operators are plasmids and transposons. They are methods to
explore the solution space. There is a solution repository,
called _`a (Genetic Information Repository), from where the
algorithm gets information (parts of solutions) for the
plasmids. The TGA presented in this study is a variation of the
algorithm for the Prize-collecting Traveling Car Renter
Problem (pCaRS) presented by [12]. The TGA input
parameters are 20[Z – the number of individuals in the
population; 2_`a – population percentage that defines the
number of individuals of _`a; $2\3(– the maximum number
of iterations; and RO2\3(– the maximum number of
evolutionary stages. The plasmid is a method to manipulate
the individuals of the population. It consists of inserting
information, i.e., fragments of other solutions, in the
individuals of P. In this study, the information of the plasmid
comes from a solution stored in _`a. It consists of a set with
the best 2_`a solutions of the current population. The
procedure may occur in a partial or total mode, both being
equiprobable.

Let Z be an individual from 0 having as route b =
(ℎ', … , ℎ-.'). If a plasmid in the partial mode manipulates Z,
we randomly select a donor " from _`a, a fragment size 2 in
the range [2; 0.4N], and the fragment’s starting position W, 1 <
W < M − 2. Suppose " has the route c = (U', … , U-.'). In this
scenario, Z is our host, " is our endosymbiont, and our
fragment $MU[= (U$+', … , U$+4). We start by excluding of b
all the cities present in $MU[, therefore getting	b3 =
(ℎ′', … , ℎ′-.4.') where ℎ′! ≠ U", 1 ≤ $ < M − 2 and W < & ≤
W + 2. Then, we take every possible position for inserting

$MU[as a whole fragment into b3. For example, by inserting
$MU[at the second position we would obtain
(ℎ3', ℎ3/, e5+6, … , e5+7, ℎ30, … , ℎ′-.4.'). Next, each newly
formed route is loaded with passengers by applying PL. Last,
we select the solution with better quality as the procedure
result. For the total mode, the only difference is that we
consider all possible values for W instead of randomly
selecting one just one.

The transposon is also a method to manipulate individuals.
However, it does not use information from the environment:
it simply reorganizes the genetic material contained in the
individual itself. We implemented this process by applying
one randomly chosen operator from Fig.1 to the solution at
hand. There is no local search in this method: it is a one-
movement modification in the solutions’ route that is then
submitted to PL to receive a passenger loading scheme.

When TGA starts, there is a proclivity towards the
Z/3OP$" operator intended to enrich the population with
quality information. As the algorithm reaches its end, such a
trend is gradually reversed in the direction of the 2S3MOZ[O[M
method. We achieve that by updating the integer variables
OYSRM" and SYSRM" at each evolutionary stage. The OYSRM"
value starts small and increases until $2\3(∗ RO2\3(, while
SYSRM" is a randomly chosen number in the range
[1;	$2\3(∗ RO2\3(].
Algorithm 3 Transgenetic Algorithm (TGA)
1 F ← nf7Fhp(AFhp)
2 i∗ ← p1!)
3 For 0 ← 1 to 0AqI' do
4 iwgf7& ← 0 ∗ fiAqI'
5 For : ← 1 to fiAqI' do
6 yz{ ← JfiA(F, Ayz{)
7 For p ∈ F do
8 gwgf7& ← gI7&hW(1, 0AqI' ∗ fiAqI')
9 If gwgf7& > iwgf7&
10 07kh ← ifBfHA0h7(yz{)
11 p ← pBIiW0&(07kh, p)
12 Else
13 p ← AgI7iphih7(p)
14 fvFw(i∗, p1!))
15 Return i∗

Algorithm 3 is described as follows. Lines 1 and 2
initialize the population 0 and the best global solution O∗.
Lines 3-14 comprehends the outer loop that executes the
iterations. Line 4 updates the OYSRM", which is first variable
that controls the proclivity towards the TGA operators. Lines
5-13 compose the middle loop, which implements the
evolutionary stages. Line 6 updates the _`a repository with
the best 2_`a solutions of 0. Lines 7-13 consist of the inner
loop, which alters each individual, hence generating a totally
new population. The second variable for adjusting the
proclivity,	SYSRM", is updated in line 8 and compared to
OYSRM" in the next line. Lines 9-13 decide according to the
trend whether the individual at choice will be modified by
Z/3OP$" or 2S3MOZ[O[M. Similarly to the line 13 of
Algorithm 2, line 14 applies RX0Y to the best solution of the
current population, Z(!-, assigning passengers to it with the
optimal loading scheme and updating the best global O∗ if
necessary. The algorithm concludes its execution in line 14,
where the best global O∗ is returned.

We have designed the Transgenetic Algorithm with Local
Search (TGALS) by modifying TGA to make use of the same
phenotypic manifestation process explained in the description
of the [Z-H procedure. The 2S3MOZ[O[M method is replaced
by the same local search employed in the MA algorithm, thus
obtaining the 2S3MOZ[O[M-H method. The pseudocode of
TGALS is the same as displayed in Algorithm 3 except for
line 13, which is substituted by Z ← 2S3MOZ[O[M-H(Z).`

TGALS’ strategy is to enrich the evolutionary process of
gens’ lateral transmission since the phenotype change also
occurs in this scenario. The parameters list of TGALS is the
same as of TGA.

IV. TEST METHODOLOGY
We created an instance generator to provide means to

carry out comparative investigations between the proposed
algorithms. The source code and generated set are available at
http://www.dimap.ufrn.br/lae/en/projects/TSMPHOP.php.

The dataset contains 120 instances with 10, 20, and 30
cities. The values of the edge costs are in the range [150;250].
The percentage of edges for which there is a toll is in the range
[15;50]. Toll cost, if nonzero, is a percentage, in the range
[70;200], applied to the associated edge cost. Nonzero toll
probability is related to the cost of the associated edge as
follows: (1) cost in range [100;125]: probability in range
[70;90], (2) cost in range [125;150]: probability in range
[50;70], (3) cost in range [150;175]: probability in range
[30;50], and (4) cost in range [175;250]: zero probability. The
lower the cost of edge, the greater the probability of
occurrence of nonzero toll. The vehicle capacity can be 3, 4,
5, or 6. The limit for the value a passenger agrees to pay is a
percentage of the cost of the minimal spanning tree of the
graph. It also relates to vehicle capacity. The percentage range
is [10;25] on instances such that the vehicle capacity is 3. The
percentage range is [10;20] for the remaining instances. The
number of passengers in each city (except for the salesman
origin city, which has zero passengers) is randomly chosen
from one of three ranges: [0;C], [0;2C], and [0;3C],
where C denotes the vehicle capacity.

The type of instance regards the capacity of the vehicle and
symmetry. There are eight types of instances: types 01 to 04
denote asymmetric problems with C values of 3,4, 5, and 6,
respectively, and types 05 to 08 comprise symmetric instances
with those same values for C. We divided the instances into
24 groups based on the number of cities and type. The name
of each instance is a string that shows its group (size and type)
and identifier. For example, the “10-08_02” string is the name
of an instance from group “10-08” (10 cities and type 08) and
whose identifier is 02.

For the computational experiment, there is a training set,
with 24 instances (symmetric and asymmetric instances
whose identifier is 05), and a base set consisting of the
remaining ones (identifiers from 01 to 04).

We tuned the heuristics’ parameters on an experiment
containing only the instances of the training set. We used Irace
[13]. It requires a setting named maxExperiments, which was
set to 103, to limit the number of experiments. Table I exhibits
the input ranges for Irace and the tuning process results.

We carried out two experiments on the base set. We refer
to them as unlimited and limited. In the unlimited experiment,
the stop criterion was the maximum number of iterations
(gMax for the GA and MA, and itMax for the TGA and
TGALS). The stop criterion of the limited experiments was
104 objective function evaluations for each execution of an
algorithm. The purpose of the unlimited experiment was to
enable comparisons between results produced by the solver
and the metaheuristics. We also compared the performances
of the algorithms concerning the results of the first
experiment. The second experiment aimed at comparing the
heuristic algorithms, since all of them received the same
resources, i.e., the same number of evaluations, therefore
mitigating a possible influence of the maximum number of
iterations parameter. In both experiments, there were 30
independent executions of each algorithm for each instance.

TABLE I
PARAMETER TUNING

Algorithm Parameter Range Selected
GA !"# [0.80; 0.99] 0.86
GA !$%& [0.01; 0.05] 0.05
GA &'(! [75; 150] 109
GA)$*+ [100; 200] 180
GA #,-.&/ [0.05; 0.20] 0.08
MA !"# [0.80; 0.99] 0.88
MA &'(! [25; 75] 57
MA)$*+ [25; 75] 69
MA #,-.&/ [0.05; 0.20] 0.12
TGA &'(! [5; 15] 14
TGA .&$*+ [5; 15] 15
TGA /0&$*+ [5; 15] 15
TGA &123 [0.20; 0.40] 0.28

TGALS &'(! [5; 15] 12
TGALS .&$*+ [5; 15] 14
TGALS /0&$*+ [5; 15] 15
TGALS &421 [0.20; 0.40] 0.26

We registered the value of the best solution found by each
heuristic (for each instance), ((!-; the number of instances for
which ((!- ≤ (8, where (8 denotes the solution obtained by
the solver ((8 can be the optimal solution, if the optimizer
could solve the problem before reaching 80,000s, or the best
found solution when the time has expired); and the average
processing time in seconds, Tm, for each heuristic. By
comparing ((!- with (8, it was possible to find (∗, the best
solution found for each instance. We executed the Friedman
aligned ranks test, an advanced version of the Friedman test.
It is a nonparametric statistical test for verifying differences
between more than two samples [14]. We applied this test to
the gap G, presented in equation (58), and the processing time
T, measured in seconds, regarding each instance group.

y =
'1!)
'∗

− 1	 (58)
The significance level was 5%. The null hypothesis was

that there were no significant differences between the datasets
compared. If the statistical test pointed out a significant
difference, we proceeded to the Friedman post-hoc test with
Bergmann and Hommel’s correction for pairwise
comparisons. If the latter test was significant for an instance
group regarding a pair of heuristics, it meant that one of those
algorithms behaved significantly better than the other. The
lowest median value indicated the best performance.

V. COMPUTATIONAL EXPERIMENTS
The Tables in this section summarize the experiments

results. A complete version of these data is available at
http://www.dimap.ufrn.br/lae/en/projects/TSMPHOP.php.

The algorithms were implemented in C++ using the GCC
compiler version 4.8.2 and executed on a server running
CentOS 6.10 with 2 CPUs Intel Xeon E5-2670 @ 2.60GHz
and 128GB of RAM. The solver executed on the same
platform. The statistical tests were implemented in R using
methods from [15]. The linearized mathematical model was
solved by [8]. The execution used 32 parallel threads since the
solver default configuration makes use of all available
processors. For each problem, we gave 80,000s as a runtime
limit for the optimizer to solve it.

The solver found the optimal solution of 32 instances of
size 10 and 19 instances of size 20 from the base set. It did not
find the optimal solution to any problem with 30 cities.

Table II shows the results of unlimited and limited
experiments. The first column shows the name of the
algorithm. The second and third columns show the results of
the unlimited experiment. The other two columns relate to
the limited experiments. The #(((!- ≤ (8) column shows the
number of instances where ((!- reached or bested	(8, a count
related to the 96 instances from the base set. The Avg. Tm (s)
column shows the average processing time (in seconds).

TABLE II
GENERAL RESULTS OF UNLIMITED AND LIMITED EXPERIMENTS

 Unlimited Limited
Algorithm #(+!"# ≤ +$)	 Avg. Tm(s) #(+!"# ≤ +$) Avg. Tm(s)

GA 22 93.1 15 30.7
MA 40 56.1 23 5.9

TGA 39 78.0 25 4.3
TGALS 42 85.0 25 4.6

Table II shows that the TGALS outperformed the other
algorithms regarding the value of the best solution in
the unlimited experiment. The MA presented the best
processing time for the unlimited experiment. However, it
found less best results than TGALS. The TGA and the
TGALS obtained the best results on the limited experiment
concerning solution quality and processing time.

The Friedman Aligned Ranks test pointed out significant
differences for all groups. Tables III-VI summarizes the
analysis by presenting the results of the Friedman post-
hoc test with the Bergmann and Hommel’s correction.
Values exposed in those tables are the number of groups in
which the post-hoc test pointed out significant differences
(null hypothesis refutation). These values indicate the number
of groups in which the algorithm in the line produced
significantly better results than the algorithm shown in the
column. The sixth column shows the sum of the values of each
line. Since there are 24 instance groups and each pair of
algorithms is compared, the maximum number of victories is
72, i.e., the value in the Total column can be, at most, 72.

Tables III and IV show the results concerning solution
quality, i.e., the value of G, for the unlimited and limited
experiments, respectively. These tables show that the TGALS
exhibited significantly superior results in comparison to the
other algorithms proposed with TGA being the second best.

Tables V and VI show the results concerning processing
time for the unlimited and limited experiments, respectively.
Tests regarding the T metric revealed that the MA spent less
processing time followed by the GA in the unlimited
experiments. In the limited experiment, the TGA performed
better than the others, followed by the TGALS.

TABLE III
STATISTICAL ANALYSIS: G – UNLIMITED EXPERIMENT

 GA MA TGA TGALS Total
GA - 0 0 0 0
MA 24 - 0 0 24

TGA 24 18 - 0 42
TGALS 24 21 14 - 59

TABLE IV
STATISTICAL ANALYSIS: G – LIMITED EXPERIMENT

 GA MA TGA TGALS Total
GA - 0 0 0 0
MA 24 - 0 0 24

TGA 24 11 - 0 35
TGALS 24 13 2 - 39

TABLE V
STATISTICAL ANALYSIS: T – UNLIMITED EXPERIMENT

 GA MA TGA TGALS Total
GA - 0 10 12 22
MA 20 - 24 24 68

TGA 10 0 - 6 16
TGALS 8 0 3 - 11

TABLE VI
STATISTICAL ANALYSIS: T – LIMITED EXPERIMENT

 GA MA TGA TGALS Total
GA - 0 0 0 0
MA 24 - 1 0 25

TGA 24 22 - 2 48
TGALS 24 20 0 - 44

Results from the unlimited experiment indicated that
algorithms based on the Transgenetic approach were capable
of finding solutions with the better overall quality. Memetic
and classic Genetic metaheuristics presented better
performance considering processing times. In this unlimited
scenario, the influence of the selected parameters’ values
tends to be higher since each heuristic has its particular
stopping condition. By limiting the number of objective
function evaluations, we set a common stop condition to
reduce this effect. The limited experiment has demonstrated
the prevalence of TGALS and TGA heuristics towards both
solutions’ quality and runtimes.

VI. CONCLUSION
As a new combinatorial optimization problem that directly

addresses real-world aspects, TSMPHOP presents a set of
attributes that place it in a prominent position regarding its
applicability and solution complexity. The simple search for
lower-cost cycles or routes where the vehicle is always at
maximum occupancy are both ineffective in solving the
problem, which requires carefully designed strategies to
combine route and passenger loading aspects intelligently.

This paper presented the mathematical model for the
TSMPHOP, which was entirely linearized and then
implemented in a MIP optimizer [8]. Artificial instances were
created to validate the performance of algorithms. Despite the

solver being able to solver nonlinear constraints, we chose to
work with the linear version of the model in hope to make it
easier for the optimizer to find solutions within the time limit.

Four heuristics were developed: GA – a classic based on
the vertical transfer of genetic material between parents and
offspring; MA – that considers, besides the vertical transfer of
genes, the interactions that occur between individuals of the
same generation, also modifying the individuals’ phenotype;
TGA – an algorithm that mimics horizontal gene transfer
between endosymbiont and host; and TGALS – an algorithm
that adds phenotypic interactions to horizontal gene transfer.

To measure the performance of the developed algorithms,
a computational experiment was carried out and its results
were compared in light of statistical tools. TGALS was the
algorithm that presented the best performance, demonstrating
the effectiveness of the union between Memetic and
Computational Transgenetic metaheuristic approaches for
solving the TSMPHOP instances.

REFERENCES
[1] I. I. Melamed, S. I. Sergeev, and I. K. Sigal, “The traveling salesman

problem,” Automation and Remote Control, vol. 50, no. 9, pp. 1147-
1173, 1989.

[2] M. R. Garey and D. S. Jonhson, Computers and Intractability: A Guide
to the Theory of NP-completeness. New York: WH Freeman, 1979.

[3] R. M. Karp, “On the computational complexity of combinatorial
problems,” Networks, vol. 5, no. 1, pp. 45-68, 1975.

[4] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” Journal of the ACM, vol.
7, no. 4, pp. 326-329, 1960.

[5] F. Glover and E. Woolsey, “Converting the 0-1 polynomial
programming problem to a 0-1 linear program,” Operations Research,
vol. 22, no. 1, pp. 180-182, 1974.

[6] D. S. Chen, R.G. Batson, and Y. Dang, Applied Integer Programming.
Hoboken, NJ: Wiley, 2010.

[7] D. E. Knuth, The Art of Computer Programming: Fundamental
Algorithms. Redwood City, CA: Addison-Wesley, 1997.

[8] Gurobi Optimization LLC. Gurobi Optimizer Reference Manual
v7.5.2. (2018). [Online]. Available: http://www.gurobi.com

[9] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp.
498-516, 1973.

[10] Z. MICHALEWICZ, “Heuristics methods for evolutionary
computation techniques,” Journal of Heuristics, vol. 1, no. 2, pp. 177-
206, 1996.

[11] E. F. G. Goldbarg and M. C. Goldbarg, “Transgenetic algorithm: a new
endosymbiotic approach for evolutionary algorithms,” Foundations of
Computational Intelligence, vol. 3, pp. 425-460, 2009.

[12] M. S. Menezes, “Prize collecting traveling car renter problem: an
algorithm study,” Ph.D. dissertation, Universidade Federal do Rio
Grande do Norte, Natal, Brazil, 2014. [Online]. Available:
https://repositorio.ufrn.br/jspui/handle/123456789/18693

[13] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43-58,
2016.

[14] J. Derrac, S. García, D. Molina, and F. HERRERA, “A practical
tutorial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms,”
Swarm and Evolutionary Computation, vol. 1, no.1, pp. 3-18, 2011.

[15] B. CALVO and G. SANTAFÉ, “scmamp: statistical comparison of
multiple algorithms in multiple problems,” The R Journal, vol. 8/1,
2016.

