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Abstract—As a generalization of the Travelling Salesman 
Problem, the Travelling Salesman with Multiple Passengers and 
High Occupancy Problem considers real-world aspects with 
environmental implications. This paper presents a set of 
features concerning the study of this new optimization problem, 
including a mixed-integer programming model and its 
linearization, a group of artificial instances, and four heuristics 
based on the Genetic, Memetic, and Transgenetic 
metaheuristics. The instances are submitted to Gurobi solver to 
establish a benchmark. Heuristics’ parameters are tuned using 
the Irace tool and later compared through a computational 
experiment. A statistical analysis based on Friedman tests 
pointed to a superior performance of TGALS. 

Keywords—Ridesharing, vehicle routing, metaheuristics. 

I. INTRODUCTION 

The Travelling Salesman with Multiple Passengers and 
High Occupancy Problem (TSMPHOP) is an extension of the 
Traveling Salesman Problem (TSP).  The latter is one of the 
most traditional and well-known mathematical programming 
problems [1]. TSP’s objective is to find the lowest cost route 
that travels across a given set of cities. The TSMPHOP 
leverages this scenario and adds some real-world aspects to it: 
cities are visited by the salesman’s vehicle, which has seats 
available; the salesman offers rides to passengers along the 
TSP route to share expenses; roads connect cities, and some 
of them are toll roads; tolls are said to be of the High-
Occupancy type since vehicles are exempt from paying the 
fare if they have no seats available; when charged, toll’s 
expenses are not shared: they are entirely paid by the 
salesman; lastly: shared costs are equally divided between the 
salesman and all riding passengers on their respective paths. 
TSMPHOP’s objective is to find the Hamiltonian cycle with 
the lowest cost, which is defined by the sum of expenses paid 
by the salesman along the route. We also consider that there 
are no passengers available for pickup at the salesman origin 
since routes always start at it. Besides the aforementioned 
aspects, there are also passenger-related restrictions. The first 
one is that each of them has specific pickup and drop-off 

cities. The second is that the share of expenses due to a 
passenger is subject to his budget limit. Those restrictions are 
mandatory; all passengers’ transportation must be done in 
conditions that respect them. 

It should be noted that the collaborative bias in the 
problem is remarkable since the salesman has the incentive to 
share his means and thus decrease the overall cost by 
providing transport to third party individuals. To present the 
definition of TSMPHOP, Section II contains the mathematical 
formulation and the linearization of the nonlinear expressions 
involved. The linearized model’s implementation comprises 
the exact solving method. Section III introduces four 
algorithms designed to heuristically solve the problem, which 
are based on the Genetic, Memetic, and Transgenetic 
metaheuristics. To demonstrate the generation of 
TSMPHOP’s artificial instances and the test methodology 
adopted in this paper, Section IV follows. Computational 
experiments’ results are discussed in Section V, while Section 
VI conveys conclusions of the work. 

II. TSMPHOP 

Since the TSP is a particular case of the TSMPHOP, the 
latter belongs to NP-hard [2] [3]. TSMPHOP is a model that 
includes routing and ride-sharing problems. It belongs to the 
class of green transportation problems since it can produce 
results that benefit environmental preservation. 

The TSMPHOP consists of finding a Hamiltonian cycle in 
a complete and nondirectional graph ! and the list of 
passengers whose transport requests are satisfied throughout 
the route. Restrictions shall ensure the conditions required by 
the passengers, such as pickup and drop-off points and budget 
limits, are successfully met. The vehicle capacity also has to 
be respected. The vehicle has " seats available to passengers. 
The expenses for going from a city to another are composed 
by the inherent edge cost, such as fuel and vehicle 
maintenance, and the toll cost, which may or may not exist. 
When there is a toll occurrence in a given edge, such an edge 
is from now on called a hov edge (from high-occupancy 
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vehicle lane). The toll fare is closely related to the vehicle 
occupation: it is only charged to the salesman if it is not full 
in its maximum occupation !. If all seats are occupied, the 
vehicle is exempt, and the toll fare is zero. 

The object is to minimize (1), where "!" denotes the cost 
of edge ($, &); (!" is a binary variable equal to 1 if the edge 
($, &) belongs to the Hamiltonian cycle and 0 otherwise; +!" is 
a binary variable with value 0 whenever the vehicle passes by 
($, &) with maximum occupancy and value 1 otherwise; ,!" is 
the cost of the toll associated with the edge ($, &), which is 
nonzero for hov edges and zero otherwise. - is the set of 
people demanding transportation; .!"#  is a binary variable 
equal to 1 if passenger / is in the vehicle in edge ($, &) and 0 
otherwise. 0# is the pickup point of passenger /. 1# is the drop-
off point of passenger l. The first term in the objective function 
accomplishes the division of expenses between the salesman 
and the car occupants. The second term ensures maximum 
incentive for the salesman to share its means since the toll fare 
is not shared with the passengers but can be zero if all seats 
are occupied. 
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Equations (2) and (3) ensure that all cities are visited once. 

Expressions (4) and (5) prevent subcycles, which came from 
the MTZ formulation for the TSP [4]. Constraint (5) ensures 

that each city has a unique associated visit order. Constraint 
(6) requires that at most ! passengers are boarded on any edge 
of the route. Constraint (7) ensures that each passenger pays, 
at most, the maximum rate agreed, 2#. Equation (8) models the 
toll exemption, making the toll rate ,!" to be charged to the 
salesman whenever there are unoccupied seats in the vehicle 
and edge ($, &) is part of the cycle. Equation (9) ensures that 
embarked passengers are always disembarked.  Constraint 
(10) ensures that passenger l is not in the vehicle on an edge 
that arrives at 0# or leaves 1#. Equation (11) ensures that no 
passenger that arrives at the salesman origin city continues in 
the route. Constraint (12) ensures that no passenger is in the 
vehicle on an edge that is not in the cycle. Constraints (13) to 
(16) define the decision variables’ domains. 

A. Linearization 
Expressions (1), (7), and (8) are nonlinear. The 

linearization of such is based on the following mathematical 
formulas. 

i. Product between binary variables 3 and 4 [5]. 

H = IJ	 I, J, H ∈ {0,1}	 (17) 
H ≤ I	 	 (18) 
H ≤ J	 	 (19) 

H ≥ I + J − 1	 	 (20) 
ii. Product between binary variable 3 and continuous 

positive variable 4 with constant upper limit 5 [6]. 

H = IJ	 I ∈ {0,1}	 (21) 
H ≤ IL	 0 ≤ J ≤ L	 (22) 
H ≤ J	 H ≥ 0	 (23) 

H ≥ J − (1 − I)L	 	 (24) 
iii. Floor function mathematical definition [7]. 

I = ⌊J⌋	 I ∈ 2	 (25) 
0 ≤ J − I J > 0 (26) 
J − 	I ≤ P	 P = 0.999	 (27) 

1) Linearization of (8). Based on the discontinuity shown 
in (iii), equation (8) can be expressed in a linear way by 
means of expressions (28) and (29). 
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2) Linearization of (7). The occupancy of the vehicle on 
edge ($, &), given by 6∑ .!"

$%
$&' + 19, can only assume a single 

integer value in the interval [1, ! + 1]. It is possible to 
leverage this fact to decompose the inverse of the occupancy 
expression into a sum. By introducing the binary variable U!"(, 
expressions (30) and (31) demonstrate how it can be done. 
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Equation (30) is nonlinear; therefore, we need to find a 
way to express it in a linear form. We start by rearranging it to 
obtain a sum of products indicated by the equation (32). 
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To linearize the new products in (32), the variable <!"( is 
introduced in equation (33). 
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Equation (32) is rewritten as (34). 
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Applying (ii) and the car maximum occupancy as upper 
limit =!"$ = 6∑ .!"

$%
$&' + 19 ≤ ! + 1, the products of (33) are 

now linear as displayed by the expressions (35) to (38):  
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Combining 6∑ .!"
$%

$&' + 19 ≥ 1 with (33), it is possible to 
replace (38) by (39). 
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Observing that (30) implies ∑ λ!"
( B

'
(C
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(&' ≤ 1, it is 

possible to apply (ii) to (40) and obtain the linear expressions 
(41) to (44). 
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provides a way to replace (44) by (45). 
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Finally, (7) can be expressed by (46). 
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3) Linearization of (1). First, the variable E!" is 
introduced by equation (47). It is possible to obtain its 
linearization by applying the same approach used for D!"# , 
which gives expressions (48) to (51). 
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Employing an analogous argument to what was used to 

obtain (45), restriction (51) can be replaced by (52): 

a!" ≥
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	 ∀0, : ∈ 2	 (52) 

Second, equation (53) defines the binary variable F!". By 
applying (i) to linearize it, expressions (54) to (56) are 
obtained. 

b!" = '!",!" 	 ∀0, : ∈ 2	 (53) 
b!" ≤ '!" 	 	 (54) 
b!" ≤ ,!" 	 	 (55) 

b!" ≥ '!" +,!" − 1	 	 (56) 
Ultimately, the objective function (1) is now linear: 

min	 % a!"&!" + b!"-!"
!,"	∈	(

	 (57) 

In short, the nonlinear constraints were replaced as 
follows: equation (8) by expressions (28), (29); expression (7) 
by expressions (31), (34) to (37), (39), (41), (42), (43), (45), 
(46); and expression (1) by (48), (49), (50), (52), (54) to (57). 

III. ALGORITHMS 
This section comprises the methods developed to obtain 

the heuristic solutions of TSMPHOP, including standardized 
auxiliary procedures and metaheuristic algorithms. 

A. Auxiliary Procedures 
The procedures described in this section deal with aspects 

related to neighborhoods and methods used to manipulate 
solutions, being common to all algorithms. 

1) Neighborhood Structures – Operators. Fig. 1 
illustrates the neighborhood structures utilized in the 
algorithms presented in this research. The salesman origin, 
city	1, is omitted for simplicity, but it is considered to be at 
the beginning and the end of each route in the examples. 

The change operator exchanges the positions of two cities 
in the route. Let H = (I', … , I-.') be a permutation that 
represents a route and H′ = 6I! , … , I"9	a substring of H, 1 <
$ < & ≤ M − 1. The insertion operator replaces the substring 
H′ by H′′ = 6I!+', … , I" , I!9. The inversion operator reverts 
the order of H′′.  These operators change the order of the cities 
disregarding any quality information of the problem. 



Fig. 1. Neighborhood operators. 

The change operator exchanges the positions of two cities 
in the route. Let H = (I', … , I-.') be a permutation that 
represents a route and H′ = 6I! , … , I"9	a substring of H, 1 <
$ < & ≤ M − 1. The insertion operator replaces the substring 
H′ by H′′ = 6I!+', … , I" , I!9. The inversion operator reverts the 
order of H′′.  These operators change the order of the cities of 
a route disregarding any quality information of the problem. 

The other three operators seek to reduce the total cost of 
the route. Let O! be a city in H, 1 < $ < M − 1, the nearest 
neighbor operator computes the nearest city from O!, say O", 
and swaps O!+' and O". The #embarks operator aims to place 
cities that are the pickup point of the highest number of 
passengers at the beginning of the route. First, we choose a 
city at random and check the number of passengers available 
for pickup on it. In the example, this is the city 3, which has 
four embarking passengers (indicated by 4e). Then, starting 
from the route’s beginning, we search for the first occurrence 
of a city with less embarking passengers. This is city 5 in the 
example, which has three embarking passengers. Once both 
cities are determined, we switch their positions in the route. 

Similarly, the #disembarks operator aims to place cities 
that are the drop-off point of the highest number of passengers 
at the end of the route. The only difference here is that we look 
for a second city that has more disembarking passengers than 
the first one. In the example, the first one is city 9, which has 
one disembarking passenger (symbolized by 1d), and the 
second is city 8, which has four disembarking passengers. 

2) Passenger Loading procedure. The standard routine to 
assign passengers to a defined route, named PL, is semi-
greedy. Since there are no passengers available for pickup in 
the first city (the salesman’s origin), we analyze the route 
going city by city starting from the second one and 
proceeding until the end or until we find a stopping condition. 
In each city, we try to load the most passengers into the 
vehicle whenever there are empty seats. To optimize the 
search for passengers, we only consider viable passengers for 
this specific route, i.e., those who have the pickup city being 
visited before the drop-off city. This pre-selection 
mechanism prevents the undesirable condition of allowing 
passengers to board without being capable of providing 
transportation until the destination. 

To define the order on which passengers will be first 
selected for embark, we randomly chose one of three 

mechanisms beforehand: P' – every passenger has an equal 
probability; P/ – the higher the passenger’s maximum fare, 
the higher the probability; or P0 – the larger the number of 
cities between passenger’s pickup and drop-off points, the 
higher the probability. When we have no free seats or there 
are no more passengers to load in a given city, we verify the 
budget limit restraint for each passenger on board. If a 
passenger paying more than its maximum fare, said passenger 
is marked as prohibited, and we have encountered a stopping 
condition. In that case, we restart the procedure from the 
beginning (second city), but now excluding any marked 
passenger. We accept the passenger loading scheme as 
successful when we reach the route’s end satisfying all 
passenger-related restrictions. 

Algorithm 1 shows the pseudocode of the PL, where -∗ is 
the set of prohibited passengers; H, the route comprised by 
cities I', … , I-; -*, the set of viable passengers for route H; P, 
the mechanism that defines the order of passengers we analyze 
for embarkation; and .3/$"OIℎRPR, a boolean variable. The 
outer loop executes while there is a budget nonconformity. In 
every iteration of the outer loop, -* excludes marked 
passengers (line 5) and sets the control variable as 2STR. The 
algorithm assigns passengers to the vehicle in the inner loop 
(line 6) on a per city basis. First, the procedure removes 
passengers that drop off at the i-th city (lines 7-8).  If there are 
empty seats, passengers are picked up in the order defined by 
U$SO2(-*, P! , I!) (lines 9-10). Routine 4T"VR2IℎRIW() 
checks budget violations for passengers in the vehicle, 
updating /∗. Lines 12-15 check if the loop continues to the next 
city or if it stops. 

 

3) Optimal Passenger Loading. In order to improve 
solution quality, we utilize an exact procedure called RX0Y 
in the heuristics. This procedure is a reduced version of the 
linearized model. Both of them are solved using Gurobi [8]. 
Since we have a defined route in this scenario, the model’s 
variables (!" and T! become constants. Then, all related 
equations and expressions are greatly simplified or even 
cease to exist. We also only consider the viable passengers 
for the route (as defined in PL). Hence, we have a routine 
specially designed to, starting from a previously defined route 
and a set of passengers, mathematically determine the 
optimal passenger loading scheme. Since this method is 
computationally costlier than PL, only a small number of the 
generated individuals are submitted to it. In all of the 

Algorithm 1 Passenger Loading procedure (PL) 
1 C∗ ← ∅; e ← (H+, … , H)); C5 ← )0IJBf(e) 
2 W ← gI7&hW(W+, W0, W6); )IB0&iHℎfWf ← kIBif 
3 While )IB0&iHℎfWf = kIBif do 
4        0 ← 2;  B∗ ← 73BB 
5        C5 ← C5\C∗; 	)IB0&iHℎfWf ← Ag3f 
6        While 0 ≤ 7 do 
7               If (there are passengers to drop off at H!) then 
8                      &0ifWJIgm() 
9               For B ∈ k0giA(C5, W, H!) do 
10                      If (there are empty seats) then fWJIgm(B) 
11               B∗ ← J3&nfAHℎfHm() 
12               If B∗ is 73BB then 	0 ← 0 + 1 
13               Else 
14                      0 ← 7 + 1; C∗ ← C∗ ∪ {B∗} 
15                      &0iHIg&iHℎfWf();	)IB0&iHℎfWf ← kIBif                         

 



developed heuristics, RX0Y receives the current generation 
best individual Z(!- and the current best global solution O∗. 
The routine takes O∗ as an upper bound, creates a new solution 
with Z(!- route loaded with the optimal scheme, and updates 
O∗ if the new solution is better. 

4) Initial Population. We produce the starting set of 
solutions by running the VRM0[Z procedure, described as 
follows. The first element is a route generated by the Lin-
Kernighan heuristic [9] applied to a random cycle. We obtain 
the next elements by submitting the original one to random 
movements until we have the desired population size. Last, 
we apply PL to each generated route to load them. 

B. Genetic and Memetic Algorithms 
The first algorithm developed is a Genetic Algorithm 

(GA). It has the following input parameters: 20[Z – the 
number of individuals in the population; V\3( – the 
maximum number of generations; S]/$2R – the percentage of 
elite solutions; Z!S – the crossover probability; and Z\T2 – 
the mutation probability.  

We implemented the following mechanisms: Selection, 
executed by binary tournament, Crossover, Mutation, and 
Elitism. Crossover simulates the reproductive process 
according to a pre-defined probability. It ensures that each of 
the parent solutions provides genetic material to the 
generation of two child solutions, being chosen as the 
offspring the best among them. To implement the Crossover 
mechanism, we applied the so-called ordinal representation 
presented by [9], which is a special representation for 
maintaining the feasibility of a population composed of tours. 
Once we have the route of both parent solutions converted to 
this format, we execute the process by choosing the routes’ 
half as the crossover point. We obtain two new routes by 
interchanging their parents’ halves. Next, we decode the new 
routes back to the original representation and assign 
passengers to them by applying PL, creating two child 
solutions as a result. Last, we select the best between them. 
Mutation happens through the application of one randomly 
chosen operator from Fig.1 to the offspring according to a pre-
defined probability. Elitism ensures that a percentage of the 
best solutions of a given generation always remain in the next 
one. 

Algorithm 2 illustrates GA’s pseudocode. The initial 
population 0 is generated on line 1, and O∗ is initialized in line 
2 with the best solution so far, Z(!-. Lines 3-13 denote the 
outer loop, which controls the generations’ number. In line 4, 
the next population 0′ is initialized with a percentage of the 
best individuals from the current population 0. Lines 5-10 
contains the inner loop, which creates new individuals in 0′ 
until we get to the desired population size. Lines 6-7 select a 
pair of solutions Z' and Z/ to serve as parents in line 8, which 
implements the crossover mechanism to obtain an offspring 
Z0. Line 9 executes the mutation process, lastly creating Z2, 
which is, in line 10, included in 03. In lines 11 and 12, the 
newly formed population becomes current as a preparation for 
the start of a new generation. Line 13 tries to improve the 
quality of the best solution in the current population by 
optimally loading its route through RX0Y and updating the 
best global solution if needed. Last, line 14 returns the solution 
O∗ as the algorithm’s result. 

Being very similar to the GA, the Memetic Algorithm 
(MA) simulates the phenotypic manifestation by replacing the 
mutation process with a local search procedure named [Z-H. 
First, we randomly select one of the operators from Fig.1. 
Next, instead of stopping the search for the second city at the 
first occurrence (as noted in section III, subsection A.1), we 
let the search cover all cities, thus obtaining a local search. We 
then accept the best solution generated as the search’s result. 
Besides Z\T2, all of GA’s parameters are also present in MA. 
The pseudocode of MA is the same of Algorithm 2 except for 
line 9, which is replaced by Z2 ← [Z-H(Z0). 
Algorithm 2 Genetic Algorithm (GA) 
1 F ← nf7Fhp(AFhp) 
2 i∗ ← p1!) 
3 For 0 ← 1 to nqI' do 
4         F′ ← fB0A0iW(F, gsB0Af) 
5         While |F′| < AFhp do 
6                 p+ ← ifBfHA0h7(F) 
7                 p0 ← ifBfHA0h7(F) 
8                 p6 ← Hghiih)fg(p+, p0, p>g) 
9                 p7 ← W3AIA0h7(p6, pq3A) 
10                 F′ ← F′ ∪ {p7} 
11         F ← F′ 
12         F′ ← ∅ 
13         fvFw(i∗, p1!)) 
14 Return i∗ 

C. Transgenetic Algorithms 
The Transgenetic Algorithm (TGA) is an evolutionary 

metaheuristic proposed by [11]. It mimics genes horizontal 
transfer. The strategy is to apply the transfer of genetic 
material between endosymbionts and host. The TGA 
operators are plasmids and transposons. They are methods to 
explore the solution space. There is a solution repository, 
called _`a (Genetic Information Repository), from where the 
algorithm gets information (parts of solutions) for the 
plasmids. The TGA presented in this study is a variation of the 
algorithm for the Prize-collecting Traveling Car Renter 
Problem (pCaRS) presented by [12]. The TGA input 
parameters are 20[Z – the number of individuals in the 
population; 2_`a – population percentage that defines the 
number of individuals of _`a; $2\3( – the maximum number 
of iterations; and RO2\3( – the maximum number of 
evolutionary stages. The plasmid is a method to manipulate 
the individuals of the population. It consists of inserting 
information, i.e., fragments of other solutions, in the 
individuals of P. In this study, the information of the plasmid 
comes from a solution stored in _`a. It consists of a set with 
the best 2_`a solutions of the current population. The 
procedure may occur in a partial or total mode, both being 
equiprobable.  

Let Z be an individual from 0 having as route b =
(ℎ', … , ℎ-.'). If a plasmid in the partial mode manipulates Z, 
we randomly select a donor " from _`a, a fragment size 2 in 
the range [2; 0.4N], and the fragment’s starting position W, 1 <
W < M − 2. Suppose " has the route c = (U', … , U-.'). In this 
scenario, Z is our host, " is our endosymbiont, and our 
fragment $MU[ = (U$+', … , U$+4). We start by excluding of b 
all the cities present in $MU[, therefore getting	b3 =
(ℎ′', … , ℎ′-.4.') where ℎ′! ≠ U", 1 ≤ $ < M − 2 and W < & ≤
W + 2. Then, we take every possible position for inserting 



$MU[ as a whole fragment into b3. For example, by inserting 
$MU[ at the second position we would obtain 
(ℎ3', ℎ3/, e5+6, … , e5+7, ℎ30, … , ℎ′-.4.'). Next, each newly 
formed route is loaded with passengers by applying PL. Last, 
we select the solution with better quality as the procedure 
result. For the total mode, the only difference is that we 
consider all possible values for W instead of randomly 
selecting one just one. 

The transposon is also a method to manipulate individuals. 
However, it does not use information from the environment: 
it simply reorganizes the genetic material contained in the 
individual itself. We implemented this process by applying 
one randomly chosen operator from Fig.1 to the solution at 
hand. There is no local search in this method: it is a one-
movement modification in the solutions’ route that is then 
submitted to PL to receive a passenger loading scheme. 

When TGA starts, there is a proclivity towards the 
Z/3OP$" operator intended to enrich the population with 
quality information. As the algorithm reaches its end, such a 
trend is gradually reversed in the direction of the 2S3MOZ[O[M 
method. We achieve that by updating the integer variables 
OYSRM" and SYSRM" at each evolutionary stage. The OYSRM" 
value starts small and increases until $2\3( ∗ RO2\3(, while 
SYSRM" is a randomly chosen number in the range 
[1;	$2\3( ∗ RO2\3(]. 
Algorithm 3 Transgenetic Algorithm (TGA) 
1 F ← nf7Fhp(AFhp) 
2 i∗ ← p1!) 
3 For 0 ← 1 to 0AqI' do 
4         iwgf7& ← 0 ∗ fiAqI' 
5         For : ← 1 to fiAqI' do 
6                 yz{ ← JfiA(F, Ayz{) 
7                 For p ∈ F do 
8                         gwgf7& ← gI7&hW(1, 0AqI' ∗ fiAqI') 
9                         If gwgf7& > iwgf7& 
10                                 07kh ← ifBfHA0h7(yz{) 
11                                 p ← pBIiW0&(07kh, p) 
12                         Else 
13                                 p ← AgI7iphih7(p) 
14         fvFw(i∗, p1!)) 
15 Return i∗ 

 

Algorithm 3 is described as follows. Lines 1 and 2 
initialize the population 0 and the best global solution O∗. 
Lines 3-14 comprehends the outer loop that executes the 
iterations. Line 4 updates the OYSRM", which is first variable 
that controls the proclivity towards the TGA operators. Lines 
5-13 compose the middle loop, which implements the 
evolutionary stages. Line 6 updates the _`a repository with 
the best 2_`a solutions of 0. Lines 7-13 consist of the inner 
loop, which alters each individual, hence generating a totally 
new population. The second variable for adjusting the 
proclivity,	SYSRM", is updated in line 8 and compared to 
OYSRM" in the next line. Lines 9-13 decide according to the 
trend whether the individual at choice will be modified by 
Z/3OP$" or 2S3MOZ[O[M. Similarly to the line 13 of 
Algorithm 2, line 14 applies RX0Y to the best solution of the 
current population, Z(!-, assigning passengers to it with the 
optimal loading scheme and updating the best global O∗ if 
necessary. The algorithm concludes its execution in line 14, 
where the best global O∗ is returned.  

We have designed the Transgenetic Algorithm with Local 
Search (TGALS) by modifying TGA to make use of the same 
phenotypic manifestation process explained in the description 
of the [Z-H procedure. The 2S3MOZ[O[M method is replaced 
by the same local search employed in the MA algorithm, thus 
obtaining the 2S3MOZ[O[M-H method. The pseudocode of 
TGALS is the same as displayed in Algorithm 3 except for 
line 13, which is substituted by Z ← 2S3MOZ[O[M-H(Z).` 

TGALS’ strategy is to enrich the evolutionary process of 
gens’ lateral transmission since the phenotype change also 
occurs in this scenario. The parameters list of TGALS is the 
same as of TGA. 

IV. TEST METHODOLOGY 
We created an instance generator to provide means to 

carry out comparative investigations between the proposed 
algorithms. The source code and generated set are available at 
http://www.dimap.ufrn.br/lae/en/projects/TSMPHOP.php.  

The dataset contains 120 instances with 10, 20, and 30 
cities. The values of the edge costs are in the range [150;250]. 
The percentage of edges for which there is a toll is in the range 
[15;50]. Toll cost, if nonzero, is a percentage, in the range 
[70;200], applied to the associated edge cost. Nonzero toll 
probability is related to the cost of the associated edge as 
follows: (1) cost in range [100;125]: probability in range 
[70;90], (2) cost in range [125;150]: probability in range 
[50;70], (3) cost in range [150;175]: probability in range 
[30;50], and (4) cost in range [175;250]: zero probability. The 
lower the cost of edge, the greater the probability of 
occurrence of nonzero toll. The vehicle capacity can be 3, 4, 
5, or 6. The limit for the value a passenger agrees to pay is a 
percentage of the cost of the minimal spanning tree of the 
graph. It also relates to vehicle capacity. The percentage range 
is [10;25] on instances such that the vehicle capacity is 3. The 
percentage range is [10;20] for the remaining instances. The 
number of passengers in each city (except for the salesman 
origin city, which has zero passengers) is randomly chosen 
from one of three ranges: [0;C], [0;2C], and [0;3C], 
where C denotes the vehicle capacity. 

The type of instance regards the capacity of the vehicle and 
symmetry. There are eight types of instances: types 01 to 04 
denote asymmetric problems with C values of 3,4, 5, and 6, 
respectively, and types 05 to 08 comprise symmetric instances 
with those same values for C. We divided the instances into 
24 groups based on the number of cities and type. The name 
of each instance is a string that shows its group (size and type) 
and identifier. For example, the “10-08_02” string is the name 
of an instance from group “10-08” (10 cities and type 08) and 
whose identifier is 02. 

For the computational experiment, there is a training set, 
with 24 instances (symmetric and asymmetric instances 
whose identifier is 05), and a base set consisting of the 
remaining ones (identifiers from 01 to 04). 

We tuned the heuristics’ parameters on an experiment 
containing only the instances of the training set. We used Irace 
[13]. It requires a setting named maxExperiments, which was 
set to 103, to limit the number of experiments. Table I exhibits 
the input ranges for Irace and the tuning process results. 



We carried out two experiments on the base set. We refer 
to them as unlimited and limited. In the unlimited experiment, 
the stop criterion was the maximum number of iterations 
(gMax for the GA and MA, and itMax for the TGA and 
TGALS). The stop criterion of the limited experiments was 
104 objective function evaluations for each execution of an 
algorithm. The purpose of the unlimited experiment was to 
enable comparisons between results produced by the solver 
and the metaheuristics. We also compared the performances 
of the algorithms concerning the results of the first 
experiment. The second experiment aimed at comparing the 
heuristic algorithms, since all of them received the same 
resources, i.e., the same number of evaluations, therefore 
mitigating a possible influence of the maximum number of 
iterations parameter. In both experiments, there were 30 
independent executions of each algorithm for each instance. 

TABLE I 
PARAMETER TUNING 

Algorithm Parameter Range Selected 
GA !"# [0.80; 0.99] 0.86 
GA !$%& [0.01; 0.05] 0.05 
GA &'(! [75; 150] 109 
GA )$*+ [100; 200] 180 
GA #,-.&/ [0.05; 0.20] 0.08 
MA !"# [0.80; 0.99] 0.88 
MA &'(! [25; 75] 57 
MA )$*+ [25; 75] 69 
MA #,-.&/ [0.05; 0.20] 0.12 
TGA &'(! [5; 15] 14 
TGA .&$*+ [5; 15] 15 
TGA /0&$*+ [5; 15] 15 
TGA &123 [0.20; 0.40] 0.28 

TGALS &'(! [5; 15] 12 
TGALS .&$*+ [5; 15] 14 
TGALS /0&$*+ [5; 15] 15 
TGALS &421 [0.20; 0.40] 0.26 

 

We registered the value of the best solution found by each 
heuristic (for each instance), ((!-; the number of instances for 
which ((!- ≤ (8, where (8 denotes the solution obtained by 
the solver ((8 can be the optimal solution, if the optimizer 
could solve the problem before reaching 80,000s, or the best 
found solution when the time has expired); and the average 
processing time in seconds, Tm, for each heuristic. By 
comparing ((!- with (8, it was possible to find (∗, the best 
solution found for each instance. We executed the Friedman 
aligned ranks test, an advanced version of the Friedman test. 
It is a nonparametric statistical test for verifying differences 
between more than two samples [14]. We applied this test to 
the gap G, presented in equation (58), and the processing time 
T, measured in seconds, regarding each instance group.  

y =
'1!)
'∗

− 1	 (58) 
The significance level was 5%. The null hypothesis was 

that there were no significant differences between the datasets 
compared. If the statistical test pointed out a significant 
difference, we proceeded to the Friedman post-hoc test with 
Bergmann and Hommel’s correction for pairwise 
comparisons. If the latter test was significant for an instance 
group regarding a pair of heuristics, it meant that one of those 
algorithms behaved significantly better than the other. The 
lowest median value indicated the best performance. 

V. COMPUTATIONAL EXPERIMENTS 
The Tables in this section summarize the experiments 

results. A complete version of these data is available at 
http://www.dimap.ufrn.br/lae/en/projects/TSMPHOP.php.  

The algorithms were implemented in C++ using the GCC 
compiler version 4.8.2 and executed on a server running 
CentOS 6.10 with 2 CPUs Intel Xeon E5-2670 @ 2.60GHz 
and 128GB of RAM. The solver executed on the same 
platform. The statistical tests were implemented in R using 
methods from [15]. The linearized mathematical model was 
solved by [8]. The execution used 32 parallel threads since the 
solver default configuration makes use of all available 
processors. For each problem, we gave 80,000s as a runtime 
limit for the optimizer to solve it. 

The solver found the optimal solution of 32 instances of 
size 10 and 19 instances of size 20 from the base set. It did not 
find the optimal solution to any problem with 30 cities. 

Table II shows the results of unlimited and limited 
experiments. The first column shows the name of the 
algorithm. The second and third columns show the results of 
the unlimited experiment. The other two columns relate to 
the limited experiments. The #(((!- ≤ (8) column shows the 
number of instances where ((!- reached or bested	(8, a count 
related to the 96 instances from the base set. The Avg. Tm (s) 
column shows the average processing time (in seconds). 

TABLE II 
GENERAL RESULTS OF UNLIMITED AND LIMITED EXPERIMENTS 

 Unlimited  Limited 
Algorithm #(+!"# ≤ +$)	 Avg. Tm(s)  #(+!"# ≤ +$) Avg. Tm(s) 

GA 22 93.1  15 30.7 
MA 40 56.1  23 5.9 

TGA 39 78.0  25 4.3 
TGALS 42 85.0  25 4.6 

 

Table II shows that the TGALS outperformed the other 
algorithms regarding the value of the best solution in 
the unlimited experiment. The MA presented the best 
processing time for the unlimited experiment. However, it 
found less best results than TGALS. The TGA and the 
TGALS obtained the best results on the limited experiment 
concerning solution quality and processing time.  

The Friedman Aligned Ranks test pointed out significant 
differences for all groups. Tables III-VI summarizes the 
analysis by presenting the results of the Friedman post-
hoc test with the Bergmann and Hommel’s correction. 
Values exposed in those tables are the number of groups in 
which the post-hoc test pointed out significant differences 
(null hypothesis refutation). These values indicate the number 
of groups in which the algorithm in the line produced 
significantly better results than the algorithm shown in the 
column. The sixth column shows the sum of the values of each 
line. Since there are 24 instance groups and each pair of 
algorithms is compared, the maximum number of victories is 
72, i.e., the value in the Total column can be, at most, 72. 

Tables III and IV show the results concerning solution 
quality, i.e., the value of G, for the unlimited and limited 
experiments, respectively. These tables show that the TGALS 
exhibited significantly superior results in comparison to the 
other algorithms proposed with TGA being the second best. 



Tables V and VI show the results concerning processing 
time for the unlimited and limited experiments, respectively. 
Tests regarding the T metric revealed that the MA spent less 
processing time followed by the GA in the unlimited 
experiments. In the limited experiment, the TGA performed 
better than the others, followed by the TGALS. 

TABLE III 
STATISTICAL ANALYSIS: G – UNLIMITED EXPERIMENT 

 GA MA TGA TGALS Total 
GA - 0 0 0 0  
MA 24 - 0 0 24 

TGA 24 18 - 0 42 
TGALS 24 21 14 - 59 

TABLE IV 
STATISTICAL ANALYSIS: G – LIMITED EXPERIMENT 

 GA MA TGA TGALS Total 
GA - 0 0 0 0  
MA 24 - 0 0 24 

TGA 24 11 - 0 35 
TGALS 24 13 2 - 39 

TABLE V 
STATISTICAL ANALYSIS: T – UNLIMITED EXPERIMENT 

 GA MA TGA TGALS Total 
GA - 0 10 12 22 
MA 20 - 24 24 68 

TGA 10 0 - 6 16 
TGALS 8 0 3 - 11 

TABLE VI 
STATISTICAL ANALYSIS: T – LIMITED EXPERIMENT 

 GA MA TGA TGALS Total 
GA - 0 0 0 0  
MA 24 - 1 0 25 

TGA 24 22 - 2 48 
TGALS 24 20 0 - 44 

 

Results from the unlimited experiment indicated that 
algorithms based on the Transgenetic approach were capable 
of finding solutions with the better overall quality. Memetic 
and classic Genetic metaheuristics presented better 
performance considering processing times. In this unlimited 
scenario, the influence of the selected parameters’ values 
tends to be higher since each heuristic has its particular 
stopping condition. By limiting the number of objective 
function evaluations, we set a common stop condition to 
reduce this effect. The limited experiment has demonstrated 
the prevalence of TGALS and TGA heuristics towards both 
solutions’ quality and runtimes. 

VI. CONCLUSION 
As a new combinatorial optimization problem that directly 

addresses real-world aspects, TSMPHOP presents a set of 
attributes that place it in a prominent position regarding its 
applicability and solution complexity. The simple search for 
lower-cost cycles or routes where the vehicle is always at 
maximum occupancy are both ineffective in solving the 
problem, which requires carefully designed strategies to 
combine route and passenger loading aspects intelligently.  

This paper presented the mathematical model for the 
TSMPHOP, which was entirely linearized and then 
implemented in a MIP optimizer [8]. Artificial instances were 
created to validate the performance of algorithms. Despite the 

solver being able to solver nonlinear constraints, we chose to 
work with the linear version of the model in hope to make it 
easier for the optimizer to find solutions within the time limit. 

Four heuristics were developed: GA – a classic based on 
the vertical transfer of genetic material between parents and 
offspring; MA – that considers, besides the vertical transfer of 
genes, the interactions that occur between individuals of the 
same generation, also modifying the individuals’ phenotype; 
TGA – an algorithm that mimics horizontal gene transfer 
between endosymbiont and host; and TGALS – an algorithm 
that adds phenotypic interactions to horizontal gene transfer. 

To measure the performance of the developed algorithms, 
a computational experiment was carried out and its results 
were compared in light of statistical tools. TGALS was the 
algorithm that presented the best performance, demonstrating 
the effectiveness of the union between Memetic and 
Computational Transgenetic metaheuristic approaches for 
solving the TSMPHOP instances. 
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