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Abstract—The Massive Open Online Courses (MOOCs) are
online courses with open enrollment that involves a huge amount
of students from different locations, with different backgrounds
and interests. The large number of students implies an enormous
and not manageable amount of interactions. This fact, along
with the different interests of the students, results in low quality
interactions. Due to the large amount of students, it also becomes
impossible the composition of learning groups manually. Due
to these characteristics present in MOOCs, a method for the
formation of groups was developed in this work, as an attempt
to meet the dichotomy that exists between the collective. For
the formation of groups, an adaptation of the Particle Swarm
Optimization algorithm was proposed on the basis of three
criteria, level of knowledge, interests and leadership profiles,
forming groups with different levels of knowledge, interests
similar and distributed leadership, providing a better interaction
and construction of knowledge. On a test basis, the algorithm
demonstrated that can meet the criteria for grouping in a
computation time and is more efficient than the model of random
groups. The tests also showed that the algorithm is robust
considering the various data sets and variations of iterations.

Index Terms—Massive Open On-line Courses; CSCL; Colab-
orative Learning; Distance Learning; Particle Swarm Optimiza-
tion, Group Formation

I. INTRODUCTION

Trend in the area of distance education, the MOOCs (Mas-
sive Open Online Courses) are courses linked to the democrati-
zation of knowledge, integrating social networks connectivity,
access to materials of an expert in a field of study and a
collection of free resources for access [1], [2]. Therefore, you
can set two essential characteristics for this type of course,
should be open and free courses and must allow scalability,
providing global coverage.

In the last five years, has seen a great increase in the
popularity of Massive Open Online Courses, or MOOCs. This
increase in popularity can be reflected both in the number of
students enrolled and in the number of universities now offer
courses in this format [3]. The MOOCs have the potential
to become a new important mechanism for learning. Despite

this early promise, however, the MOOCs are still relatively
unexplored and little understood [4].

Arguably, the mass adoption of the Internet in recent years,
is promoting educational and cultural change never seen
before. This digital revolution is contributing to change teach-
ing and learning processes significantly and irreversibly [5].
Increasing connectivity has opened new avenues for learning
daily and the influence of connectivity, providing access to
digital knowledge diffused in several new tools present on
the Web, you can to redefine and take an opinion different
about what we understand as education and learning [5].
With the rise of social media, communication, learning and
entertainment can now be intrinsically linked, making people
increasingly dependent on connecting with others in the virtual
world.

This kind of course, by owning as feature classes with a
large number of students, eliminates the need for timing in
education and the need for students and instructors to be in the
same location. However, the very features that enable massive
scalability of open online courses, they also bring significant
challenges to your teaching, development and management. In
particular, the scale makes it difficult for instructors to interact
with the many students. The lack of interaction and feelings of
isolation has been assigned as reasons for why students give
up the MOOCs before your termination [6]. The vast majority
of articles that talk about the MOOCs are emphatic in saying
that the approval rate is low, spinning around 10% generally
[7].

The MOOCs require students depend on each other to
have the necessary assistance with regard to the content.
The instructors on MOOC have fewer tools with which can
improve the travel experiences than they would have in online
courses where you don’t enroll tens of thousands of students
[8]. Critics of the MOOCs argue that a very small percentage
of students actually complete most MOOCs because your
pedagogical model leaves much to be desired when compared
to the educational experiences that enable close interaction
between teachers and students, although these courses are
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largely composed of students who already have a high level
of education [8]. However, the interactions between students
can be improved by an efficient group, distributing the role of
the teacher to the students in each group, allowing the student
to have a well-defined role, seeking a greater commitment and
productivity of the student [5].

In this sequence, Harris et al. [5] shall ensure that the
distribution of the teacher’s role in digital media effectively
can be a major item for safe and harmonious participation
in online groups, so that such distribution is best achieved
through a shared form of power within the group or, more
specifically, through distributed leadership.

In a MOOC, many students are shy and do not interact
much with the others in the forums. It can feature a very
large loss for them as they may lose a chance to address any
questions that might be of extreme importance and liable to
be shared in the forums [9]. So, you have to work in the
aspect of student participation in the course at a more personal
level, causing them to interact in small groups that have the
same interests within the course. In this sense, students must
have personal spaces (small groups) to share their interests
motivations. A questionnaire to raise the profile of each student
allows you to gather data on the knowledge, abilities and
interests of each student, and this information can be used to
create study groups with the greatest potential for interactions
[10]. However, an effective collaborative learning experience
is influenced by some factors, among them are the attitude of
the student to seek knowledge and learning, interaction with
other students and group dynamics [10].

The online collaboration is a potentially powerful form of
learning. For this reason the greater access to digital tools is
fast becoming a usual medium where collaborative learning
happens. Some authors even speculate that virtual learning
is a natural and fundamental part of the future of education
[5]. Thus, we can conclude that prior knowledge and skills are
necessary but not sufficient conditions for students in MOOCs
complete successfully the course [3].

The formation of group proposed in this paper takes advan-
tage of the diversity among the students and, at the same time,
makes it manageable the different interests among students, in
addition to incorporating the concept of distributed leadership.
Principles of formation of groups are proposed in this paper
as an attempt to meet the dichotomy that exists between
the collective, which involves the formation of an online
community of learning on a massive scale, and the individual,
with different interests, previous knowledge and expectations.
The groups are heterogeneous with respect to the level of
knowledge and homogeneous regarding interests, namely, the
groups have students with different levels of knowledge and
interests, and each group has distributed leadership. The
groups are formed automatically by using Particle Swarm
Optimization algorithm (PSO). The use of such an algorithm
is necessary due to the complexity of the problem. Given the
large volume of students, the groups are formed by hand, but
by a computational technique.

Over the years, the meta-heuristics for Particle Swarm

Optimization (PSO) has been used to solve various problems
of complexity NP-Hard [11]–[21], as is the case of this
formation of groups. The results of these studies indicate
that it is possible to solve NP-hard problems effectively and
efficiently using PSO. Thus, for this study, were the tests in
order to verify and validate your efficiency and applicability
to the problem in question. In experiments performed by the
algorithm, the number of students and the number of criteria
for the formation of groups, for example, were varied and
compared with the formation of random groups, getting better
results, not just in the final result, but also in the Runtime.

The present work is divided as follows, II session, are pre-
sented the theoretical assumptions for collaborative learning,
the criteria for the formation of knowledge level and interest
groups but also distributed leadership and Introduction to PSO
algorithm. In session III, the method used for the formation
of groups in MOOCs. In session IV, calibration is displayed
and the experiments performed by the PSO algorithm for the
formation of groups. V session, presented the conclusions and
further work.

II. RELATED WORK

The related works are divided into two aspects, the first is
the criteria for the formation of groups in collaborative learn-
ing and the second concerns the Particle Swarm Optimization
algorithm.

A. Criteria For Forming Groups in Collaborative Learning

The criteria for the formation of groups used in this work,
the level of knowledge and interests of students and, also, the
concept of distributed leadership, discussed below.

1) Level of Knowledge and Interests: For many years,
theories and teaching structures have indicated prior knowl-
edge of students as a major factor for effective learning, in
which the development of understanding through the process
of assimilation, which is sustained by prior knowledge [3].
From these fundamental concepts, one can infer that the
understanding of a student is developed with the construction
and modification of their existing knowledge structures. On
the other hand, the students’ knowledge structures affect their
interests.

The effectiveness of any educational situation, particular
or environment, is dependent on the Association of different
perspectives, experiences and prior knowledge [3]. As in a
MOOC don’t have the presence of a tutor or teacher, a shed
can be merge people with skills and previous knowledge levels
higher with people with lower knowledge levels, so that the
knowledge can be spread with more ease. It has a very strong
association with the performance of students in the course,
compared to homogeneous groups with respect to the level of
knowledge [3], [22].

Webb [23] states that students with lower levels of knowl-
edge in a particular subject have the studies yield improved
when inserted into heterogeneous groups, this is that these
students receive more elaborate explanations of his colleagues
that have a greater level of knowledge on the subject. Likewise,



those students who have a higher level of knowledge also leave
benefit, because to explain the contents to other students, they
are taken to reorganise the mind making the information more
clearly in different aspects [24].

In this context, another aspect that can be taken into account
in the formation of groups in collaborative learning is the
interest of the members of the group, since the interest has the
potential to change the individuals ’ involvement in learning
[25]. In this sense, many services have been implemented in
order to bring together people with common interests [26].

In this way, the project must be carried out of appropriate
structures that exploit the points in common between the
interests of students to create virtual interactions that promote
effective socialization, so that the members of a group can
share maximum common interests as possible, that is, one
should maximize the degree of common interest within each
group [26].

The level of understanding or understanding and the in-
terests of students are two criteria that are often used by
teachers in the classrooms of the real world. Studies indicate
that formation of groups based on different levels of under-
standing and similar interests can encourage better discussions
during the learning period [27]. However, for the shared
knowledge creation process, two or more individuals must
possess complementary skills for interacting, creating a shared
understanding [5]. In addition, teachers can take into account
the interests of students in the formation of groups, making
these groups achieve a higher level of interaction [16].

In this way, it is laid down that the prior knowledge and
skills, are these content knowledge or generic learning skills,
such as problem-solving, and the interests of students about the
contents and objectives in a course, can influence considerably
on the success of students ’ learning. However, there are other
criteria that can be used in a collaborative learning groups,
given the course facilitator deems necessary, for example, the
distributed leadership.

2) Distributed Leadership: According to Lourenço [28],
leadership is a neologism corresponding to the leader, and thus,
the term leadership, have meanings like, leader or governance.
In the literature, there are several different definitions of
leadership, however, a simple definition can be characterized in
the fact of a specific person in a group set-up the leadership
role and have, as a rule, responsibilities and functions that
cannot be shared with other people in the group.

However, in more recent studies the leadership is being seen
as a process of social influence, i.e. the process of influence in
a group came to be shared among the members of the group
or organization, making this process more diffuse or sparse,
Therefore, in the globalized world of today, the traditional
notion of leader no longer accurately reflects the reality, with
the new term the distributed leadership [5], [28], [29].

The distributed leadership can be defined as a division
of tasks or processes between various leaders. This concept
of leadership within groups, whether they are working or
studying, becomes important, as well as valuing the individuals
of the team, seeks to eliminate patterns of behavior that are

usually present in teams with a single leader, like authoritari-
anism, will enforcement dominatrix of the leader, questions by
the led on the tasks to be performed and who should assume
the leading role.

Harris et al. [5] understand that distributed leadership con-
sists of a social distribution of leadership, where each function
of leadership is implemented on the work to be developed
and shared between the participants of the group so that the
task be accomplished through interaction and collective action.
This post, it is understood that the practice of leadership move
between those participating in the group, however, for the
distributed leadership really happens, is confidence, reciprocal
commitment and empathy between team members by encour-
aging a authentic collaboration, the sharing of information and
generation of interdependent ideas [5].

Based on this concept of leadership, which has been chang-
ing over time and migrating to the leadership with powers
distributed between the members of the group, the profile of
each person is important to define and direct the role that each
leader will play within the group. In this context, the work of
[30] and Northouse Gressick and Derry [31] can be used for
the mapping of the cognitive skills of students, as shown in
the table I.

TABLE I
NORTHOUSE CONTEXTS AND GRESSICK PROFILES AND DERRY

Northouse [30] Gressick e Derry [31] Leader’s name
Social Context Developing Arguments Leader 1-A

Ideas Finder/ Contributions Leader 1-B
Emotional Context Recognition / Affective Leader 2-A

Organizational Movements Leader 2-B
Cognitive Context Contribution of knowledge Leader 3-A

Control Topic Leader 3-B

Such skills can fit within the contexts that best describe the
training needs of groups within a MOOC, that are members
with social skills, cognitive-behavioral and emotional.

However, when there is a very large demand, considering at
the same time these three criteria already mentioned clustering
(level of knowledge, interests, and distributed leadership), the
ideal training becomes practically impossible without the use
of computer resources, that is, an NP-hard problem [16],
however the PSO algorithm deals very well with this type
of problem.

B. The Particle Swarm Oprimization Algorithm

The Particle Swarm Optimization (PSO) was founded in
1995 by Kennedy and Eberhart on observations that shape the
“social behavior” of birds or shoals of fish in search of food
or your nest [32], [33]. Among the many models available
Kennedy and Eberhart if interested in the model developed by
biologist Frank Heppner [32], [34], [35].

Heppner’s birds have a peculiarity that is the formation of
flocks until one or more birds fly over the nest or food. As a
bird is what you’re looking for, be it the rest or food, attracts
the other birds, increasing the chance of them also meet. In
other words, the social behavior of fish or birds that provided



the inspiration for PSO was foraging behavior, in particular,
by observing certain species of fish or birds in the search to
find a food source collaboratively [16].

In the theory of particle swarm (Particle Swarm), the
particles (called birds in the template for the biology) are
generated randomly in a search space [36], [37]. Each particle
corresponds to one possible solution represented by your
position within that space. To get an optimal solution or
close to the great, each particle takes your experience gained
previously and also uses the experience gained by the group.
So that the particles move in the search space the PSO classic
makes use of a vector and a vector of position in order
to determine the movement of the particle [38]. Thus, each
iteration of the particle algorithm is updated using experience
for her, the experience gained by the bunch and your speed.

To update the position of each particle the equation 3 is
used.

xik+1 = xik + vik+1 (1)

In this equation, xik+1 determines the position of the particle
i in the iteration k+1 and vik+1 determines the speed. Already
the speed vector is given by the equation 2.

vik+1 = w ∗vik + c1 ∗ r1 ∗
(pi − xik)

∆t
+ c2 ∗ r2 ∗

(psk − xik)

∆t
(2)

Where, r1 and r2 são are random numbers between 0 and
1, pi indicates the best position found by the particle i in the
search space and psk determines the best position of the bunch
towards the iteration k.

The three parameters are problem dependent inertia w that
controls the ability of a particle to explore the search space,
where a high value determines a more global search and a
low value determines a more local search, determining how
much of the current speed will stay on next iteration, and the
parameters of trust c1 (self-confidence) and c2 (confidence in
the bunch).

Each particle swarm has a vector that represents the best
position she found within the search space, this vector is called
pbestij . Similarly, the PSO has a vector that holds the best
position found among all particles of the swarm, the best
overall position, this vector is called gbestj . To determine
which is the best position of a particle, the fitness (function
that represents the objective to be achieved) is calculated.

However, the formation of groups in MOOCs requires a
different modeling in relation to the PSO. To this end, it
is convenient to use PSO for optimization of combinatorial
problems, a specific modeling of particle and a fitness function
modeling for this algorithm. The goal is to improve the process
of forming groups so that your composition is done in a time
doable and increase the knowledge of all participants in the
learning process.

1) The Particle: The particle is presented as a n-
dimensional vector i, whose index indicates the student n and
the value for that index, represents the Group g for which the
student is inserted as shown in the equation 3.

Pi = pi0g, pi1g, pijg, · · · , ping (3)

To exemplify this representation, we can see that, according
to Figure 1, the student 2 belongs to the Group 3, as well as
the student 4 belongs to group 2.

Student 0 1 2 3 4 ... n
Group 3 5 3 2 2 ... g

Fig. 1. Representation of a particle

2) PSO For Combinatorial Problems: Using the concept
presented by Jarboui et al., [14], [15], the particle represented
previously consists of an additional vector whose values
represented by it are within the set {-1, 0, 1}. This vector
is shown in Equation 4.

Yi = yi0, yi1, yij , · · · , yin (4)

Additional vector presented by 4 Equation consists of, Yi
which represents the additional vector for the particle i and n
represents the size of this n-dimensional vector, which refers
to the number of students, that is, has the same size as the
particle. Remember that pij indicates a position j on i particle.
The restrictions for the filling in of the additional vector are
shown in Equation 5.

yij =


1, if pij = gbestj ,
−1, if pij = pbestij ,

−1 ou 1, random if(pij = gbestj = pbestij),
0, else.

(5)
The calculation of the speed differs slightly from the classic

PSO (equation 2). The new equation to calculate the speed of
each particle (equation 6) takes into account the additional
vector.

vij = w ∗ vij + r1 ∗ c1 ∗ (−1− yij) + r2 ∗ c2 ∗ (1− yij) (6)

In Equation 6, vij indicates the speed calculation for the
position j of the particle i. The other variables in the equation
are the same variables of the equation 2, differing only in the
use of additional vector in two parts of the formula (“−1−yij”
and “1− yij”). After the computation of the velocities of the
particle position update uses the equation 7.

γij = yij + vij (7)

From this formula the value of additional vector is updated
again, but now the restrictions imposed in the equation 8.

yij =

 1, if γij > α,
−1, if γij < α,
0, else.

(8)

These restrictions, α is a variable that must be informed
before the execution of the algorithm. The values are changed
in a particle obeying the rules imposed in the equation 9.



xij =

 gbestj , if yij = 1,
pbestij , if yij = −1,

random number, else.
(9)

Thus, it is understood that when the value of the additional
vector for the same position of the particle is 1, the value of
xij will be changed to the value that is in the same position of
the vector that contains the global positions (gbestj), that is,
those that received the best fitness value between all particles.
The same case happens when the value of the additional
vector−1, but the value that will be placed in the particle
will be the relation to best position found by the particle
(pbestij). Otherwise, a random value within the number of
existing groups must be assigned the position referred to.

III. MODELING OF GROUPS IN MOOCS

The proposed method is represented by the flowchart in
Figure 2, in which a series of questionnaires are applied
to users in order to verify the level of knowledge and the
identification of the interests of each student, in addition to
identifying the your leadership profile. Application of PSO
algorithm seeks a great composition of groups according to
the criteria established, which are forming groups composed
of six members with the same interests, with different levels
of knowledge and each group must include all three profiles
of leaders addressed in research.

Application of questionnaires to assess 

the level of knowledge, identification of 

interest and identification of leadership

 profiles.

Thousands of students 

enrolled in a MOOC.

Formation of the 

groups using the PSO.

Groups formed by 

x integrants.

Fig. 2. Diagram for formation of groups at MOOCs

The three phases of the proposed method for formation of
MOOCs groups are presented below.

A. Phase 1- Preliminary Questionnaire

In the first phase of the method is answered a questionnaire
on the part of the students involved in the studies. This
questionnaire serves for the level of knowledge, interests,
and the profile of distributed leadership of each student is
calculated.

The questionnaires on the level of knowledge and interests
shall be adapted by the facilitator of the course to meet
the pedagogical needs of the course in which you will use.
The third questionnaire to be answered preliminarily by the
students concerns the distributed leadership. The questionnaire
developed by Northouse [30] can be used in this questionnaire
the sum of the answers of the questions indicate which is the
leadership profile for each student.

B. Phase 2- Training of Groups

In the second phase of the method, you must enter the data
in the proposed algorithm. As described in section II-B1, each
position of the vector that represents the particle corresponds
to a student, and the value in that position represents the group
to which the student is inserted. Analogously, we have three
more vectors, one for each category, which are, NIVn for
the levels of knowledge, INTn to the interests and LIDn for
profiles of leadership, as explained in the section III-B1 below.

1) Algorithm Data: The data used by the algorithm in
the early running for the formation of collaborative learning
groups have different backgrounds for each vector. The Table
II represents the source of each data vector and their acronyms.

TABLE II
DATA USED BY THE ALGORITHM

Vector Origin of data Distribuition Acronym
Particles Random Index: Student Pn

Value: Group
Knowledge Questionnaire Index: Student NIVn

Value: Knowledge Level
Interests Questionnaire Index: Student INTn

Value: Category of Interest
Leadership Questionnaire Index: Student LIDn

Value: Leadership Profile

In the vector Pn, what are the particles of the algorithm,
the index of each position represents a student and the values
entered in each position of the vector represent the groups
in which students are inserted, as described in section II-B1.
This vector is populated at random, however the values that
are used for the full composition of this vector are components
of the set represented by the ceiling shown in equation 10.⌈n

6

⌉
, subject a n ∈ Z+ (10)

Where n is the number of students and 6 the amount of
leaders set for each group.

To compose the vector that represents the knowledge levels
of each student (NIVn) uses a questionnaire. For example, it
is possible to obtain through a combination of values for the
issues. It depends on the questionnaire and objectives of the
course facilitator.

The interests are also defined by the facilitator of the
MOOC. As an example, the facilitator can divide affirmative
questions into categories and such categories, could represent
the sort of student interest, filling so the vector INTn with
the results. The sum of the responses (Northouse questionnaire
[30]) that make up each distributed leadership context indicates
the value that is assigned to the vector LIDn.

An = {f1, f2, f3, f4} (11)

Where,
• f1 = represents the group that the student is inserted;
• f2 = represents the level of knowledge;
• f3 = represents the interest;
• f4 = represents the context of leadership.



The values of the set represented by the equation 11 were
given by the equation 10 and the vectors that represent the
criteria for the formation of the group. Therefore, the values
of each variable of the set quoted is subject the terms presented
in the equation 12.

An =


f1 = {x ∈ N : 0 ≤ x ≤ n/6}
f2 = {x ∈ N : 0 ≤ x ≤ 9}
f3 = {x ∈ Z∗

+ : 1 ≤ x ≤ 5}
f4 = {x ∈ Z∗

+ : 1 ≤ x ≤ 3}

(12)

In this way, It is observed by the equations 11 and 12 that
there are 4 variables for each student, the first being dependent
on the number of students and the other for the questionnaires
applied.

TABLE III
EXAMPLE OF FILLED VECTORS

Students
0 1 2 3 · · · n

Pn 6 3 1 5 · · · f1
NIVn 4 2 0 2 · · · f2
INTn 2 4 5 3 · · · f3
LIDn 2 2 1 3 · · · f4

To illustrate the vectors and variables for each student, note
the table III. The vectors have the variables of all students, for
example, the student 2, is placed in Group 1, has knowledge
level 0, 5 interest and leadership profile number 1.

Each of the variables is independent of the other, but they
coexist to form the set of attributes of the student. These
attributes are used by the fitness function for composition of
groups, therefore, the only attribute that can change during
the execution of the algorithm is the f1. The wording of the
fitness function is shown below.

2) The Fitness Function: After the data is loaded in the
algorithm, the 13 Equation is minimized by the algorithm PSO
to achieve the best possible group training for the given set of
students.

Minimizef(Pi) = 1/
(
∑g

1

∑c
1 DNIVg)−Totg
n−Totg

+
(
∑g

1

∑c
1 DINTg)−Totg
n−Totg

+ 1/
(
∑g

1

∑c
1 DLIDg)

g

+Penalty

(13)

In this function, n represents the total number of students,
Totg refers to the total number of groups, c is the number of
students within the Group g, DNIVg indicates the diversity
of levels within the group g, DINTg indicates the diversity
of interests within the group, DLIDg represents the number
of times that the group g has more or less two leaders of
each profile within the Group and the Penalty is calculated
according to the equation 16.

The diversity of levels of knowledge (DNIVg) within each
group is calculated by performing the intersection between the
sets f2, that has all levels of knowledge and, NIVg , that has
all levels of knowledge covered by the group that is under
review, as demonstrated by the equation 14. The diversity of

interests (DINTg) is calculated similarly to the diversity of
levels of knowledge. Fitness function 13, the values of DNIVg
e DINTg all groups are added up and the result is normalized
on a scale of 0 to 1, therefore, that is why the n−Totg division
is added to the equation 13.

DNIVg = |f2 ∩NIVg| (14)

To calculate the diversity of leadership made necessary the
use of restrictions exhibited by the equation 15. When the
number of a group leadership profiles g (L1g) is different
from 2, increases in diversity 1 DLIDg , likewise with the
leadership profiles 2 and 3 (L2g and L3g). Fitness function 13,
the sum of all the diversity of leaders DLIDn is divided by
the number of groups so that the maximum value of diversity
is 3.

DLIDg =

 L1g 6= 2, x+ 1;
L2g 6= 2, x+ 1;
L3g 6= 2, x+ 1.

(15)

The purpose of the penalty function (equation 16) is to add
20% to the value of fitness every time a group contains less
or more than six students, in order to try to get the optimal
number of groups pupils around the six students per group.

Penalty =

{
if c > 6, fitness ∗ (1.20)qtdocor

if c < 6, fitness ∗ (1.20)qtdocor
(16)

Thus, the result of minimizing fitness function results in
heterogeneous groups regarding level, because in this format
groups provide a more consistent learning [12], [13], homoge-
neous for the interest of each student, providing groups with a
focus on common and with the two leaders for each leadership
profile.
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Fig. 3. Groups with different knowledge level (within the square numbers),
similar interests (colors) and distributed leadership (numbers inside the circles)

To illustrate what it would be like a heterogeneous group
with respect to the level of knowledge, but with the same
interests and distributed leadership, see Figure 3. Each square
represents one student in a MOOC and grouping of these
squares represent the study groups. The texture indicate the



type of student interest, the numbers in each square represent
the level of your knowledge and the numbers inside the circles
indicate the student’s leadership profile.
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3 2 2 3 1 1

3 1 2 1 2 1

2 3 1 1 2 3
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5 1 6 8

5 2 299

7 3

3

1

Fig. 4. Groups formed randomly

That way, you can see that the groups in Figure 3 are
close to ideal, since there is an obvious diversity of levels of
knowledge in each group (represented by the numbers in the
square), people have the same type of interest (represented by
the textures) is grouped in one group and each group has a pair
of each leadership profile. In Figure 4, the groups presented
are formed randomly or according to preferences and personal
relations of students (considered a random groups for Dascalu
et al. [12], [13] ) which often causes the groups do not follow
the format of educational group proposed in this work.

C. 3 Phase - Interaction of students

In phase 3, students will know which group they belong,
which was assigned leader profile and should receive an
explanatory text about how every leader must interact within
the group. That said, students who share the same context
must come into agreement about which role each leader will
exercise, for example, the two students who have emotional
context profile should talk and decide who will be the leader
2-and who will be the leader 2-B. The demonstration of the
contexts and profiles is shown in the table I.

IV. RESULTS

This study employed a series of experiments to analyze the
effectiveness and efficiency of the PSO algorithm for group
formation in MOOCs. To this end, we used data generated at
random and will be described in section IV-A. The algorithm
was run on a computer with Intel Xeon 2.0 GHz processor
with 4 cores and 4 GB RAM. The implementation was
accomplished with the Java language.

Experimental settings of the problem are presented in
Section IV-A. Later, in the section IV-B, the robustness of
the algorithm with respect to the variation of number of test
scenarios. It is also presented a comparison between the PSO
and the random algorithm.

A. Experimental Settings

To analyze the effectiveness of the algorithm, 11 data sets
were generated randomly varying the parameters of the data.
Table IV illustrates each dataset.

In eleven sets of data, the number of students (n) ranged
from 12 to 9216. Each dataset was generated only once for the
execution of experiments. Students were grouped in 2 the 1536
collaborative learning groups, where g represents the number
of groups in each dataset.

TABLE IV
DATA SET USED-SECOND ALGORITHM

DataSet N.S. (n) A.L. A.I D.L. N.G. (g)
1 12 6 5 3 2
2 24 6 5 3 4
3 48 6 5 3 8
4 96 6 5 3 16
5 192 6 5 3 32
6 384 6 5 3 64
7 768 6 5 3 128
8 1536 6 5 3 256
9 3072 6 5 3 512

10 6144 6 5 3 1024
11 9216 6 5 3 1536

Legenda: N.S. (Number of students), A.L. (Amount of levels), A.I. (Amount
of interest), D.L. (Distributed Leadership and N.G. (Number of groups).

The PSO used for Combinatorics has four parameters to
be adjusted, the inertia (w), the C1 that indicates the particle
learning, C2 that indicates the group learning and alpha (α)
what is a parameter used to calculate the new position of the
particle. Experimental settings were also varied the number of
particles and the number of iterations. To adjust each of these
parameters, systematic tests were performed on them, running
30 instances for each variation.

To adjust the values of inertia (w), C1, C2 and Alpha (α)
the number of iterations was set at 100, the number of particles
was 20, the number of dimensions or pupils was 192. Each
one of the parameters was varied according to the interval
described in 17.

[−1,−1 + a ∗ 0, 05], where 1 ≤ a ≤ 40, a ∈ Z+ (17)
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The first variation performed to adjust the algorithm was
the inertia, which obtained the best average of fitness (the
best of each execution) when your value was -0.3 (Figure 5).
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The next parameter tested was the C2, that, similarly to
the above, the values of inertia and C1 were fixed, making
your best result found in C2 0.05 (Figure 7). The fourth
parameter tested for the calibration of the algorithm was the
alpha, reaching the mark of 1 for best results (Figure 8).
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The number of particles was the fifth parameter to be
adjusted. However, as this is an integer, was varied according
to the interval submitted by 18. The number of particles
selected was 25, so that the average value of fitness stabilized
when the number of particles obtained this value, and by the
assumption that this parameter is critical for the algorithm, that
is, the higher the number of particles, the greater the cost and
the computational time. The last parameter to be tested was
the amount of iterations. The value selected for this parameter

was 300 iterations, since the algorithm began to stabilize when
reached this value.

[5, a ∗ 5], where 2 ≤ a ≤ 10, a ∈ Z+ (18)

The tests in this section had the purpose to find out the best
values for each of the parameters in order to optimize the next
tests in section IV-B. The best results of these parameters are
presented in table V.

TABLE V
SUMMARY OF INITIAL TESTING OF THE ALGORITHM

Inertia (w) C1 C2 Alpha (α) Particles Iterations
-0.30 1 0.05 1 25 300

B. Experiments

In the study presented in this section of the performance of
the PSO for groups with six pupils was compared with the
random algorithm. Comparisons are made using the average
time of execution, the average of the fitness and best fitness
found (bestFitness) for each dimension. Test scenarios on the
PSO were run 30 times using 25 particles, while the random
method was executed according to Equation 19.

(Npart ∗NmaxIt +Npart) ∗ 30 (19)

Where Npart is the number of particles and NmaxIt is the
maximum number of iterations, components of the equation
19, were configured from the initial tests presented in section
IV-A and have as values 25 and 300, respectively. As the
normal random algorithm test case generates many infactable
solutions. The same repair function used in the PSO was
executed by him for the amount of students in the Group were
respected, leading in a runtime and larger computational cost.

In table VI are shown the tests carried out using the eleven
sets of data broken down in section IV-A, for each set of data
the PSO was executed with 300 iterations, in addition to the
presentation of the results of the random algorithm.

The dimensions were divided into three groups, low,
medium scale scale and large scale. To the problems of
low scale, or smaller ones, like for example the 12 and 24
dimension, the random algorithm obtained values worse than
when we look to the PSO fitness average, however best values
and very close when observed values of bestfitness.

In other small-scale problems, 48 until 768, notes that the
average fitness is considerably larger for the random algorithm,
as well as some of the best value of fitness (bestFitness)
found from all executions performed by the random algorithm.
Figure 9 demonstrates graphically the benefit of PSO on the
random algorithm.

In addition to the comparison of the PSO algorithm and
random, through the Table VI shows that in smaller problems,
called low scale, up to 768 dimension, the runtime of the
algorithm random was far superior to the PSO algorithm, that
due to Organization function that prevents and reorganizing
groups with fewer than six students and seven. Without this



TABLE VI
EXPERIMENTAL RESULTS OF THE ALGORITHMS

PSO Random
Dimensions Average Time Average Fitness BestFitness Average Time Average Fitness BestFitness

12 3,161E-02 3,693E+00 3,167E+00 5,764E-01 3,883E+00 3,067E+00
24 3,665E-02 4,200E+00 3,217E+00 1,148E+00 5,855E+00 3,117E+00
48 8,897E-02 4,084E+00 2,964E+00 2,329E+00 8,336E+00 3,680E+00
96 2,248E-01 4,305E+00 3,564E+00 5,390E+00 2,058E+01 6,307E+00
192 6,022E-01 4,106E+00 3,384E+00 1,416E+01 1,330E+02 2,954E+01
384 1,748E+00 4,643E+00 3,847E+00 4,152E+01 6,356E+03 4,686E+02
768 5,607E+00 1,219E+01 6,243E+00 1,356E+02 1,784E+07 9,929E+05

1536 1,965E+01 2,177E+03 5,203E+02 4,827E+02 1,885E+14 2,090E+12
3072 6,049E+01 1,770E+11 2,356E+09 1,814E+03 3,175E+28 2,000E+25
6144 2,313E+02 1,109E+30 5,008E+28 7,048E+03 1,599E+57 1,041E+53
9216 5,206E+02 5,379E+50 5,465E+48 1,571E+04 1,111E+86 1,603E+81

function, the random algorithm would be smaller, but would
generate many infactı́veis groups.
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In medium scale problems, ranging from 1536 and 3072
dimension, it is observed that the average time continues to
increase considerably, where, for example, the average time of
execution of the 1536 dimension more than tripled compared
to the previous dimension, the same occurred for the size
3072, for both algorithms. However, we can observe that
the PSO algorithm gets much better values than the random
algorithm. The gain that the PSO algorithm has about the
random algorithm can be seen with more clarity, for example,
when we observe the values of the averages of the fitness.

For large scale problems, which are the dimensions 6144
and 9216, one realizes that the average time continued to
increase, but the rate of increase between these two dimensions
decreased when compared with the rate of increase in the time
between the size 3072 and 6144. For the random algorithm,
this rate has increased. The fitness value has increased con-
siderably for both algorithms. However, the random algorithm
continued to get much higher values to the PSO.

Observing the values of the averages of fitness and runtime,
it can be concluded that the PSO algorithm gets better results
in all datasets used for the analysis. Some fitness values
may appear high due to the penalty imposed on the function
algorithm to avoid infactı́veis solutions (explained in section
III-B2), but can represent a major advance in the formation
of groups for collaborative learning in MOOCs using three

grouping criteria.

V. CONCLUSIONS AND FUTURE WORK

In this work a method to group formation in MOOCs,
based on the criteria of level of knowledge and interest of
each student and distributed leadership concepts, using the
PSO algorithm. The proposed method allows the formation
of groups from a large number of students involved in the
context of providing a MOOC improvement in the quality
of interactions and advancement of the proven knowledge
through a case study.

Thus, the proposed method can be of great value in online
environments with a large number of participants where the
teacher can’t meet everyone and also when students are
geographically far apart, making it impossible for the group
study attendance. The method consists of three clearly defined
phases and can be used in the context of the MOOCs as well
as in computer supported learning environments, such as long
distance courses.

The model of formation of groups for collaborative learning
in MOOCs uses the Particle Swarm Optimization algorithm
as method for the composition of the groups, allowing the
automatic creation of the groups, given the huge volume of
students in a MOOC. Were created an algorithm form groups
with six members, with different levels of knowledge, interests
and with concepts of distributed leadership. The teacher can
not only perform work according to the criteria mentioned,
but also add other criteria for adequate training of their groups
adapting the fitness function of the algorithm according to your
goals pedagogic.

At the end of the experiments, the algorithm has demon-
strated that it can meet the criteria for grouping in a compu-
tation time and being more efficient than random groups. The
tests also showed that the algorithm is robust considering the
various data sets and variations of iterations. However, despite
the algorithm does not guarantee that the end result is the best
solution, due to the computation time be limited, this research
contributes towards a method that turns out better than the
commonly used, which is the formation of random groups.

As future work, computational point of view, we want to
compare the PSO algorithm with other techniques of composi-
tion of groups, such as the genetic algorithm. The comparison



of algorithms can help define what the circumstances are
more favorable for use of each algorithm, e.g., number of
criteria and number of students. From the pedagogical point
of view, we intend to analyze the content of the discussions
with other methods of analysis of speech, but also compare
the groups individually and compare the speeches made by
each leadership profile for perspective more thorough about
the quality of the interactions. We want to use this method in
a MOOC of a larger scale, which has a greater diversity in
order to have a broader view on its results.
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