
Applying Genetic Programming to Improve
Interpretability in Machine Learning Models

Leonardo Augusto Ferreira, Frederico Gadelha Guimarães
Machine Intelligence and Data Science (MINDS) Lab

Department of Electrical Engineering
Universidade Federal de Minas Gerais, UFMG,

31270-000 Belo Horizonte – MG, Brazil
leauferreira@cpdee.ufmg.br, fredericoguimaraes@ufmg.br

ORCID 0000-0001-9238-8839

Rodrigo Silva
Department of Computer Science

Universidade Federal de Ouro Preto, UFOP
35400-000 Ouro Preto - MG, Brasil

rodrigo.silva@ufop.edu.br
ORCID 0000-0003-2547-3835

Abstract—Explainable Artificial Intelligence (or xAI) has be-
come an important research topic in the fields of Machine
Learning and Deep Learning. In this paper, we propose a Genetic
Programming (GP) based approach, name Genetic Program-
ming Explainer (GPX), to the problem of explaining decisions
computed by AI systems. The method generates a noise set
located in the neighborhood of the point of interest, whose
prediction should be explained, and fits a local explanation
model for the analyzed sample. The tree structure generated by
GPX provides a comprehensible analytical, possibly non-linear,
expression which reflects the local behavior of the complex model.
We considered three machine learning techniques that can be
recognized as complex black-box models: Random Forest, Deep
Neural Network and Support Vector Machine in twenty data sets
for regression and classifications problems. Our results indicate
that the GPX is able to produce more accurate understanding
of complex models than the state of the art. The results validate
the proposed approach as a novel way to deploy GP to improve
interpretability.

Index Terms—Interpretability, Machine Learning, Genetic
Programming, Explainability

I. INTRODUCTION

Advances in Machine Learning (ML) and Deep Learning
(DL) have had a profound impact in science and technology.
These techniques have had many recent successes, achieving
unprecedented performance in tasks such as image classifica-
tion, machine translation and speech recognition, to cite a few.
The remarkable performance of Artificial Intelligence (AI)
methods and the growing investment on AI worldwide will
lead to an ever-increasing utilization of AI systems, having
a significant impact on society and everyday life decisions.
However, depending on the model used, understanding why it
makes a certain prediction can be difficult. This is particularly
the case with the high performing DL models and ML models
in general. The more complex the model, the more opaque its
decisions are to human understanding. Black-box ML models
are increasingly used in critical applications, leading to an

This work has been supported by the Brazilian agencies (i) National Council
for Scientific and Technological Development (CNPq); (ii) Coordination for
the Improvement of Higher Education (CAPES) and (iii) Foundation for
Research of the State of Minas Gerais (FAPEMIG, in Portuguese).

MINDS Laboratory – https://minds.eng.ufmg.br/

urgent need for understanding and justifying their decisions.
This difficulty is an important impediment for the adoption of
ML, particularly DL, in domains such as healthcare [1], crim-
inal justice and finance [2]. The term Explainable AI (or XAI)
has been adopted by the community to refer to techniques that
help the understanding of decisions or results of AI artifacts
by a given audience, which can be domain experts, regulatory
agencies, managers, decision-makers, policy-makers or users
affected by these decisions.

The interpretability problem can be understood as the tech-
nical challenge of explaining AI decisions, especially when the
underlying AI technology is perceived as a black-box model.
Humans tend to be less willing to accept decisions that are
not directly interpretable and trustworthy [3]. Therefore, users
should be able to understand the models outputs in order to
trust them. There are two types of trusting, as described in
[4]: one about the model and another about the prediction.
Though similar, they are not the same thing. The first one
is related to whether someone will choose a model or not,
whereas the second relates to whether someone will make a
decision relying on that prediction.

Interpretability, as pointed out in [5], is associated with
a human perception i.e. the ability to classify something or
someone according to their main characteristics. This idea
applied to ML models would be to highlight the main features
that contributed to a prediction. Other works, such as [6]
and [7], define interpretability as “the ability to explain or to
present in understandable terms to a human”. In other words,
a model can be defined as explainable whether its decisions
are easier for a human to understand.

Another issue involving interpretability goes beyond trusting
some model or prediction. The European Union has recently
deployed the General Data Protection Regulation (GDPR)
as pointed out in [8] and [9]. GDPR directly deals with
subjects related to European citizens’ data, for example: it
prohibits judgments based solely on automated decisions [10].
European Union’s new GDPR has a major impact in deploying
machine learning algorithms and AI-based systems. It restricts
automated individual decision-making which “significantly
affects” users. The law also creates a “right to explanation,”

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

whereby someone has a right to be given an explanation for
an output of the algorithm [11].

There are many important results of interpretability and
explainability in the literature. For instance, interpretable
mimic learning [12] is an approach in which the behavior
of a slow and complex model is approximated by a faster
and simpler model (also more transparent) with comparable
performance. The idea is that by mimicking the performance
of other complex models, one is able to compress the learning
into a more interpretable model and derive rules or logical
relationships. In this regard, it is possible to cite Lime (Local
Interpretable Model-Agnostic Explanations) [4] and SHAP
(SHapley Additive exPlanations) [13], which have been widely
used for interpretability. Despite their success, both Lime and
SHAP assume that a linear model is a good local represen-
tation of the original one. This simplification may cause, in
some circumstances, a significant loss in the mimicking model
accuracy, which may spoil the final interpretation.

In this paper we present an approach to interpretability
based on Genetic Programming (GP), named Genetic Pro-
gramming Explainer (GPX). GP has the ability to produce
linear and nonlinear models increasing the flexibility of the
aforementioned methods. The evolution process of the GP
algorithm ensures the selection of the best features for the
analyzed sample. Moreover, the tree structure representation
naturally provides an analytical expression that reflects a local
explanation about the model’s prediction. The main goal is
to produce an accurate mimicking model which preserves the
advantages of having a closed mathematical expression such
as readability and the ability of computing partial derivatives
to assess the sensitivity of the output with respect to the input
parameters. According to the taxonomy recently advocated by
[14], the proposed approach can be categorized as a model
agnostic technique for post-hoc explainability, able to provide
a local explanation for a specific prediction output given by a
complex black-box model.

In this work we have considered the following pre-trained
complex ML algorithms that can be recognized as black-
box models: Random Forest [15], Supppot Vector Machines
(SVM) and a Deep Neural Network (DNN) [16] in a number
of different data sets (10 regression and 10 binary classification
problems available in public repositories). These methods
have great performance in most ML problems, however, their
explainability is low. For each pre-trained complex model,
we compared (GPX) against other methods that could be
used for generating local explanations: Lime and Decision
Tree/Regression. The statistical analysis shows that GPX was
able to better approximate the complex model, providing an
interpretable explanation in terms of a symbolic expression.
Genetic Programming brought us a new approach for inter-
pretability with a local explanation for black-box models pre-
dictions. In addition, we present two case studies to illustrate
the proposed methodology and serve as a guide for future use.
The first one is about predicting home prices in Boston area
and the other one measures the progression of Diabetes over
the years.

In summary, the proposed approach aims to contribute to
improving interpretability of black-box ML by using automatic
generation of model-agnostic explanations that are able to fit
the input-output decisions performed by the more complex
model, which would be otherwise impossible to be derived
by usual analytical methods. The GP algorithm is applied
locally and provides an analytical and visual explanation in
terms of a human readable expression represented as a tree.
These evolved explanations can be easily interpreted and help
understanding these complex decisions.

This paper is organized as follows. Section III-A reviews
the main ideas of GP Algorithm and discusses how it will be
applied for the purpose to provide interpretability. Section II
introduces some concepts about interpretability and describes
our approach according to these. Section III presents our
methodology and the main idea of our solution for approaching
the interpretability problem. Section V discusses the results of
this article compared with the state of the art.

II. CONCEPTS OF INTERPRETABILITY

Humans are capable of making predictions about a subject
and build a logical explanation to justify it. When a prediction
is based on understandable choices, it gives the decision maker
more confidence on the model [2]. On the other hand, Machine
Learning and Deep Learning models are not able to provide
the same level confidence. Their complexity and exorbitant
number of parameters make them unintelligible for a human
being and for most of the purposes they are seen as black-
boxes. Humans tend to be resistant to techniques that are not
well understood or that cannot be directly interpreted [5].

More recently, several strategies have been applied to un-
derstand how black-box models work. These strategies aim
to decrease the opacity of artificial intelligence systems and
to make these models more user friendly. In order to address
the opacity of some machine learning models, we first must
introduce some concepts of interpretability [7], [2]:

• Comprehensibility: refers to the ability of a learning
algorithm to represent its learned knowledge in a human
understandable fashion, in such a way that the knowledge
representation can be comprehended.

• Interpretability: It is defined as the ability to explain
or to provide the meaning in understandable terms to a
human.

• Explainability: is associated with the notion of expla-
nation as an interface between humans and a decision
maker that is, at the same time, both an accurate proxy
of the decision maker and comprehensible to humans.

• Transparency: A model is considered to be transparent
if by itself it is understandable. For instance, a decision
tree is a transparent model. The model must allow the
reproduction of every calculation step, it needs to have
a clear explanation of parameters and hyper-parameters
and to provide an explanation about the learning process.
Basically complex models can be considered as black-box
models because they lack transparency.

• Functionality: the model must provide an understandable
output, it needs to have visualization tools and to ensure a
local explanation [4], [13]. The outputs must be presented
in a user-friendly way.

Post hoc explainability techniques employ other methods
after training step to analyze a given model. Different tech-
niques can be used to enhance interpretability of a black-
box model, such as text explanations, visual explanations,
local explanations, explanations by example, explanations by
simplification and feature relevance explanations [5].

More specifically, post hoc explainability by means of
local explanations is an approach applied for a prediction
or set of predictions of pre-trained black-box models, for
example: Lime [4] and SHAP [13] fall in this category. Lime
generates a local explanation model while SHAP identifies
feature relevance explanations.

The approach presented in this paper can be considered
as a post hoc technique since the GP algorithm is applied
to a pre-trained model. The goal of the GP is to produce a
local symbolic model to provide a visual explanation in terms
of a human readable expression represented as a tree. Thus,
in this sense, the proposed method generates a knowledge
representation that can be comprehended, a local explanation
model that is interpretable, transparent and functional.

Explainability and interpretability are extremely relevant
issues nowadays. They are fundamental pieces for dealing
with several philosophical and ethical aspects of the interaction
between humans and AI artifacts.

III. EVOLVING EXPLANATIONS

A. Genetic Programming

Genetic Programming (GP) was developed by Koza [17]
to evolve functional structures such as algebraic expressions,
computer programs, and logical expressions [18]. GP works
with a population of programs, usually initialized at random.
In a GP there is a problem to be solved and the fitness of
the individuals is related to how well they solve this problem.
Thus, the GP algorithm evolves this population until it finds
the best solution for the problem. Figure 1 presents all steps
of the GP algorithm.

The GP algorithm is relatively simple to describe, as ob-
served in Figure 1. The first step is to generate a random pop-
ulation with several individuals. The next step is to evaluate the
fitness of each individual to measure how well an individual
solves the problem at hand. If some individual satisfies the
stopping criterion, the algorithm ends. Otherwise, it goes to
the selection step in which the algorithm will favor the better
individuals based on fitness evaluation. After the selection
step a genetic operator is chosen randomly to generate new
individuals [17], [18] .

In this work, genetic programming is used to evolve non-
linear symbolic expressions for regression and classification
problems. These expressions are represented in the program as
a tree over which the genetic operations of mutation, crossover
and reproduction are defined. Figure 2 illustrates the tree
representation of a mathematical expression.

Fig. 1. This flowchart presents the steps of the evolutionary process in GP.

Fig. 2. This binary tree represents the expression: f(x) = x20 + 0.5x2 − 3.
The terminal nodes are constants or input variables and the internal nodes are
the functions or operations.

The gplearn1 Python library was used as the GP search
engine. This library extends from scikit-learn, a widely known
Python library for ML.

B. GP approach to local explanation

In this section, the proposed approach to the interpretability
problem is described. The example discussed here helps under-
standing the steps needed to achieve our local interpretation.

Let x ∈ Rn be an input fed to a complex pre-trained
machine learning model. The first step in our method is to
generate m sample points around the input x. This set of
samples, called noise set, η, is created by sampling from a
multivariate Gaussian distribution centered at x with covari-
ance matrix, Σ = In×σ where, In is the n×n identity matrix
and σ is measured on training data.

The goal of GPX is to find the function, f∗ : Rn → R
which is easy to interpret and, at the same time, mimics the
behavior of original complex model, g : Rn → R, over the
sample set, η. Formally, the problem to be solved by GPX can
be defined as follows:

1https://gplearn.readthedocs.io/

f∗ = argmin
f∈F,si∈η

d([f(s1), . . . , f(sm)]− [g(s1), . . . , g(sm)])

(1)
where:
• F : set of all admissible functions f : Rd → R;
• {s1, s2, ..., sm}: samples form the noise set, η;
• g(si): is the prediction given by the complex ML model;
• f(si) is the prediction generated by a given individual in

the population; and
• d(·): some distance metric, usually the l2-norm or the

root-mean-square error (RMSE).

Fig. 3. Suppose a classification problem in which there are 1,500 samples
in the training data set in 3 separate classes. Class 1 are triangles, class 2
circles and class 3 stars. This data set was created by scikit-learn tool, where
the standard deviation in each class is 1.0, 2.5, 0.5 respectively.

As an example, Figure 3 illustrates some training data
Xk×n, where k = 1, 500 samples and n = 2. Assume that
a model, g(·), has been previously obtained from this data set.

After defining σ, it is possible to generate the noise set, η,
located in the neighborhood of the point of interest x whose
prediction should be explained. Figure 4 shows x and the noise
set, η, generated randomly around x.

The next step is to apply GP to try to find f∗ as defined in
Equation (1).

Fig. 4. The bold X represents the input x for a complex ML model, whose
prediction should be interpreted. The set η contains 100 samples classified by
the complex model. This figure also presents the surface decision generated
by GP algorithm.

Figure 5 illustrates the best representation found for f∗

by the GP. For didactic reasons, this example was built with
two dimensions only and the produced representation for f∗

contains all the input features. It is important to highlight,
however, that the GP is not obliged to use all the features.
Thus, the produced model already indicates which variables
are important. Besides, the returned closed mathematical ex-
pression allows the user to compute partial derivatives to assess
the local importance of each feature.

Fig. 5. A tree structure representing an algebraic expression, f(s) = x1 +
(x0 − (−9.558)). This structure was generated by GPX and visualized via
graphviz.

IV. EXPERIMENTAL METHODOLOGY

A. Data Sets

In this work twenty data sets were used. Ten for clas-
sification and ten regression. All data sets were extracted
from well-known repositories such as UCI Machine Learning
Repository2, OpenML3 and Kaggle4. Our selection was based
on features variability between data sets and number of down-
loads. Table I lists the chosen data sets for the classification
problems and the corresponding number of used features.

TABLE I
CLASSIFICATION DATA SET

Data Set Features
Diabetes [19] 8
Steel Plates Faults [20] 33
The Monk’s Problems 2 [21] 6
Phoneme [22] 5
Blood Transfusion Service Center [23] 4
Ozone Level Detection [24] 72
Hill-Valley [25] 100
EEG Eye State [25] 14
Spambase [25] 57
ILPD (Indian Liver Patient Data Set) [26] 10

Table II presents the data sets chosen for the regression
problems and the corresponding number of used features.

2https://archive.ics.uci.edu//
3https://www.openml.org
4https://www.kaggle.com/

TABLE II
REGRESSION DATA SETS

Data Set Features
Diabetes [25] 10
Boston [27] 13
Fetch California Housing [27] 8
Bike Sharing in Washington D.C. 13
Red Wine Quality [28] 11
House Sales in King County, USA 18
GPU Kernel Performance [29] 14
Beer Consumption - São Paulo 5
Houses to rent data 8
Predicting Compressive Strength of Concrete 10

B. Complex, black-box, models

There are several machine learning models which can be
considered black-box. In this work we have selected three of
the most popular to serve as “complex models”. That is, model
for which explanations have to be produced. These models are
the Random Forest, Deep Neural Networks and Suport Vector
Machines. They are briefly introduced below.

Random Forest is a type of tree ensemble which have shown
improvements for the generalization of a single decision tree
and has achieved remarkable results in the literature [15], [30].
Our experiments set Random Forest with up two thousand
trees. The more trees are used in the architecture the more
complexity is brought to the understanding of the model.

Deep neural networks (DNNs) [16] are artificial neural
networks (ANNs) with multiple layers between the input and
output layers. The multi-layer architecture is inspired in the
human brain structure and has shown to be quite effective
in many difficult classification and regression problems [31].
This architecture, however, represents compositions of non-
linear functions which are not easy to interpret.

Finally, Support Vector Machines (SVMs) [32] are classi-
fiers which find a separating hyperplane, such that the distance
on either side of that hyperplane to the next-closest data
points is maximized. In other words, given labeled training
data, the algorithm outputs an optimal hyperplane which
categorizes new examples. Support Vector Regresssion (SVR)
is the extension of SVMs for regression problems [33]. The
SVR tries to fit the error within a certain threshold and can also
be considered opaque since it is hard to interpret its decisions,
specially when nonlinear kernel functions are used.

C. Competing Explainers

In this section we present the competing explainers. Just
like our method, the idea is to sample a noise set, η, around
the point of interest, x. The set η is then used to build a local
comprehensible model which will be used as an explainer. We
say that an explainer, f , “understands” the complex model, g,
if its error on the noise set, η, relative to the complex model
predictions is small. For regression problems, this concept may
be translated into the Root Mean Squared Error between the
model and the explainer as follows:

ur(f) =
1

|η|
∑
si∈η

(f(si)− g(si))2 (2)

For classification problems, it may be formalized as the
accuracy of the explainer with respect to the complex models
predictions.

uc(f) =
1

|η|
∑
si∈η

h(si) (3)

where,

h(si) =

{
1 if f(si) = g(si)

0 if f(si) 6= g(si)
(4)

The first method, named Lime [4], generates an explainer
based on a linear least squares method with l2-norm regular-
ization [34]. This linear model is used into Lime in order to
measure locally the feature importance.

Another good candidate for explainer is the Decision Tree
(DT). A DT is, as the name implies, a tree where each node
represents a feature, each branch represents a decision, and
each leaf represents a prediction. By making a path from
the root to the prediction leaf node, the user can obtain an
explanation for that prediction.

The performance of Lime, DT and GPX (explained in
section III-A) as explainers of Support Vector Machines,
Neural Networks and Random Forests are discussed next.

V. TESTING EXPLAINERS ACCURACY

A. Experimental Setup

In this section we test the ability of Lime, GPX, DTs to
understand the different complex models discussed in section
IV-B. The experimental steps can be described as follows:

1) Divide all the data sets described in section IV-A into
training and test data. We used 80% for training and
20% for test.

2) Train the complex models (described in section IV-B)
with training data.

3) Using the trained complex models, predict the value
of 100 random samples selected from the test set. At
this point, we have six thousand predictions for the
regression and classification problems together (20 data
sets × 100 predictions × 3 complex models).

4) Build the three explainers (Lime, GPX, DT) for each
of these six thousand predictions in order to measure
which interpreter can better understand the black-box
prediction. At this time we have 18,000 data in order to
apply a statistical analysis.

The GPX hyper-parameters were set as follows:
• Population size: 100 individuals.
• Probability of crossover: 70%.
• Probability of hoist mutation: 5%. This mutation is called

hoist mutation because the method chooses randomly a
subtree and hoist it into the tree.

• Probability of point mutation: 10%. This mutation selects
a random node to be replaced.

• Search interval: [−100, 100].
The other hyper-parameters are set to the library default

values.
The noise set, η (see section III-B), has the same one

thousand samples for each explainer. Thus, the explainers
always access same data. In order to measure how well the
explainers understand the complex models (2) and (3) are used
for the regression and classification problems, respectively.

B. Results

Table III presents the average and the standard deviation
of the error, computed with (2), for each explainer across the
regression problems.

TABLE III
EXPLAINERS ERROR

Explainer Average Error Error Standard Deviation
DT 0.083 0.329

GPX 0.065 0.508
Lime 7.577 36.913

A Permutation Pairwise Test5 was performed in order to test
the hypothesis that the difference between the error means
is zero. The results are shown in Table IV where P.adjust
represents the P-Value adjusted with the Bonferroni Method.
Considering a confidence level of 95%, it is possible to say
that there is no difference in the mean error presented by the
DT and the GPX. On the other hand, the results indicate that
both DT and GPX, understand the complex model better than
Lime.

TABLE IV
PAIRWISE PERMUTATION TEST FOR THE ERROR DIFFERENCE

Comparison Stat P-value P.adjust
DT - GPX = 0 1.599 0.1099 0.3297
DT - Lime = 0 -11.01 3.515e-28 1.054e-27

GPX - Lime = 0 -11.03 2.668e-28 8.004e-28

Table V presents the average and the standard deviation of
the accuracy, computed with (3), for each explainer across the
classification problems.

TABLE V
EXPLAINERS ACCURACY

Explainer Average Accuracy Accuracy Standard Deviation
DT 0.852 0.104

GPX 0.899 0.130
Lime 0.658 0.334

A Permutation Pairwise Test6 was performed again in order
to test the hypothesis that the difference between the accuracy
means is zero. The results are shown in Table VI where
P.adjust represents the P-Value adjusted with the Bonferroni

5See https://rdrr.io/cran/rcompanion/man/pairwisePermutationTest.html
6See https://rdrr.io/cran/rcompanion/man/pairwisePermutationTest.html

Method. Considering a confidence level of 95%, the results
indicate that, in average, GPX was better than both DT and
Lime in understanding the complex models. The DT, in turn,
was better than Lime.

TABLE VI
PAIRWISE PERMUTATION TEST FOR THE ACCURACY DIFFERENCE

Comparison Stat P-value P.adjust
DT - GPX = 0 -15.09 1.866e-51 5.598e-51
DT - Lime = 0 28.31 0 0.000e+00
GPX -Lime = 0 33.27 0 0.000e+00

The complete table of results as well as the analysis scripts
are available at https://github.com/leauferreira/GpX.

Overall, these results show that, at least for the scenarios
presented here, the Lime assumption that the complex model
can be locally approximated by a linear model, is not always
adequate. The DT and the GPX specially were superior
methods in understanding the complex model.

Having shown that the proposed methodology can indeed
produce accurate local models, in the next section, a demon-
stration of the use of GPX in practice is presented.

VI. CASE STUDY ON INTERPRETABILITY FOR RANDOM
FOREST REGRESSOR

In this case study we selected the Boston and the Diabetes
data sets, see Table II, and the Random Forest Regressor
with 2,000 estimators (trees), from scikit-learn. Both data sets
(Diabetes and Boston) can be found in scikit-learn

The Boston data set has 13 features, 506 samples and the
target consists of home prices in Boston. The data set was
randomly split into training and test sets with 80% of the
samples for training and the remainder for testing. Apart from
the number of trees the other hyper-parameters were set to
the default values in the library. It is hard to analyze the joint
decision performed by 2,000 trees, therefore explainability of
Random Forest is low, although its performance is high.

After the training step we take the first sample in the test
set, x1, and apply the process described in Section III-B in
order to create a noise around x1. Then, the GP algorithm is
trained with the noise set, η = {s1, ..., sn} where the targets
are given by g(si), ∀si ∈ η, and g is the Random Forest
Regressor model.

The Boston data set consists of d = 13 features. However,
as observed in Figure 6, after the evolution process only two
features were chosen by the GP. They were:
• PTRATIO : pupil-teacher ratio by town
• NOX: nitric oxides concentration (parts per 10 million)
In (5) we changed PTRATIO to xptratio and NOX to

xnox. The tree structure in Figure 6 represents the following
equation:

f∗(s) =
x2ptratioxnox

28.390
(5)

Figure 7 presents the result of the same process but in
a different area, by considering sample x2. It is possible

Fig. 6. GP algorithm output for the Random Forest Regressor prediction
applied to instance x1 in Boston data set.

to observe that different features were chosen during the
evolutionary process. The features chosen for the solution
shown in Figure 7 were:
• PTRATIO: pupil-teacher ratio by town
• INDUS proportion of non-retail business acres per town

centres
• LSTAT lower status of the population

Fig. 7. GP algorithm output for the Random Forest Regressor prediction
applied to instance x2 in Boston data set.

The expression represented in Figure 7 can be defined as:

f∗(s) =
xindus
xlstat

+ xptratio (6)

Based on the equations (5) and (6) we can understand
the behavior around x1 and x2. First of all, it is possible
to observe that the feature PTRATIO (pupil-teacher ratio by
town) is relevant to define home prices in the neighborhood
of both instances (x1, x2). However, in the neighborhood of
x2, PTRATIO has more influence.

These results can help a decision-maker to understand which
features contribute the most to the increase in the price in a
neighborhood. Moreover, it is possible to know which features
changed in order to increase or decrease home prices. In this
regard, it is useful to compute the gradient of the model
output with respect to the selected input parameters. Lets take
equation (5) as an example. Its gradient is given by:

∇f∗(s) =

[
xptratioxnox

14.195
,
x2ptratio
28.390

]T
(7)

By analyzing equations (5) and (7) it is easy to understand
how and by how much each feature affects housing prices.

The Random Forest Regressor has also been applied to the
Diabetes data set. This data set consists of 402 samples and
10 features. In this case, the target is a quantitative measure of
disease progression. The GPX was set with the same hyper-
parameters used for the Boston data set. Figure 8 presents the
result for the Diabetes data set.

Fig. 8. GP algorithm output for the Random Forest Regressor prediction
applied to instance xd1 in Diabetes data set.

The evolutionary process chose a final tree with two fea-
tures:
• bmi: Body mass index
• S6: blood serum measurements
The tree structure in Figure 8 represents the following

expression:

−67.934xS6 + xbmi + 158.525 (8)

where xbmi is bmi and xS6
is S6.

This expression shows for instance that decreasing body
mass index is a relevant feature to decrease diabetes progres-
sion for that specific patient.

VII. CONCLUSION

This paper presented an approach to the interpretability
problem based on Genetic Programming. We discussed several
concepts of interpretability and why this subject is relevant
nowadays.

The GP algorithm used was able to produce a non-linear
algebraic expression as output, which in turn provides many
opportunities for the interpretability of the more sophisticated
ML algorithms. It naturally selects the most important features

to build a local explanation around a given sample. Besides,
the produced analytic expression allows for easy differentia-
tion, which gives the sensitivity of the output with respect to
each feature.

Examples using the classic Boston and Diabetes data sets
show that the proposed approach can be seen as a source
for interpretability and help the decision maker to understand
better how the complex model is making a decision.

We submit the explainers GPX, Lime and Decision Tree
to a stress test in order to measure which one can, locally,
better understand the black-box model. The statistical analysis
showed us that GPX, besides bringing a new approach to
interpretability, presented better or at least similar results when
compared with the state of the art.

REFERENCES

[1] Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen, “Lung cancer
cell identification based on artificial neural network ensembles,”
Artificial Intelligence in Medicine, vol. 24, no. 1, pp. 25 – 36,
2002. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S093336570100094X

[2] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot,
F. Cerutti, M. Srivastava, A. Preece, S. Julier, R. M. Rao, T. D. Kelley,
D. Braines, M. Sensoy, C. J. Willis, and P. Gurram, “Interpretability of
deep learning models: A survey of results,” pp. 1–6, Aug 2017.

[3] J. Zhu, A. Liapis, S. Risi, R. Bidarra, and G. M. Youngblood, “Explain-
able ai for designers: A human-centered perspective on mixed-initiative
co-creation,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), 2018, pp. 1–8.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should I Trust
You?”: Explaining the Predictions of Any Classifier,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1135–1144. [Online].
Available: https://doi.org/10.1145/2939672.2939778

[5] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence
(xai): Towards medical xai,” 10 2019.

[6] P. Hall and N. Gill, An Introduction to Machine Learning Interpretabil-
ity: An Applied Perspective on Fairness, Accountability, Transparency,
and Explainable AI. O’Reilly Media, 2018.

[7] C. Molnar, Interpretable Machine Learning. A Guide for Making
Black Box Models Explainable, 2019, https://christophm.github.io/
interpretable-ml-book/.

[8] C. Tankard, “What the gdpr means for businesses,” Network
Security, vol. 2016, no. 6, pp. 5 – 8, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1353485816300563

[9] J. P. Albrecht, “How the gdpr will change the world,” European
Data Protection Law Review, vol. 2, no. 3, 2016. [Online]. Available:
https://doi.org/10.21552/EDPL/2016/3/4

[10] B. P. Evans, B. Xue, and M. Zhang, “What’s inside the black-
box? a genetic programming method for interpreting complex
machine learning models,” p. 1012–1020, 2019. [Online]. Available:
https://doi.org/10.1145/3321707.3321726

[11] B. Goodman and S. Flaxman, “European union regulations on algorith-
mic decision-making and a ”right to explanation”,” AI Magazine, vol. 38,
pp. 50–57, 2017.

[12] Z. Che, S. Purushotham, R. G. Khemani, and Y. Liu, “Interpretable
deep models for icu outcome prediction,” AMIA ... Annual Symposium
proceedings. AMIA Symposium, vol. 2016, pp. 371–380, 2016.

[13] S. M. Lundberg and S.-I. Lee, “A unified ap-
proach to interpreting model predictions,” pp. 4765–
4774, 2017. [Online]. Available: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

[14] A. B. Arrieta], N. Dı́az-Rodrı́guez, J. D. Ser], A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82 – 115, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253519308103

[15] F. Livingston, “Implementation of breiman’s random forest machine
learning algorithm,” ECE591Q Machine Learning Journal Paper, pp.
1–13, 2005.

[16] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
USA: Prentice Hall PTR, 1998.

[17] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[18] A. Gaspar-Cunha, R. Takahashi, and C. Antunes, Manual de
computação evolutiva e metaheurı́stica, ser. Ensino. Imprensa da
Universidade de Coimbra / Coimbra University Press, 2012. [Online].
Available: https://books.google.com.br/books?id=9Di5CwAAQBAJ

[19] J. W. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes,
“Using the adap learning algorithm to forecast the onset of diabetes
mellitus,” Proceedings. Symposium on Computer Applications in
Medical Care, p. 261—265, November 1988. [Online]. Available:
https://europepmc.org/articles/PMC2245318

[20] M. Buscema, S. Terzi, and W. Tastle, “A new meta-classifier,” in 2010
Annual Meeting of the North American Fuzzy Information Processing
Society, 2010, pp. 1–7.

[21] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. D.
Jong, S. Dzeroski, S. E. Fahlman, D. Fisher, R. Hamann, K. Kaufman,
S. Keller, I. Kononenko, J. Kreuziger, R. Michalski, T. Mitchell, P. Pa-
chowicz, Y. Reich, H. Vafaie, W. V. D. Welde, W. Wenzel, J. Wnek, and
J. Zhang, “The monk’s problems a performance comparison of different
learning algorithms,” Tech. Rep., 1991.

[22] J.-L. Voz, M. Verleysen, P. Thissen, and J.-D. Legat, “A practical
view of suboptimal bayesian classification with radial gaussian kernels,”
in Proceedings of the International Workshop on Artificial Neural
Networks: From Natural to Artificial Neural Computation, ser. IWANN
’96. Berlin, Heidelberg: Springer-Verlag, 1995, p. 404–411.

[23] I.-C. Yeh, K.-J. Yang, and T.-M. Ting, “Knowledge discovery on rfm
model using bernoulli sequence,” Expert Systems with Applications,
vol. 36, no. 3, Part 2, pp. 5866 – 5871, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417408004508

[24] K. Zhang and W. Fan, “Forecasting skewed biased stochastic
ozone days: Analyses, solutions and beyond,” Knowl. Inf. Syst.,
vol. 14, no. 3, p. 299–326, Mar. 2008. [Online]. Available:
https://doi.org/10.1007/s10115-007-0095-1

[25] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[26] B. V. Ramana, M. S. P. Babu, and N. B. Venkateswarlu, “A critical
comparative study of liver patients from usa and india: An exploratory
analysis,” 2012.

[27] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108–122.

[28] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis,
“Modeling wine preferences by data mining from physicochemical
properties.” Decis. Support Syst., vol. 47, no. 4, pp. 547–553, 2009.
[Online]. Available: http://dblp.uni-trier.de/db/journals/dss/dss47.html#
CortezCAMR09

[29] R. Ballester-Ripoll, E. G. Paredes, and R. Pajarola, “Sobol tensor trains
for global sensitivity analysis,” Reliability Engineering & System Safety,
vol. 183, pp. 311–322, 2019.

[30] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[31] I. G. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,”
Nature, vol. 521, pp. 436–444, 2015.

[32] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pp. 144–152.

[33] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
“Support vector regression machines,” in Advances in neural information
processing systems, 1997, pp. 155–161.

[34] A. N. Tikhonov, “Solution of incorrectly formulated problems and the
regularization method,” Soviet Math. Dokl., vol. 4, pp. 1035–1038, 1963.

