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Abstract—In this paper, a new algorithm is presented to
deal with real parameter single-objective optimization problems,
which are often complex and computationally very expensive.
The proposed algorithm (j2020) is based on the self-adaptive
differential evolution algorithms jDE and jDE100. Our algorithm
uses two populations like jDE100, while jDE uses only one
population. It uses a crowding mechanism, which is not being
used in previous algorithms, and a mechanism to choose vectors
in the mutation operation from both subpopulations. We provide
the obtained results for each benchmark function for four
dimension scenarios as required by the organizers of the special
session for Single Objective Bound-Constrained Optimization.
We also compare the obtained results with the original DE and
jSO algorithms on the largest dimension scenario.

Index Terms—differential evolution, optimization, global opti-
mum, maximum number of function evaluations

I. INTRODUCTION

Single-objective real parameter optimization is interesting
since we can find it in many practical problems in various
research domains. Also at CEC, the competition and/or special
session has been organized each year after 2013. Solving com-
plex optimization problems, either they are single-objective or
not, is a challenging task because a search space is huge even
for a small number of objectives and it grows tremendously
when the number of objectives is increasing.

It is known that one of the biggest drawbacks of evolution-
ary algorithms, as well as other population-based algorithms,
like particle swarm optimization (PSO) algorithms, is the loss
of diversity in the population. As a consequence, an algorithm
might show a premature convergence into local optima [1].
On the other hand, population-based algorithms have some
advantages when dealing with ways to solve single-objective
real parameter optimization, among others, they do not need
any gradient calculation.

A goal in the global optimization problem is to find a
solution, i.e., vector ~x, which minimizes objective function
f(~x). Vector ~x = {x1, x2, ..., xD} consists of D variables, and
each variable xj , j = 1, 2, ..., D is defined by its lower xj,low
and upper xj,upp bound. Therefore, we can define a global
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optimization problem also as bound-constrained optimization
where D denotes the dimensionality of the problem.

In a single objective optimization, function f might have
many optima and an algorithm is required to find the global
one. If an algorithm traps its population into a local optimum,
the final result of optimization may be poor [2]. The global
optimum may not be known, which is a case when we are
solving an unknown problem for the first time.

The Differential Evolution (DE) [3] was proposed by
R. Storn and K. Price 35 years ago. This stochastic population-
based algorithm has shown competitive performances when
solving real-world optimization problems [4], [5] in various
domains.

At CEC 2019 competition on the 100-Digit Challenge [6],
some DE versions [7], [8], [1] were among top algorithms (see
Analysis of Results [9]) among other optimization algorithms
like SOMA [10], ABC [11].

Nowadays, a lot of improvements on DE were proposed
recently, and they were collected in reviews and surveys [12],
[13], [14], [15], [16].

In this paper, we present a new version of the DE algorithm,
called j2020, for single objective real parameter optimiza-
tion [17]. It is a derivation from the jDE [18] and jDE100 [1]
algorithms. The main new features of the j2020 algorithm are:
(1) It uses two populations.
(2) Lower and upper limits of the control parameters are set

differently compared to original jDE.
(3) It uses a simple one-way migration of currently best

individual among the populations.
(4) It applies a mechanism that individuals from a small

population might participate in the mutation operation of
a big population.

(5) The proposed algorithm applies restart’s mechanism sep-
arately in both populations to manage a population diver-
sity.

(6) A crowing mechanism is used.
The ideas of these features/mechanisms are not novel in

evolutionary algorithms and other optimization algorithms,
some of them were already used in jDE versions, etc. Nev-
ertheless, an algorithm, which joins more mechanisms under
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Require: P... the population
Require: NP ... the population size
Ensure: ~xbest ... the best individual in the population
Ensure: f(~xbest) ... the value of the best individual

1: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1,NP})
2: Initialize population P = (~x1, ~x2, . . . , ~xNP) randomly
3: while stopping criteria is not met do
4: for (i← 0; i < NP; i++) do

. ** jDE mutation **

5: F ←

{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,g, otherwise,

6: Randomly select r1, r2, and r3; . r1 6= r2 6= r3 6= i
7: ~vi,g+1 ← ~xr1 + F (~xr2 − ~xr3) . DE/rand/1/

. ** jDE crossover **

8: CR←

{
rand3, if rand4 < τ2,

CRi,g, otherwise,

9: jrand ← rand{1, D}
10: for (j ← 0; j < D; j++) do
11: if (rand(0, 1) ≤ CR or j = jrand) then
12: ui,j,g+1 ← vi,j,g+1

13: else
14: ui,j,g+1 ← xi,j,g
15: end if
16: end for

. ** selection **
17: if (f(~ui,g+1) ≤ f(~xi,g)) then . minimization
18: ~xi,g+1 ← ~ui,g+1

19: Fi,g+1 ← F
20: CRi,g+1 ← CR
21: else
22: ~xi,g+1 ← ~xi,g
23: Fi,g+1 ← Fi,g

24: CRi,g+1 ← CRi,g

25: end if
26: end for
27: end while

Algorithm 1: jDE [18].

one umbrella and does this in a way that a good overall
performance is achieved, could be called as a new one.

The contributions of this paper are: A new version of the
algorithm (j2020) is presented, experiments for CEC 2020
competition on the single objective real parameter are con-
ducted, the obtained results are presented in a form required
by the competition organizers, and the obtained results are
compared with the results of the DE and jSO algorithms.

The structure of the paper is as follows. Section II gives
a background for this work, where an overview of the DE,
jDE, and jDE100 algorithms is presented. Section III presents
our new algorithm, called j2020, which is used for solving
single-objective problems. Experimental results of the j2020
algorithm on CEC 2020 benchmark problems are presented in
Section IV. Section V concludes the paper with some final
remarks.

II. BACKGROUND

This section gives some backgrounds on DE and its two
variants jDE and jDE100.

A. Differential Evolution

Differential evolution (DE) [3] is a population-based algo-
rithm that belongs to the group of evolutionary algorithms. It
shows highly competitive performances in many applications
dealing with optimization [19], [20], [21], [22], [23].

The original DE algorithm has three control parameters,
scaling factor F , crossover parameter CR, and population size
NP . These parameters are required to be set before the actual
evolutionary process starts. In the original DE algorithm, they
have the same fixed value during the whole evolutionary
process. In the DE algorithm, a population P consists of NP
individuals or vectors:

Pg = (~x1,g, . . . , ~xi,g, . . . , ~xNP,g), i = 1, 2, . . . ,NP ,

where g is a generation index, g = 1, 2, . . . , GMAX . Each
vector

~xi,g = {xi,1,g, xi,2,g, . . . , xi,D,g}

consists of D variables and represents the solution of an
optimization problem.

DE evolves a randomly initialized population throughout
GMAX generations guided the individuals in the searching
process toward a global optimum. The best-found vector in
the evolutionary process and its function value are returned as
a final solution.

Initialization: A population is randomly initialized before
the evolutionary process starts. Each vector gets randomly
generated uniformly distributed values between lower and
upper bound for all its components:

xi,j,0 = xj,low + rand() ∗ (xj,upp − xj,low).

During each generation, the population is evolved, and
DE employs three operations for each individual, namely
mutation, crossover, and selection. They are described in the
next subsections.

Mutation: A mutant vector ~vi,g+1 is created using one
of the mutation strategies. The ’DE/rand/1’ mutation strategy
has been introduced in the original DE algorithm [3] and it
is a very often used mutation strategy in DE. This strategy
randomly selects two vectors and their difference is multiplied
by scale factor F and added to the third randomly selected
vector:

~vi,g+1 = ~xr1,g + F · (~xr2,g − ~xr3,g),

where r1, r2, and r3 are randomly chosen indices within a set
of {1, ...,NP}. They are pairwise different and also different
from index i:

r1 6= r2 6= r3 6= i.

The other widely used DE mutation strategies are [24], [25]:

• ”DE/best/1”: ~vi,g+1 = ~xbest + F (~xr1,g − ~xr2,g),

• ”DE/current to best/1”:
~vi,g+1 = ~xi,g + F (~xbest − ~xi,g) + F (~xr1,g − ~xr2,g),



• ”DE/best/2”:
~vi,g+1 = ~xbest + F (~xr1,g − ~xr2,g) + F (~xr3,g − ~xr4,g),

• ”DE/rand/2”:
~vi,g+1 = ~xr1,g + F (~xr2,g − ~xr3.g) + F (~xr4,g − ~xr5,g),

• ”DE/current-to-pBest/1”:
~vi,g+1 = ~xi,g + F (~xpBest − ~xi,g) + F (~xr1,g − ~xr2,g),

where the indices r1–r5 represent the random and mutually
different integers generated within the set {1, ...,NP} and also
different from index i. ~xbest is the best vector in a current
generation, while ~xpBest denotes one of the good individuals
from the top p% individuals.

Each strategy has a different ability to maintain the popu-
lation diversity which might increase/decrease algorithm’s
convergence rate during the evolutionary process.

Crossover: A mutant vector ~vi,g+1 generated by one of
the mutation strategies is used in the next operation, called
crossover. Binomial crossover is widely used in DE. An-
other type of crossover is exponential [3], [4]. The binomial
crossover creates a trial vector ~ui,g+1 as follows:

ui,j,g+1 =

{
vi,j,g+1, if rand(0, 1) ≤ CR or j = jrand,

xi,j,g, otherwise,

for i = 1, 2, ...,NP and j = 1, 2, ..., D. CR ∈ [0, 1] is
crossover parameter and presents the probability of creating
components for a trial vector from a mutant vector. If a
component was not selected from the mutant vector, then it
is taken from the parent vector ~xi,g . Randomly chosen index
jrand ∈ {1, 2, ...,NP} is responsible for the trial vector to
contain at least one component from the mutant vector.

If some variables from the trial vector are out of bounds,
a repair mechanism is applied. Our algorithm reflects these
variables back into the search space.

Selection: After the crossover operation, the trial vector is
evaluated – an objective function f(~ui,g+1) is calculated. Then
selection operation compares two vectors, population vector
~xi,g and its corresponding trial vector ~ui,g+1, according to
their objective function values. The better vector will become
a member of the next generation. The selection operation for
a minimization optimization problem is defined as follows:

~xi,g+1 =

{
~ui,g+1, if f(~ui,g+1) ≤ f(~xi,g),
~xi,g, otherwise.

This selection operation is greedy and it is well-known for
DE, but based on our knowledge it is rarely applied in other
EAs.

Stopping condition: DE stops an evolutionary process after
GMAX generations. The stopping criteria can be expressed
also by the maximum number of function evaluations, the
maximum number of generations, time limit, etc.

Different settings of the control parameters can lead to a
faster convergence of the DE algorithm. Therefore, a procedure
of tuning control parameters takes place before the actual
optimization process starts. A good tuning procedure can

Require: Pb ... big population
Require: Ps ... small population
Require: bNP ... size of Pb

Require: sNP ... size of Ps: bNP = m× sNP,m ∈ 1, 2, ...

1: Initialize population Pb = (~x1, . . . , ~xbNP) randomly
2: Initialize population Ps = (~x1, . . . , ~xsNP) randomly
3: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1, bNP+sNP})
4: while stopping criteria is not met do
5: Check for a reinitialization of Pb

6: Check for a reinitialization of Ps

7: for each i ∈ Pb do
. ** on big population **

8: Perform jDE mutation (Steps 5–7 in Alg. 1)
9: Perform jDE crossover (Steps 8–16 in Alg. 1)

10: Perform jDE selection (Steps 17–25 in Alg. 1)
11: end for
12: if ~xbest ∈ Pb then
13: Copy ~xbest into Ps

14: end if
15: for k ∈ 1, 2, ...,m do . repeat m-times
16: for each i ∈ Ps do

. ** on small population **
17: Perform jDE mutation (Steps 5–7 in Alg. 1)
18: Perform jDE crossover (Steps 8–16 in Alg. 1)
19: Perform jDE selection (Steps 17–25 in Alg. 1)
20: end for
21: end for
22: end while

Ensure: ~xbest . the best individual in the population
Ensure: f(~xbest) . the value of the best individual

Algorithm 2: jDE100 [1].

Fig. 1. Evolutionary process in the jDE100 [1] algorithm. Four steps are
being repeated: 1© One generation is performed on big population Pb. 2© If
required, ~xbest is copied into small population Ps. 3© More generations are
performed on Ps. 4© The evolutionary process control switches to Pb.

take a lot of time. Consequently, adaptive and self-adaptive
mechanisms appear for adjusting control parameters during
the evolutionary process. In early stages of the evolutionary
process, values for control parameters may differ from values
that are the most suitable at the mid-stages of the evolutionary
process, and those at late stages.

Adaptive and self-adaptive approaches can be applied to



Require: Pb ... big population
Require: Ps ... small population
Require: bNP ... size of Pb

Require: sNP ... size of Ps

Require: bNP ≥ sNP and bNP = m× sNP,m ∈ 1, 2, ...

1: Initialize population Pb = (~x1, . . . , ~xbNP) randomly
2: Initialize population Ps = (~x1, . . . , ~xsNP) randomly
3: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1, bNP+sNP})
4: while stopping criteria is not met do
5: Check for a reinitialization of Pb

6: Check for a reinitialization of Ps

7: for each i ∈ Pb do
. ** on big population **

8: perform jDE mutation (Steps 5–7 in Alg. 1) using
9: ~xr1 ∈ Pb

10: ~xr2 , ~xr3 ∈ Pb

⋃
Ms,Ms ⊂ Ps

11: end perform
12: Perform jDE crossover (Steps 8–16 in Alg. 1)
13: Perform crowding in Pb

14: Perform jDE selection (Steps 17–25 in Alg. 1)
15: end for
16: if ~xbest ∈ Pb then
17: Copy ~xbest into Ps

18: end if
19: for k ∈ 1, 2, ...,m do . repeat m-times
20: for each i ∈ Ps do

. ** on small population **
21: Perform jDE mutation (Steps 5–7 in Alg. 1)
22: Perform jDE crossover (Steps 8–16 in Alg. 1)
23: Perform jDE selection (Steps 17–25 in Alg. 1)
24: end for
25: end for
26: end while

Ensure: ~xbest . the best individual in the population
Ensure: f(~xbest) . the value of the best individual

Algorithm 3: j2020.

a particular DE control parameter or more of them at the
same time. Some proposed adaptive and self-adaptive DE
approaches are jSO [2], SADE [26], jDE [18], JADE [27],
LSHADE [28], [29], etc. These state-of-the-art algorithms
utilize a self-adaptive mechanism for scale factor and crossover
parameter, usually. Recently, there have been several attempts
to adjust the third control parameter, i.e. population size
(NP ), during the evolutionary process [28], [30], but many
researchers keep NP fixed during the optimization process.

B. jDE Algorithm

The jDE algorithm was introduced in 2006 [18]. It uses the
self-adapting mechanism of two control parameters, i.e., scale
factor and crossover rate. Each individual has its own control
parameter values Fi and CRi. New control parameters Fi,g+1

and CRi,g+1 are calculated before the mutation operation is
performed as follows [18]:

Fi,g+1 =

{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,g, otherwise,

CRi,g+1 =

{
rand3, if rand4 < τ2,

CRi,g, otherwise,

where randj , for j ∈ {1, 2, 3, 4} are random values uniformly
distributed within the range [0, 1]. It can be seen that τ1 and
τ2 values represent probabilities to adjust control parameters
F and CR, respectively. For the sake of clarity, a pseudo-code
of the jDE algorithm is depicted in Alg. 1.

In [18] and in many of our later works, parameters
τ1, τ2, Fl, Fu are fixed to values 0.1, 0.1, 0.1, 0.9, respectively.
In such a way, the new F takes a value from [0.1, 1.0], and
the new CR from [0, 1].

Commonly, CR value is set between 0 and 1. Also, in
the case of self-adaptation in jDE, where its value changes
through iterations, it is kept between these two limits. The
LSGOjDE [25] algorithm keeps the same lower limit, but
defines a different upper limit for each of three mutation
strategies:

CRi,g+1 =

 CRl + rand3 · CRu if rand4 < τ2,

CRi,g otherwise.
(1)

The lower limit CRl is always set to 0. The value of the upper
limit depends on the strategy. In the LSGOjDE, the upper limit
is set to 0.25, 1.2, and 1.2, respectively. In jDE100 [1], the Fl

is a tunable parameter (it has been tuned for each benchmark
function).

Note that Fi,g+1 and CRi,g+1 are obtained before the mu-
tation is performed. So they influence the mutation, crossover,
and selection operations of the new vector ~xi,g+1.

C. Algorithm jDE100

In this section, we give an overview of the algorithm
jDE100[1] that was presented previous year at the CEC confer-
ence. It is suitable for solving single-objective real parameter
optimization. It uses two not equal-sized populations, i.e., a big
population Pb, and a small population Ps. Figure 1 depicts
the evolutionary process over these two populations. The sizes
of two populations are bNP = 1000 and sNP = 25 , respec-
tively. The pseudo-code of jDE100 is given in Algorithm 2.

Population Pb is reinitialized once per generation if
myEqs = 25% of bNP individuals have the similar value
as the best individual in Pb, or when the best individual in
Pb is not improved for ageLmt = 1e9 evaluations that were
applied only on Pb. During reinitialization, all individuals
are randomly generated like during the initialization process,
except the ~xbest vector in Ps only.

Information exchange between the populations is passed by
coping the best vector ~xbest from Pb to Ps if it has been
found in Pb, and during a mutation process. The details are
presented in [1] and the source code is available at https://
github.com/P-N-Suganthan.

Note that there was no limit of the maximum number of
function evaluations in the CEC 2019 competition, while such
a limit is set for each function at CEC 2020.



TABLE I
SUMMARY OF THE CEC 2020 BOUND-CONSTRAINED BENCHMARK FUNCTIONS.

No. Functions F ∗
i = Fi(~x

∗)

Unimodal Functions 1 Shifted and Rotated Bent Cigar Function (CEC 2017 F1) 100

Basic Functions
2 Shifted and Rotated Schwefel’s Function (CEC 2014 F11) 1100

3 Shifted and Rotated Lunacek bi-Rastrigin Function (CEC 2017 F7) 700

4 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017 f19) 1900

Hybrid Functions
5 Hybrid Function 1 (N = 3) (CEC 2014 F17) 1700

6 Hybrid Function 2 (N = 4) (CEC 2017 F16) 1600

7 Hybrid Function 3 (N = 5) (CEC 2014 F21) 2100

Composition Functions
8 Composition Function 1 (N = 3) (CEC 2017 F22) 2200

9 Composition Function 2 (N = 4) (CEC 2017 F24) 2400

10 Composition Function 3 (N = 5) (CEC 2017 F25) 2500

Search range: [-100,100]D , D = 5, 10, 15, and 20

TABLE II
PARAMETERS IN THE J2020 ALGORITHM.

Parameter Value Description

bNP 7D size of Pb

sNP D size of Ps

Fl,b 0.01 lower limit of scale factor for Pb

Fl,s 0.17 lower limit of scale factor for Ps

Fu 1.1 upper limit of scale factor for Pb and Ps

CRl,b 0.0 lower limit of crossover parameter for Pb

CRl,s 0.0 lower limit of crossover parameter for Ps

CRu,b 1.0 upper limit of crossover parameter for Pb

CRu,s 0.7 upper limit of crossover parameter for Ps

Finit 0.5 initial value of scale factor
CRinit 0.9 initial value of crossover parameter
τ1 0.1 probability to self-adapt scale factor
τ2 0.1 probability to self-adapt crossover parameter

ageLmt maxFEs/10 number of FEs with no improvement of the best individual then restart in Pb is required to occurs
eps 1e− 16 small value used to check if two function values are similar

myEqs 25 reinitialization if myEqs% of individuals in the corresponding population have the similar function values

TABLE III
RESULTS FOR 5D.

Func. Best Worst Median Mean Std

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0002 13.4090 0.5071 3.2283 3.7395

3 0.0000 6.0191 5.1483 3.4156 2.3271

4 0.0000 0.1912 0.1009 0.0768 0.0640

5 0.0000 0.9950 0.0000 0.1373 0.2860

8 0.0000 9.4160 0.0000 0.6278 2.3889

9 0.0000 100.0000 0.0511 20.4867 37.5459

10 0.0000 300.0000 100.1350 126.2370 90.3120

III. ALGORITHM J2020
A new algorithm (called j2020) for solving single-objective

bound-constrained optimization is presented in this section.

The j2020 pseudo-code is shown in Algorithm 3.
It uses the self-adaptation of F and CR control parameter

applied at the individual’s level and this mechanism is the
same as in the jDE [18] algorithm.

The new algorithm uses two populations: a big population
Pb, and a small population Ps, which is a similar approach
as in the jDE100 [1] algorithm. Figure 1 illustrates the evolu-
tionary process over these two populations in jDE100 and the
same steps are applied in j2020. The sizes of the populations
are bNP and sNP , respectively. Before the evolutionary
process starts, the populations are initialized (Steps 1 and 2
in Alg. 3), and also the control parameters Fi and CRi for
both populations are initialized. The main loop represents the
evolutionary process, which is iterated until stopping criteria is
met. The stopping criteria is defined with a predefined number
of function evaluations, maxFEs .



TABLE IV
RESULTS FOR 10D.

Func. Best Worst Median Mean Std

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 3.6648 0.2498 0.6786 1.1601

3 0.0000 11.0110 10.3669 8.0587 3.8839

4 0.0000 0.2465 0.1282 0.1093 0.0904

5 0.0000 1.2031 0.2081 0.3022 0.3130

6 0.0291 0.8714 0.4845 0.4776 0.2491

7 0.0000 0.3204 0.0051 0.0673 0.1251

8 0.0000 11.5631 0.0000 1.5417 3.9979

9 0.0000 100.0000 100.0000 80.0000 40.6838

10 100.0069 397.7429 100.0503 140.1574 81.1932

TABLE V
RESULTS FOR 15D.

Func. Best Worst Median Mean Std

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.1665 0.0416 0.0572 0.0432

3 0.0000 15.5670 0.0000 6.7789 7.8184

4 0.0000 0.3088 0.2055 0.1987 0.0747

5 0.0000 32.1552 5.4431 7.5816 7.6857

6 0.0016 8.6239 0.3371 0.8451 2.0921

7 0.0681 11.6390 0.6521 0.9828 2.0273

8 0.0000 100.0000 0.0000 9.4910 27.4228

9 100.0000 300.0000 100.0000 123.3855 56.8458

10 100.0212 400.0000 400.0000 390.0007 54.7684

Next two steps are responsible for checking if any of
two populations needs to be reinitialized. Population Pb is
reinitialized if myEqs percent of the best individuals in Pb

have a similar function value (a difference is less than a small
value eps = 1e−16). The reinitialization is also applied if the
best individual in Pb is not improved for ageLmt evaluations.
During the reinitialization process of the big population Pb

all individuals of Pb are randomly reinitialized, i.e., each in-
dividual gets randomly generated uniformly distributed values
between lower and upper bound for all its components.

Reinitialization in Ps has occurred if myEqs% of sNP
individuals have a similar function value (a difference is less
than a small value eps = 1e−16) as the best individual in Ps.
It reinitializes all individuals in Ps except the ~xbest vector in
Ps, which remains unchanged.

One generation is performed on the big population Pb

(Lines 7–15 in Alg. 3). Mutant vector ~vi is generated with
well-known the jDE/rand/1 mutation strategy. Note, r1 is the
index of individual from Pb, while r2 and r3 are indices
of individuals from Pb ∪Ms, where Ms ⊂ Ps presents a
small amount of individuals from the small population Ps.
The motivation of using the proposed ranges for the indices
r2 and r3 is to have a small influence of Ps on Pb. The

TABLE VI
RESULTS FOR 20D.

Func. Best Worst Median Mean Std

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0625 0.0312 0.0260 0.0247

3 0.0000 20.3872 20.3872 14.4196 9.2898

4 0.0298 0.3500 0.1732 0.1800 0.0784

5 0.3123 167.7516 81.4398 77.7693 57.4785

6 0.0684 0.4616 0.1769 0.1915 0.1013

7 0.0195 17.1125 0.3961 1.9843 4.0232

8 0.0000 100.0000 100.0000 92.7213 22.1020

9 100.0000 416.1669 405.9567 339.4512 127.5505

10 399.0080 399.1628 399.0493 399.0631 0.0402

TABLE VII
COMPUTATION COMPLEXITY. TIME IS PRESENTED IN SECONDS.

T0 T1 T2 (T2 - T1)/T0

D =5 0 0.04657 0.1818 inf

D =10 0 0.07947 0.3327 inf

D =15 0 0.1302 0.5186 inf

number of individuals in Ms is expressed as follows:

|Ms| =


1, if 1 ≤ it ≤ 1

3MaxFEs,

2, if 1
3MaxFEs < it ≤ 2

3MaxFEs,

3, if 2
3MaxFEs < it ≤ MaxFEs,

where it = 1, · · · ,MaxFEs is the iteration counter.
It is expected that Ps may have a faster convergence speed

(it also may get trapped into a local minimum) since sNP is
smaller than bNP . Then the crossover and selection operations
follow, which are identical as in jDE.

When one generation in Pb has finished, the algorithm
checks if ~xbest was found in Pb. If yes, then it is copied into
the small population Ps. In this way, a bigger influence of
Pb on Ps is applied, and we want that the smaller population
continues the evolutionary process also with one fresh (i.e. the
best) individual.

Then mutation, crossover, and selection operations follow
on smaller population Ps and they are similar to those on
bigger population Pb. The operations are repeated m-times,
which ensures that both populations have an equal amount
of function evaluations. In a special case, we can assume
that bNP = m × sNP,m ∈ 1, 2, .... Note, when a mutation
operation is applied to the smaller population Ps, the indices
r1, r2, and r3 are associated with individuals from Ps.

The parameters of our j2020 algorithm are presented in
Table II. Note, at CEC 2019, in jDE100, Fl and CRl were
two tunable parameters, while this competition does not allow
them to be tuned for each benchmark function, i.e., the same
parameter value should be used for all benchmark functions.

The j2020 algorithm has not applied the additional mecha-
nism that is used in Pb only in jDE100. In this mechanism in
jDE100 we have a small number oppNP% of bNP individuals



TABLE VIII
COMPARISON THE MEAN RESULTS FOR 20D.

Func. DE jSO j2020

1 0.0000 0.0000 0.0000
2 254.1268 1.8969 0.0260
3 26.8776 20.8927 14.4196
4 1.3512 0.5246 0.1800
5 28.2255 12.4058 77.7693

6 10.7794 1.1336 0.1915
7 12.2037 0.4307 1.9843

8 100.0000 100.0000 92.7213
9 413.6728 400.3541 339.4512

10 413.6602 413.6577 399.0631

that are trying to solve maximization of function, i.e, which
is opposite to default assumption which is minimization for
benchmark functions in this paper. After the objective function
is calculated, say c = f(~u), then in the selection operation
we first check, if the value c is better than the objective
value of the ~xbest vector. In that case, we need to save ~u.
Otherwise, vector ~u survives if it is worse (maximization)
than its corresponding parent vector. As we mentioned this
mechanism is not applied in j2020.

The j2020 uses a crowding mechanism after a crossover
operation in order to find an individual which is the closest
one the trial vector based on the Euclidian distance. The found
individual then compete with the trial individual during a
selection operation.

IV. EXPERIMENTS

A. Benchmark Functions

We tested the new j2020 algorithm on ten CEC 2020 spe-
cial session benchmark functions for single objective bound-
constrained optimization [17]. The benchmark functions are
collected and presented in Table I. One benchmark function
is an unimodal function, three functions belong to a group
of basic functions, three of them are hybrid functions, and
three of them belong to a group of composition functions.
The optimal solution values are known for all benchmark
functions and they are presented in the last column of Table I.
The upper and lower bounds of a search space are defined
as [−100, 100]D, i.e., a lower bound for all components is
−100, while an upper bound for all components is 100. The
functions are scalable and have dimensions D = 5, 10, 15
and 20. The goal is to compute each function’s minimum
value. The maximum number of objective function evaluations
has not been limited in the previous competition (CEC 2019),
but this challenge, as several previous competitions, has the
limitation of the maximum number of function evaluations. A
run for each benchmark function is terminated after maxFEs
function evaluations, and they are defined as follows:

• maxFEs = 50000 for D = 5,
• maxFEs = 1000000 for D = 10,
• maxFEs = 3000000 for D = 15, and

• maxFEs = 10000000 for D = 20.
The organizers of the challenge ask contestants to record the

function value (F ∗
i = Fi(~x

∗)) after
⌊
D

k
5−3maxFEs

⌋
(k=0,

1, 2, 3, ..., 15) for each run. Therefore, 16 error values are
recorded for each function for each run. The participants are
required to send the final results as the specified format to the
organizers who will present an overall analysis and comparison
based on these results. Note, error values smaller than 10−8

are taken as zero.
For each function, 30 consecutive runs of an algorithm are

required. The error values achieved after maxFEs in 30 runs
are sorted from the smallest (best) to the largest (worst) and we
present the best, worst, mean, median and standard deviation
values of function error values for the 30 runs in the next
section.

B. Experimental Results

The obtained results of the proposed j2020 algorithm are
shown in Tables III–VI.

A comparison on D = 20 based on the mean values of
the proposed j2020 algorithm with the original DE and jSO
algorithms is shown in Table VIII. The best-obtained results
for each function of the compared algorithms are presented
in bold. The original DE uses a standard setting for control
parameter F = 0.5, CR = 0.9, and NP= 100 for all
functions and all dimensions. The parameter settings for jSO
are as in [2]. We can see that algorithms are shown similar
performance on function F1. jSO obtained the best results on
F5 and F7, while j2020 obtained the best results on F2–F4,
F6, F9, and F10.

Execution times are shown in Table VII. Note that we could
not compute (T2 − T1)/T0 since T0 is zero – compiler
has made a simplification during the optimization phase of
compilation.

In our experimental work we used the next PC configuration:
System: GNU Linux, CPU: Intel(R) Core(TM) i7-4770 CPU
3.4 GHz, Main memory: 16 GB, Programming language: C++,
Algorithm: j2020, Compiler: g++ (GNU Compiler).

V. CONCLUSIONS

We proposed a new differential evolution algorithm for
solving real parameter single objective bound-constrained opti-
mization. Our algorithm uses self-adaptive control parameters
F and CR, two populations with different sizes, restart mech-
anism in both populations, migration of the best individual
from the bigger population into the smaller population, mod-
ified mutation strategy in the big population, and crowding
mechanism.

In experimental work, our algorithm was applied on ten
benchmark functions for D = 5, 10, 15, and 20, and results
are presented in tables as required by the organizers of the
CEC 2020 competition. The obtained results of the proposed
j2020 algorithm are compared with the original DE and jSO
algorithms for dimension D = 20, and j2020 shows better
performance.



ACKNOWLEDGMENT

The authors would also like to acknowledge the efforts of
the organizers of this session and source code availability of
the benchmark functions.

REFERENCES
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