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Abstract—Among the characteristics of traditional evolution-
ary algorithms governed by models, memory volatility is one of
the most frequent. This is commonly due to the limitations of the
models used to guide this kind of algorithms, which are generally
very efficient when sampling, but tend to struggle when facing
large amounts of data to represent. Neural networks are one type
of model which conveniently thrives when facing vast amounts of
data, and does not see its performance particularly worsened by
large dimensionality. Several successful neural generative models,
which could perfectly fit as a model for driving an evolutionary
process are available in the literature. Whereas the behavior of
these generative models in evolutionary algorithms has already
been widely tested, other neural models -those intended for
supervised learning- have not enjoyed that much attention from
the research community. In this paper, we take one step forward
in this direction, exploring the capacities and particularities of
back-drive, a method that enables a neural model intended
for regression to be used as a solution sampling model. In
this context, by performing extensive research into the most
influential aspects of the algorithm, we study the conditions which
favor the performance of the back-drive algorithm as the sole
guiding factor in an evolutionary approach.

Index Terms—Deep learning, Model-based evolutionary algo-
rithms, Back-drive

I. INTRODUCTION

Research on model-based evolutionary algorithms (MEA)
[1]–[3] such as estimation of distribution algorithms (EDA)
[4]–[6] has mainly focused on the use of probabilistic graph-
ical models [7] (PGM) to represent the relationships between
the variables of the problem. PGMs are a concise and usually
easy to interpret representation of the dependencies between
the variables of a problem. The employment of this kind
of models as part of an evolutionary framework consists of
two phases. Firstly, the model induction part [8]. Secondly,
sampling the models, for which several efficient methods exist,
particularly those based on a partial ordering of the variables
for sampling [9].

This work has received support from the TIN2016-78365-
R (Spanish Ministry of Economy, Industry and Competitiveness
http://www.mineco.gob.es/portal/site/mineco) and Elkartek IT-1244-19
(Basque Government) programs. Unai Garciarena holds a predoctoral grant
(ref. PIF16/238) from the University of the Basque Country. We gratefully
acknowledge the support of NVIDIA Corporation with the donation of a
Titan X Pascal GPU used to accelerate the process of training the models
used in this work.

Despite their suitability and efficiency, PGMs are difficult to
combine with gradient-based optimization algorithms, which
can be extremely efficient for problems of many variables.
Recently, the use of artificial neural network (NN) models
has been increasingly investigated as a way to capture and
exploit the dependencies of a problem [10]–[12]. NN-based
evolutionary algorithms (EA) learn a neural model from the
best solutions and use this model to generate new promising
solutions. Model learning can be framed as classification,
regression, or distribution learning tasks, and can exploit fast
gradient-based optimization procedures for model learning.

A crucial step when using deep NNs (DNN) in model-based
EAs is the way in which the generation of new solutions is
performed. The implementation of this step is not straightfor-
ward since, in contrast to PGMs, NNs are difficult to interpret.
This makes the task of identifying the manner in which the
model maps the input to the desired output a very comlpex one.
Therefore, the usage of these models for solution generation
results as non-trivial. A strategy to obtain inputs designed to
produce a desired prediction by a given NN is defined in [13]:
NN inversion. This strategy was later adopted in [11], where
it was used as a controller of an EA.

In this paper we propose the usage NNs as the probabilistic
model of the MEA. Moreover, the viability of the NN inversion
or back-drive algorithm for effectively sampling solutions is
analyzed. Furthermore, we define different ways of training the
NN model, incorporate information from previous generations,
perform the back-drive, and exploit the trained model, testing
these variations against each other. This results in an in-
depth experimentation for determining the conditions under
which back-drive offers optimal performance when used in an
evolutionary framework.

The rest of this paper is organized as follows. Section II
provides an overview of the DNN model and the back-drive
algorithm used in this work. Section III introduces MEAs in
detail. Related work is discussed in Section IV. In Section V,
different aspects of the back-drive technique that need to be
taken into account are mentioned. Section VI describes the
experiments conducted regarding the characteristics introduced
in the previous section. Section VII makes a series of in-
sights on the aforementioned experiments. Finally, conclusions
drawn from the whole process are summarized in Section VIII.
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II. BACKGROUND

A. Multi Layer Perceptron

The multi-layer perceptron (MLP) is the primitive NN-based
model used to perform deep learning (DL) [14]. Its most basic
configuration consists of three different types of layers, which
are composed of neurons. The first layer, which takes the input
data, the last layer, which provides a prediction regarding the
information placed in the input, and the hidden layers, which
are able to learn high-abstraction features of the data. In an
MLP, these layers are both sequential and dense, in the sense
that every neuron in layer l − 1 is connected to every other
neuron in layer l, and there exist no more connections between
neurons. These layer-wise connections can be represented as
matrix operations of the following form:

nl = σl(wl × nl−1 + bl) (1)

where, nl is a layer of neurons; the representation of the
data computed in the l-th layer. wl, bl ∈ θ are the parameters
learned for layer l. For the input layer, nl−1 = n0 = x, the
input data, and for the last layer, nl = ŷ, the prediction. σ is
a function, for which the usual choice is to be non-linear.

Commonly, wl and bl are trained employing a gradient
descent method [15]. These methods differentiate an error
measurement between the outcome of the net ŷ and the desired
output y, applying changes to the net parameters layer by layer,
starting from the last layer and moving backwards until the
first one, in an algorithm called back-propagation [16].

B. Back-drive algorithm

The network inversion [13] or back-drive [11] algorithm
exploits the propagation of error through layers in a different
way to back-propagation. This method is used for, given a
trained model, making convenient alterations to the input
data so that it matches a target prediction by the model.
Applying this method allows the usage of models from a very
extensive research field; supervised learning via DNN (e.g.,
image classification), for data generation purposes.

To contrast back-propagation and back-drive methods, in
the training phase, the input data x and target value y remain
constant. θ is trained so that ŷ is as close to y as possible. The
back-drive algorithm assumes an already trained θ, which is
frozen from this point on. A data point x is placed in the first
layer, and the error between the prediction of the model for that
data point and the target prediction y∗ is propagated until the
data point, which is now modifiable. To put it in a simple way,
instead of asking “What θ do we need for reducing ŷ − y?”,
we ask “Given θ, what x do we need to reduce ŷ − y∗?”.

This way, data points x with arbitrary ŷ predictions can be
modified so that the new x′ meet certain desired requirements.

III. MODEL BASED EVOLUTIONARY ALGORITHMS

Basic EAs, e.g., genetic algorithms (GA) [17], usually
produce acceptable results when applied to simple problems,
but tend to struggle as the complexity of the problem in-
creases [18]. The lack of treatment of variable dependency

can be one of the causes of this behavior. Designing effective
recombination or sampling operators can be the solution.
With this in mind, MEAs were developed as more advanced
algorithms, including probabilistic models able to represent
the (in) dependencies between the variables. Procedures for
learning and sampling these models are required.

Algorithm 1 shows the general pseudocode of a basic MEA.
The description of the functions used by the algorithm follow:
• generate population(): Generates a population of ran-

domly initialized individuals.
• evaluate population(pop): Given a population, this func-

tion returns a list of the corresponding fitness values of
the individuals.

• select solutions(pop, fit): Given a population and its
corresponding fitness values, this function returns the
individuals from which the model is to be learned.

• create model(pop, fitness): Given a set of solutions and
their corresponding fitness values, this function returns a
model, which is trained using the given information.

• sample model(model): Given the model, this function
generates samples from it.

• combine pop(pop, fit, offs, off fit): Given a population,
new offspring, and its corresponding fitness values, this
function returns a new population and fitness values.

Algorithm 1: Pseudo-code for a basic MEA.

1 pop = generate population();
2 fit = evaluate population(pop);
3 while halting condition is not met do
4 sel pop, sel fit = select solutions(pop, fit);
5 model = create model(sel pop, sel fit);
6 offs = sample model(model);
7 offs fit = evaluate population(offs);
8 pop, fit = combine pop(pop, fit, offs, offs fit)
9 end

IV. RELATED WORK

A. NN-based EAs

With the same goal in mind (optimization) but using a
different approach compared to ours, an increasing number
of recent works [10], [11], [19], [20] propose the application
of neural models, which sometimes involve deep architectures.
Generally, as in the case of this work, the NN models are used
to generate new solutions for the EA.

A fundamental difference of NNs over graphical models is
that the information about the problem structure is usually
represented in latent variables or distributed structures that
make the interpretability of the model a difficult task.

The DNNs that have been tested for EDAs exhibit a variety
of behaviors: autoencoders used in a traditional EDA scheme
in [21] are extremely fast compared to methods that learn
Bayesian networks, but they fail to achieve the same efficiency
as BOA [22] in terms of function evaluations. When used as a
mutation distribution in [19], GA-dA (see Table I) outperforms



BOA in some problems (notably on the knapsack problem) but
it is outperformed on the hierarchical HIFF function.

The convenience of using DNNs is another important ques-
tion to discern, given the impressive results of DNNs in other
domains. One of the conclusions obtained from the evaluation
of the deep Boltzmann machine (DBM) neural network in
EDAs is that the effort for learning the multi-layered DBM
model does not seem to pay off for the optimization process
[23]. Also in [11], where DNNs with 5 and 10 layers are used
as neural models, it is acknowledged that the learning process
can be time consuming. While the Deep-Opt-GA is evaluated
across a set of diverse artificial and real-world problems, it is
not possible to determine the gain of the algorithm over EDAs
since it is compared to a fast local optimizer and a GA.

A categorization of NNs relevant for the work presented
in this paper is based on the strategy used to sample new
solutions. Table I lists some of the main NN-based EAs,
indicating whether the models used to generate solutions were
conceived for generative purposes or not.

TABLE I
DESCRIPTION OF SOME OF THE MAIN NEURAL NETWORK MODELS

PROPOSED FOR MODEL-BASED EAS.

Algorithm year NN model Ref. Generative Deep
BEA 2000 HM [24] yes no

MONEDA 2008 GNG [25] no no
RBM-EDA 2010 RBM [26] no no

REDA 2013 RBM [27] yes no
DAGA 2014 DA [28] no no

DBM-EDA 2015 DBM [23] yes yes
AED-EDA 2015 DA [21] no no
GAN-EDA 2015 GAN [10] yes no

GA-dA 2016 DA [19] no no
GA-NADE 2016 NADE [19] yes no
RBM-EDA 2017 RBM [20] yes no

Deep-Opt-GA 2017 DNN [29] yes yes

B. Sampling solutions from a regression neural network

Using ANN inversion as a method to sample a trained
network in an EA was firstly performed in [11]. In this work,
the author proposed a common MLP to guide the search in
an EA. At each generation, all the solutions were evaluated,
and their fitness functions were scaled to [0,1]. The MLP
was trained with this data, then back-driven [13] to obtain
new solutions. This inversion was performed by requiring the
net to modify a mutated solution so that it would return the
maximum score known at each moment. After the sampling,
the solution was improved by a hill climbing algorithm.
A new population was generated by repeating this sample-
improving method. This whole process was iterated within an
evolutionary framework.

Two variations of this approach were tested against three
versions of hill climbing. The proposed algorithm obtained
significantly better results optimizing a simple noisy function
with continuous variables, as well as for three combinatorial
optimization problems. However, it was unable to obtain this
kind of superiority when tested in 2-D layout problems.

Unlike in the paper discussed above - [11]-, in this paper, the
back-drive algorithm is not assisted by any local-search algo-
rithm or external mutation operator of any kind. Additionally,
we perform an in-depth analysis of the behavior of the method
depending on several settings applicable to the algorithm. This
results in a set of guidelines to be taken into account at the
time of performing further research on this topic.

V. DEEP NEURAL NETWORK AS A MODEL

One of the main drawbacks of the PGMs that govern
EDAs is the lack of scalability and memory, since these
models lose efficiency as the amount of solutions to learn
from increases. Consequently, the common practice is to focus
on the most promising solutions (in terms of fitness values)
guiding the search towards that direction. DNNs can learn
distributions from large datasets efficiently. However, using
them for sampling solutions from these distributions to guide
MEAs brings several particularities inherent in this kind of
models to the EA. Studying these singularities is essential for
reaching performance optimality and, in this case, we focus
our efforts on DNN learning, and sampling using back-drive.
Model learning involves (1) parameter initialization and (2)
optimization. Performing back-drive also necessitates of (3)
solution initialization. (4) The y∗ required to the model in
the back-drive procedure can also be configured in multiple
manners. As the cost of performing inference with regression
DNNs is considerably low, any possibility of performance
improvement extracted from using the (5) DNN as a surrogate
model is worth studying. For each of these five key features,
two proposals are presented in the following sections. These
pairs of proposals are later tested against each other in an
extensive experimental section in an effort to determine the
best conditions in which the back-drive can operate. The goal
of this work is not giving exact guidelines on the setting
of back-drive, but illustrating the directions which research
should follow regarding this algorithm.

A. Model initialization

The first choice to be made is the initial value of the DNN
parameters, θ. In the first generation, a straightforward pro-
cedure is to randomly initialize the parameters to be learned.
However, for the subsequent iterations of the algorithm, θ can
be reinitialized to random values again, or simply inherit the
learned parameters from the previous generation.

Because the problem is constant during the whole evolution,
it could be expected that some parameters in θ could be re-
utilized by the DNN across generations, especially those in the
first layers. In the worst-case scenario, in which information
cannot be transferred between generations, the weights opti-
mized in the previous generation would not be worse than a
new random initialization.

B. Training the model

As mentioned in Section II-B, the step previous to back-
driving a network is training the network itself. In this work,
the network is suited to approximate a continuous problem;



the mapping between the solutions and their corresponding
fitness values. Two dynamics have been identified as plausible
for performing this action.

The first one is based on the traditional manner in which
MEAs operate; at each generation a fixed number of solutions
are evaluated and used to train the model that will later be
sampled. Commonly, MEAs maintain a fixed population size,
replacing individuals as the evolution advances, in order to
keep the learning task within reasonable computational cost.

The second variant is based on the fact that DNNs offer the
best performance when large amounts of data are available.
Therefore, solutions from past generations are retained, which
results in more robust models after training.

C. Back-drive initialization

The individuals modified by the back-drive method need to
be initialized too. Analogously to θ, in the first generation,
random initialization is the straightforward choice. The fol-
lowing generations, though, place the question of whether the
individuals should be reinitialized, or whether each model in
each generation should take the individuals where the previous
model left them off (an approach similar to [11]).

In this case, the algorithm faces an exploration vs ex-
ploitation trade-off scenario. Reinitializing the individuals in
each generation would, intuitively, promote the creation of
distributed populations. Using the individuals modified in the
previous generation as a starting point before back-driving
could favor focusing on certain areas of the search space.

D. Target value

Transforming every random input to an optimal solution
could be an unrealistic objective for back-drive. Additionally,
it could lead to some kind of homogeneity between solutions.
These two scenarios could be avoided by introducing some
level of noise in the target variable y∗, or directly by using a
sub-optimal value. Moreover, the inclusion of other forms of
the target variable, such as the logarithm, square, etc. could
lead to a more informed back-drive procedure capable of
generating solutions closer to the optimal fitness. These model-
related questions do not add any computational cost to the
algorithm, and could improve the results of the back-drive.

E. DNN as surrogate model

The fact that the back-drive is able to improve individuals
does not necessarily mean that all of them reach the target
value. Sometimes, back-drive does not work properly, depend-
ing, for example, on the individual initialization, or the way in
which the DNN approximates the fitness function. Discarding
individuals which are unlikely to benefit the evolutionary pro-
cess before wasting evaluations is a key aspect of an efficient
back-drive based EA. Reusing the same model employed
for back-drive as a surrogate, it is possible to estimate the
fitness value of all the back-driven solutions in order to keep
the most promising ones. That is, generate a large number
of back-driven individuals (which, with today’s technology,
does not result costly) and use the trained DNN to obtain

an estimation of their fitness value. This way, the algorithm
could avoid the evaluation of poor individuals, which would
be especially beneficial when facing a real-world problem in
which evaluations are highly costly. In EDAs, different models
have been also used as surrogates to avoid the number of
solutions evaluated [12], [30], [31].

F. Implementation

For these exploratory experiments, an MLP with two hidden
layers is employed to learn the mapping between the solutions
and their fitness value. The first layer is composed of as
many neurons as three times the number of variables in a
solution, whereas the second one contains twice the number
of variables. The rest of the specification is as follows:
• ReLU activation function after the two hidden layers.
• Sigmoid activation function after the output layer (fitness

values are scaled to [0-1] before learning).
• Weights (wl) are initialized randomly, with Xavier ini-

tialization [32].
• Biases (bl) are initialized to 0.

VI. EXPERIMENT SETUP

A. Problem benchmark

To determine what the optimal conditions for back-drive
to operate in are, we have selected the widely known suite
of CEC-2005 problems [33] as implemented in [34]. Despite
this not being the most recent version of the problem suite,
its extension is enough to test the different variants of the
back-drive algorithm against each other. Two of the available
functions (F7 and F25) have been discarded because the range
of possible values of the variables is not fixed. Although the
back-drive is able to operate in such conditions, we decided
to discard the two functions for the sake of homogeneity. We
adhere to the evaluation limit suggested in the benchmark for
the number of variables n = 10: 100, 000 evaluations.

B. Model learning and back-driving

In order to learn the model, 25 epochs (divided in mini-
batches of size 150) have been used in all cases. For opti-
mization, the Adam [35] stochastic gradient descent technique
was employed, with an initial learning rate of 0.001 in an
offline manner (i.e., using the complete dataset instead of
incrementally adding solutions as they are evaluated). So as to
modify the individuals via back-drive, the same configuration
of the gradient optimizer was used, only that, in this case, the
learning was limited to just 500 epochs, which leads to very
fast sampling.

C. Preliminary experimentation

In order to reduce the different variables in the evolutionary
process and ease the analysis, we test the benefit of the model
variants introduced in Section V-D in a vacuum, isolated from
the evolutionary process, taking advantage of the reduced
influence of the evolutionary component on this aspect. To that
end, we learn a DNN with 10, 000 points, and back-drive it
to obtain 1, 000 new points considering different experimental



settings that allow the investigation of key questions about the
behavior of the back-drive technique.
• Form of the fitness value (e.g., log(f), f2, etc.).
• Percentile of the fitness for back-driving. Requiring the

back-drive to produce sub-optimal values could be bene-
ficial for population quality or diversity.

• Noise: Whether the target value is the exact value for
every sample, or has noise added to it. This could increase
solution diversity.

TABLE II
MODEL LEARNING POSSIBILITIES TESTED (f = FITNESS VALUE).

f transformations Percentile Noise
log(f) 0 (best) f
f 10 abs(N (f, 0.01))√
f 20

f2 50
sin(f)

The variants for the different aspects to be taken into
account when learning the model, which, to the knowledge of
the authors, have not been studied, are compiled in Table II.
Note that the f transformations are accumulative, e.g., when
requiring f2, the three previous outputs are also included,
mimicking a multiple regression scenario. Problem domains
could be exploited with this technique, e.g., additively decom-
posable functions could have as many outputs as subfunctions.

By investigating these aspects in isolation, we can determine
the best method for setting the target variable before the evo-
lutionary process. For each combination, 1, 000 new random
solutions were modified by back-drive and evaluated.

D. Analysis of the evolutionary process

Our next goal is to analyze the remaining components
related to the use of back-drive, now within the EA framework.
In the following, we enumerate these components and explain
the two settings that have been investigated per aspect.

1) Model initialization: In order to show the benefits of
the different approaches available for training the model to be
used for back-drive, different tests are performed. With respect
to θ initialization, two different evolutionary procedures have
been carried off. In the first one, θ was randomly initialized
in the first generation, and the rest of generations inherited
it from its predecessor. In the second one, θ was randomly
initialized in each generation.

2) Model training: With respect to the optimization of θ
in each generation, the straightforward strategy of learning θ
with the solutions in the last generation is used as a baseline.
This approach is contrasted to a more sophisticated one in
which information from the previous generations is retained:
• The first generation is retained in order to maintain

diversity and provide perspective about bad solutions, i.e.,
give information to the model about undesired solutions.

• An elite population (of the same size as the rest of
populations) with the best solutions found during the
search is kept.

• At each generation, the dataset comprising the previous
k ≤ 8 populations is kept.

3) Back-drive initialization: Similarly to θ initialization,
two EA configurations have been tested; reinitializing the
individuals to be back-driven in each generation, or inheriting
the individuals from previous generations.

4) DNN as surrogate model: We also test whether the
prediction of the model for the modified individuals is a
valuable source of information. Once the model has been
trained, the cost of using back-driving on it is near constant
with respect to the number of solutions modified. We propose
a variant to the simple procedure of back-driving as many
individuals as needed per generation: 20× the number of
individuals in a population are back-driven, and the best ones
(as many as required for the population of the subsequent
generation) are selected according to the fitness estimation
given by the model.

VII. RESULTS

A. Preliminary experimentation

We investigate the three factors described in Section VI-C.
An MLP is learned using a given dataset of solutions and
the corresponding fitness values for a function F. Back-drive
is used to sample new solutions from the model. Solutions
are evaluated using the F function, and we use the fitness
evaluation to assess the influence of each of the factors.

Fig. 1 summarizes the results of this experiment for the
24 functions in the benchmark. The left-hand side heatmap
considers the three combinations which obtained the best
results for each of the problems. The x axis shows the
percentile value used as target for the back-drive algorithm.
The y axis shows the different transformations of the target,
and whether they had noise added. The number and color
represent the number of times that combination was present
in the top three performing combinations of the functions.

It can be clearly appreciated that requiring the model to
produce the best solution (0% percentile) for each individual
is the option that achieves the best results almost every time,
whereas 10% hardly ever produces top-performing evolution,
and 20% and 50% are not able to produce good results on
any occasion. Regarding the addition of Gaussian noise to
the target output, it is clear that requiring the exact fitness
instead of perturbations of that value is also a better option.
Finally, Fig. 1 shows that adding more outputs to the regression
problem does not help the model to perform better back-drive,
and, from three outputs on, the results are considerably worse.

The figure on the right-hand side of Fig. 1 shows, for each
percentile (x axis) and function (y axis), the summation of the
variances of the fitness values computed from the back-driven
individuals. The summation is chosen in order to display more
readable numbers. The goal of this figure is to determine
whether requiring worse solutions to the back-drive results in
larger diversity. It can be seen how, with few exceptions (F4,
F6, F12, F13, F17, and F21), the variance is similar for all
percentiles. Moreover, surprisingly, for other functions (F1, F5,
F15, F16, F18, F19, F20 and F24) the variance is even greater
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0.593 0.595 0.589 0.596
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0.299 0.424 0.461 0.564

0.014 0.020 0.077 0.481
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0.440 0.291 0.287 0.310

0.459 0.208 0.186 0.202
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0.239 0.025 0.017 0.017

0.228 0.030 0.020 0.019
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0.087 0.067 0.074 0.110

0.005 0.002 0.002 0.002

0.056 0.064 0.093

0.070 0.033 0.033 0.037

0.070

Fig. 1. Results of the preliminary experimentation. The figure on the left-
hand side shows the frequency of appearance of the parameter combinations
signaled by the x and double y axis, in the top-3 combinations for each
problem. The other figure shows the variance found in the fitness value of
the individuals generated via back-drive with different target percentiles, for
each problem.

when requiring better individuals. The rest of functions do not
show such sizeable differences.

After studying these results, we can determine that simply
using the exact logarithm of the fitness of the best solution
provides better results in terms of quality and diversity.

B. Main experimentation

The characteristics of the model have been studied, and the
most advantageous conditions for the back-drive to operate,
discovered. It is now time to observe back-drive’s behavior
with different variations of evolutionary-bounded components.

With this goal in mind, an extensive set of experiments
has been carried out. For each function in the benchmark
all combinations of the back-drive described in Section VI-D
have been performed. Each one of these processes was run 30
times. The EA consists of 100 generations of populations of
size 1, 000.

Firstly, before going on to the analysis of the performance
of the different formulations of the algorithm, we prove that
the algorithm is indeed capable of improving individuals in
terms of their fitness value. All fitness values generated by all
2 model training methods ×2 DNN initialization methods ×2
individual initialization methods ×2 generation schemes ×30
repetitions = 4806 were normalized to (0, 1]. After that, the
mean of the best fitness value at each point during evolution of
all the runs for each problem was computed. These averages
are shown in Fig. 2. It can be seen how, as fitness evaluations
are performed, the best found fitness value improves. There is
great variety of convergence values for the different problems.
The curves ending in higher (worse) values do so because few
of the runs were able to reach much better fitness values than
the rest. This way, when the normalization is performed, only
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Fig. 2. Logarithm of the scaled fitness for each problem in the benchmark.
The best fitness value found through the optimization process is shown.

these few values reach near-zero values, whereas the rest lie
nearer to 1. Computing the mean of all runs derives in these
higher fitness-valued lines.

Nevertheless, in most cases, evolution is satisfactory, as in
general, the lines have a consistent decreasing slope.

We perform separate analysis of the different runs in order
to devise the characteristics of the EA which makes the most
of the back-drive algorithm.

As a first step, the fitness values at every point during the
evolution of all 30 repetitions for each one of the 16 strategies
are averaged. Next, for each evaluation in the averaged runs,
the best registered fitness is recorded. Finally, the evolutionary
component combinations present in the top-3 of the best fitness
found after a given number of evaluations for each problem
are awarded one point for that specific evaluating position.
Therefore, at each position, 24 × 3 = 72 points are awarded.
Fig. 3 shows this information, where the wider the stack, the
more points a given component combination has obtained at
different moments in the evolution.

In this figure, the common behavior of this kind of algorithm
can be observed. In the first two generations the populations
are still heavily affected by randomness and the variations of
the back-drive have yet to impact the evolution. Once enough
evaluations (∼ 20, 000 or ∼ 20th gen.) have been carried out,
differences stabilize and it is easy to discern the component
combinations which perform the best more frequently.

At a quick glance, one can observe that two colors in
particular are found more frequently in the figure; green and
yellow. These colors correspond with runs of the EA in which
the DNN was trained with not only the information from
the previous generation, but also incorporating knowledge
from the initial random population and an elite population
in which the best found individuals are stored, along with
the individuals from the last eight generations. Due to the
parity between the width of these two colors, it is possible
to determine that modifying just as many individuals as the
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Fig. 3. Stackplot showing the frequency of appearance of each plot combination. The wider the line, the more present a parameter combination has been
between the top three of each problem. Two individual selection methods are used, one in which the individual generation consists of as many individuals
as required population, or creating 20× the size of the population then using the DNN as a surrogate model to select the best ones and discard the rest.
Two training methods are employed: One in which only the individuals from the last generations are used for learning θ, and the other in which solutions
from past generations are kept for learning. θ can be reinitialized after each generation is completed, or it can be inherited between generations. Similarly,
individuals changed by the back-drive can be inherited from the previous generation or randomly initialized each time.

population size or 20× that number (and using the model
as surrogate to select the most promising individuals) offer
similar performances to the evolutionary process.

Additionally, regarding the hatches in the figure, the vertical
lines are the most prominent ones. This indicates that using θ
inheritance between generations is a very useful technique for
the evolutionary procedure. Furthermore, it suggests that the
individuals modified by the back-drive should not be initialized
taking into account their values of the previous generation, but
that they should be randomly initialized each time.

Other combinations, while also being present in varying
degrees in the top-3 performing combinations, do not stand
out as much as the combinations that have been highlighted.

VIII. CONCLUSIONS

In this paper, we have performed an in-depth analysis of
the back-drive algorithm as the sole driving component of
an evolutionary algorithm. Back-drive allows the usage of a
DNN intended for supervised learning to learn the distribution
of a dataset in order to sample more information from that
distribution. The usage of DNNs in evolutionary algorithms
could help avoid limitations traditionally present in model-
based evolution. We have set the grounds of generally good
practices to take into account when designing evolutionary
algorithms based on back-drive.

Firstly, we have determined the structure of the network
used to perform the back-drive, in terms of the output it
produces. Because this characteristic is exclusive to the model,
we have been able to perform this analysis isolated from
the evolutionary process, which prevents the introduction of
unnecessary noise. We have tested whether requiring the
model to produce solutions with fitness values known to be
suboptimal, requiring different transformations of these fitness
values, or adding noise to them can have beneficial effects on

the evolutionary algorithm. This analysis concluded that the
trivial approach of model design, the one requiring a single
form of the best fitness without noise, is the best option.

Once this fact has been confirmed, the different variations
of the usage of the model in an evolutionary algorithm have
been investigated. As the first step of this analysis, it has been
proven that the back-drive technique is able to successfully
drive an evolutionary algorithm in which individuals are
improved regarding their fitness value.

Moreover, this second investigation concluded that the more
information the model can get when being trained regarding
previous generations, the better it will perform. Additionally,
granting the model of the current generation access to the
parameters learned by the model of the previous generation
has proven to be another key for improved efficiency. Other
variants which take advantage of the use of DNNs in evolu-
tionary algorithms over more traditional approaches have not
produced visible improvements.

A. Future work

To the knowledge of the authors, this is the first work in
which the back-drive as a technique is used as the sole driver
of an EA. The study performed in this paper is bounded to
an initial investigation of the potential of this approach. In the
following paragraphs, we consider future research lines.

In this work, the network layout has been fixed trough all the
evolution and analysis. What is more, this structure was kept
rather simple. Even though improving the structure does not
imply performance improvement, intuition suggests it would.
Moreover, enabling flexibility of the model which could adapt
to the necessities of the algorithm at different phases of an
evolutionary process (e.g., adding diversity vs. digging deeper
into certain area of the search space) would most likely result
in a major boost for the algorithm.



This work also uses a fixed population size. It is known that
DNN models perform better with large amounts of data. More
sophisticated management from the number of evaluations
available could also be beneficial for the algorithm. For
example, using a larger number of evaluations during the first
stages of the evolution could help the algorithm to focus on a
better area of the search space.

The way in which both the model learning and back-driving
modifications are performed have also remained fixed during
the whole of the evolutionary process. Parameter tweaking in
this aspect would undoubtedly ensue improvements in the final
outcome of the algorithm.

With respect to performance regarding time consumption,
because the DNN training is performed based on mini-batches
of solutions, a large part of the network training could be
parallelized; as solutions are evaluated, they are fed to the
learning algorithm while the rest of solutions are being evalu-
ated. Model learning could be performed on-line, as opposed
to the off-line method employed in this work.

Although the particular framework in which we have eval-
uated back-drive does not lead to a state-of-the-art algorithm,
we reckon that back-drive could be an element to consider as
part of these algorithms.
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