

A CMA-ES algorithm for solving the steelmaking

scheduling problem involving time buffers

Sheng-Long Jiang

School of materials science and

engineering
Chongqing University

Chongqing, China

sh.l.jiang.jx@gmail.com

Wei Tang

School of materials science and

engineering
Chongqing University

Chongqing, China

 wei.tang@cqu.edu.cn

Wanzhe Hu

School of Economics and Management,

Chongqing University of Posts and
Communications

Chongqing, China

wanzhe.hu@gmail.com

Abstract— The production system of a steelmaking plant

always is thought of as a special hybrid flow shop (HFS).

However, most scheduling models are not performed very well

in practical environments due to practical problems are more

complex than classic versions, and the algorithms are weak in

solving problems with various scales and structures. This paper

studies a practical scheduling problem involving time buffers,

and propose an improved covariance matrix adaptation

evolution strategy (CMA-ES) algorithm without painstaking

parameter selections. First, the studied problem is formulated

as a mixed-integer linear programming (MILP) model. Second,

we develop an improved CMA-ES algorithm with a problem-

oriented encoding and decoding scheme, and a differential

evolution (DE) based restart policy. Finally, the proposed

algorithm is compared with the standard DE algorithm and the

state-of-the-art algorithm named CCABC. Experimental results

carried out on a variety of synthetic scheduling benchmarks

demonstrate that the proposed technique shows the advantage

in seeking optimums.

Keywords—scheduling, buffer, CMA-ES, hybrid flow shop,

steelmaking

I. INTRODUCTION

The steelmaking plant is a critical building block in a

modern iron & steel manufacturing company, which mainly

consists of a steelmaking stage, a single or multiple refining

stages, and a casting stage (as shown in Fig. 1). The mission

of a steelmaking plant is to produce qualified slabs or billets

with suitable chemical percentages and physical shapes. In a

practical industrial system, each job, molten steel poured from

blast furnaces, must travel in a specific channel across from

the steelmaking to the casting stage but may skip some

refining stages. During the flow sheet, molten steel is poured

into an intermediate vessel named ladle, and transfer to a

continuous casting machine for solidification, in which a

number of jobs are grouped into in a batch and processed

without any time stopped due to its key part named Tundish is

only available within a specific time range. Because of the

requirement on high temperature (1600℃ above) and the

strict chemical spectrums, each job must provide some time

buffer to prepare processing materials and tools, and then

move to the next stage. Concerning these topological flow and

technical requirements, the steelmaking scheduling problem

is commonly identified as a special hybrid flow shop (HFS)

scheduling problem with complex constraints[1][2], including

setup, continuity, and transferring, etc. After the job sequence

and machine allocation are determined, a feasible schedule

implemented in a steelmaking plant can be illustrated with a

Gantt diagram containing serval continuous blocks in the last

stage (as shown in Fig. 2).

… …… …

LD LF RH CC

Steelmaking Refining Casting

Fig. 1. Flowsheet of a steelmaking plant

In recent years, the steelmaking scheduling problem is

extensively studied both in academia and industry, because of

its strong industrial background. However, there is very little

This work is supported by the National Natural Science Foundation of China

(No. 6187020702), the Opening Fund of Guangxi Key Laboratory of

Automatic Detection Technology and Instrument (No. YQ19202), the China

Scholarship Council.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

literature on its real-world application. The main reason is that

most of the steelmaking scheduling models are simply

assumed to be variants of the classic HFS scheduling problem,

and cause a wide variety of related solving algorithms to be

Utopian theories. In this study, we address these issues by

modeling the steelmaking scheduling problems that considers

more practical constraints and developing a high-efficiency

solving algorithm. Section II reviews related works about

steelmaking scheduling problems and a powerful optimization

algorithm named covariance matrix adaptation evolution

strategy (CMA-ES). Section III provides a mathematical

model formulating the practical scheduling problem. In

Section IV, we develop an improved CMA-ES algorithm

integrating prior knowledge towards the steelmaking

scheduling problem. In Section V, empirical studies are

carried out to verify the effectiveness of the proposed

algorithm. The final section draws some conclusions of this

study and points out some future study topics.

Setup

2,22,1

3,1 3,2 3,3

1,1

1,4

2,5

1,2

Time

Machine

M1,2

M2,1

M2,2

M3,1

3,4 3,5 3,6

3,4

M3,2

1,5

1,3

1,6

1,3 2,6

5 10 15 20 25 30 35 40

M1,1

3,7 3,8

3,7

3,7 3,8

3,8

Transit time

Continuity

45 50

Buffer time

Fig. 2. Gantt diagram for a feasible schedule executed in a steelmaking plant

II. LITERATURE REVIEW

From the 1990s, researchers have developed a large variety

of models to describe the scheduling problem in steelmaking

plants, most of which are assumed to be variants of a classic

HFS scheduling problem. Tang et al. [1]-[4] proposed

mathematic models involving batching, precedence, setup

and transferring constraints, and punctual delivery, job

waiting and make-span objectives. However, due to the

complexity of the practical industrial system, the released

schedule grounded on these models often suffers from

performance variation and constraint violations. Therefore, a

wide range of dynamic [5]-[9] and uncertain [10]-[14]

models were also reported in recent publications. The main

reason caused the instability and infeasibility is that most

models are too Utopian to be implemented in a practical

production system. Therefore, many practitioners try to seek

reasonable models taking account of additional practical

constraints. Tang et al. [15] integrated transporter-related

constraints and objectives into the steelmaking scheduling

model. Missbauer et al. [16] proposed a realistic scheduling

model with controllable casting speeds and balanceable

production capacities. Tan and Liu [17] developed a

scheduling model considering a variable electricity price. Xu

et al. [18] studied a batching-related scheduling problem in

which allocating jobs in batches needed to be determined.

Amid these practical constraints, the time buffer is one of the

most important factors, because it is not only used for further

processing molten steel but also provide flexibility to resist

some uncertain disturbances.

To solve these various scheduling problems, a wide range

of problem-specific optimization algorithms have been raised.

These approaches are mainly categorized into three types: (1)

Heuristics based on dispatching rules [16]. (2) Mathematic

programming mainly includes decomposition-based MILP

[19] and Lagrangian relaxation [20]. (3) Evolutionary

algorithm (EA), such as ant colony optimization (ACO) [4],

differential evolution (DE) [5][23], artificial bee colony

(ABC) [21][22], fruit fly optimization (FFO) [7] [24], etc.

Among these algorithms, the EA is known as one of the

powerful optimization tools for solving scheduling problems,

because it scales well to high-dimension problems, and is

robust to complex optimization problems. When applying an

EA to solve steelmaking scheduling problems, we need to

simplify a candidate solution as a genome and evaluate its

objective value or fitness. For example, Pan et al. [21] and Li

et al. [23][24] defined a job sequence at the first stage to

represent as the scheduling genome, Tang et al. [5] defined a

matrix with job sequence and machine allocation in all stages.

The first way is a partly encoding way and is high efficient in

the evolutionary process, but it is difficult to obtain an

optimal evaluation in the sub-space represented by the vector

gene. The second way is a complete encoding way and is well

in seeking a local optimization evaluation, but it is weak in

evolutionary optimization. Both of them are common for

encoding HFS scheduling problem, and only modify the

evaluation method in line with the problem characteristics.

Therefore, some studies try to define problem-oriented

scheduling genes. Jiang et al. [23] proposed a representation

with a job sequence in the last stage, and develop an iterative

backward list scheduling procedure. Pan [22] devised a

special job sequence expression in which each job index was

replaced with its batch index.
Another shortage of applying EAs in practice is that

control parameter tuning is indispensable before running an

algorithm [25]. It cannot adapt very well to the practical

scheduling problem with various scales and structures. In

recent years, the CMA-ES is thought of as a top-notch black-

box optimization tool towards non-convex, multimodal,

discontinuous, or ill-conditioned problems in continuous

spaces [26][27]. It applies a covariance matrix to learn

autonomously parameter distributions and dependencies, and

to generate new solutions. It is also regarded as a variant of

estimation of distribution algorithm (EDA) with Gaussian

distribution. CMA-ES provides an extremely prospective in

solving many machine learning tasks [28][29], because it has

no discrepancy between the behaviors toward the varied

nature of black-box problems and is easily generalizable. Due

to these advantages, many improved variants of CMA-ES

came out [30]-[33].

As claimed by the tendency of modeling and the shortages

of algorithms, we attempt to construct a practical scheduling

model considering additional constraints and devise a CMA-

ES algorithm to solve it.

III. PROBLEM STATEMENT

In this section, we formulate the studied scheduling

problem in the steelmaking plant with a mixed-integer linear

programming (MILP) model.

A. Symbols

In this subsection, we list symbols used for illustrating the

input and output information of the MILP model.

Indices:

𝑏 index of batches.

𝑖 index of stages.

𝑗 index of jobs.

𝑘 index of machines.

Sets:

I stage set, 𝐼 = {1, ⋯ 𝑖, ⋯ , 𝑔}, and 𝐼𝑈 = 𝐼\{𝑔}.

𝐽 job set, 𝐽 = {1, ⋯ 𝑗, ⋯ , 𝑛}, and 𝐽𝑖 denotes a job subset

that needs to visit stage 𝑖.

𝐵 batch set, 𝐵 = {1, ⋯ , 𝑏, ⋯ , 𝑁}.

𝐵𝑏 job set of the 𝑏𝑡ℎ batch with the size of 𝑁𝑏, and 𝐵𝑏,𝑟

denotes the 𝑟𝑡ℎ job in batch 𝑏.

𝑀𝑖 machine set of stage 𝑖 with the size of 𝑚𝑖, and 𝑀𝑖,𝑘

denotes the 𝑘𝑡ℎ machine in stage 𝑖.
𝐻𝑗 stage list of job 𝑗 with the size of ℎ𝑗, and 𝐻𝑗,𝑞 denotes

the 𝑞𝑡ℎ stage visited by job 𝑗.

Parameters:

𝑎𝑡𝑗 arrival time of the feeding materials for job 𝑗.

𝑃𝑇𝑖,𝑗 standard duration of task 〈𝑖, 𝑗〉.

𝑇𝑇𝑖,𝑖+1 transfer time from stage 𝑖 to stage 𝑖 + 1.

𝑄𝑖 predefined buffer time after stage 𝑖.

𝑢𝑡𝑏 setup time of the 𝑏𝑡ℎ batch.

𝛾1 objective coefficient of make-span.

𝛾2 objective coefficient of transit times.

𝐿 sufficiently large positive constant.

Decision Variables:

𝑥𝑖,𝑗,𝑘 binary variable, if task 〈𝑖, 𝑗〉 is allocated on machine

𝑀𝑖,𝑘 , 𝑥𝑖,𝑗,𝑘 = 1; otherwise 𝑥𝑖,𝑗,𝑘 = 0.

𝑦𝑖,𝑗1,𝑗2 binary variable, if task 〈𝑖, 𝑗1〉 and 〈𝑖, 𝑗2〉 are

contiguously processed, 𝑦𝑖,𝑗1,𝑗2
= 1 ; otherwise

𝑦𝑖,𝑗1,𝑗2
= 0.

𝑢𝑘,𝑏 binary variable, if batch 𝑏 is allocated on machine

𝑀𝑔,𝑘 , 𝑢𝑘,𝑏 = 1; otherwise, 𝑢𝑘,𝑏 = 0.

𝑧𝑏1,𝑏2 binary variable, if batch 𝑏1 and 𝑏2 are contiguously

processed, 𝑧𝑏1,𝑏2
= 1; otherwise 𝑧𝑏1,𝑏2

= 0.

𝑆𝑖,𝑗 starting time of task 〈𝑖, 𝑗〉.

𝐷𝑖,𝑗 departure time of task 〈𝑖, 𝑗〉.

B. Objectives

In a practical steelmaking system, the mission of

scheduling decision is to seek the optimal objectives

involving both production efficiency and cost. The first one

is defined by the maximum completion time (𝑓1), and the

second one is defined by the total transit time (𝑓2).

𝑓1 = 𝐶𝑚𝑎𝑥 = max
𝑗∈𝐽

{𝐷𝑔,𝑗} (1)

𝑓2 = ∑(𝑆𝑔,𝑗 − 𝑆1,𝑗)

𝑛

𝑗=1

 (2)

The objective of the scheduling problem is formulated as,

(P) 𝐹 = 𝑓1 + 𝑓2 (3)

C. Constraints

1) Sequencing and allocation

∑ 𝑥𝑖,𝑗,𝑘

𝑚𝑖

𝑘=1

= 1, ∀𝑖 ∈ 𝐼𝑈, 𝑗 ∈ 𝐽𝑖 (4)

𝑦𝑖,𝑗1,𝑗2
+ 𝑦𝑖,𝑗2,𝑗2

= 1, ∀𝑖 ∈ 𝐼𝑈,   𝑗1, 𝑗2 ∈ 𝐽𝑖,  𝑗1 ≠ 𝑗2 (5)

∑ 𝑢𝑘,𝑏

𝑚𝑔

𝑘=1

= 1, ∀𝑏 ∈ 𝐵 (6)

z𝑏1,𝑏2
+ 𝑧𝑏2,𝑏1

= 1, ∀𝑏1, 𝑏2 ∈ 𝐵,  𝑏1 ≠ 𝑏2 (7)

Equation (4) and (5) ensure the uniqueness of the job

allocation and sequencing, and (6) and (7) impose the same

constraint on batches.

2) Timing constraints

𝑆1,𝑗 ≥ 𝑎𝑡𝑗 ,  ∀𝑗 ∈ 𝐽 (8)

𝑆𝑖2,𝑗 − 𝐷𝑖1,𝑗 ≥ 𝑇𝑇𝑖1,𝑖2
 , 𝑖1 = 𝐻𝑗,𝑞 , 𝑖2 = 𝐻𝑗,𝑞+1,

 ∀𝑞 ∈ {1, . . , ℎ𝑗 − 1}, 𝑗 ∈ 𝐽
(9)

𝐷𝑖,𝑗 − 𝑆𝑖,𝑗 ≤ 𝑃𝑇𝑖,𝑗 + 𝑄𝑖 , ∀𝑖 ∈ 𝐼𝑈, 𝑗 ∈ 𝐽 (10)

𝑆𝑖,𝑗2
− 𝑆𝑖,𝑗1

+ 𝐿(3 − 𝑥𝑖,𝑗1,𝑘 − 𝑥𝑖,𝑗2,𝑘 − 𝑦𝑖,𝑗1,𝑗2
)

≥ 𝑃𝑇𝑖,𝑗1
,  ∀𝑖 ∈ 𝐼𝑈, 𝑗1, 𝑗2 ∈ 𝐽, 𝑗1 ≠ 𝑗2

(11)

𝐷𝑖,𝑗1
− 𝑆𝑖,𝑗2

+ 𝐿(3 − 𝑥𝑖,𝑗1,𝑘 − 𝑥𝑖,𝑗2,𝑘 − 𝑦𝑖,𝑗1,𝑗2
)

≤ 𝑃𝑇𝑖,𝑗2
,  ∀𝑖 ∈ 𝐼𝑈, 𝑗1, 𝑗2 ∈ 𝐽, 𝑗1 ≠ 𝑗2 

(12)

𝑇𝑃𝑇𝑏 = ∑ 𝑃𝑇𝑔,𝐵𝑏,𝑟

𝑁𝑏

𝑟=1

, ∀𝑏 ∈ 𝐵 (13)

𝑆𝑔,𝐵𝑏2,1
− 𝑆𝑔,𝐵𝑏1,𝑁𝑏1

+ 𝐿(3 − 𝑢𝑘,𝑏1
− 𝑢𝑘,𝑏2

− 𝑧𝑏1,𝑏2
)

≥ 𝑇𝑃𝑇𝑏1
+ 𝑢𝑡𝑏2

, ∀𝑏1, 𝑏2 ∈ 𝐵,  𝑏1 ≠ 𝑏2
(14)

𝑆𝑔,𝐵𝑏,𝑟+1
− 𝑆𝑔,𝐵𝑏,𝑟

= 𝑃𝑇𝑔,𝐵𝑏,𝑟
,

 ∀𝑏 ∈ 𝐵, 𝑟 ∈ {1,2, … , 𝑁𝑏 − 1}
(15)

Equation (8) denotes a job starts only after its feeding hot

metal arrives, (9) means that a job starts in the current stage

only after it departed from the previous stage and has been

arrived at the stage, (10) indicates a not started task must be

protected by a predefined time buffer, (11) means a machine

is only able to processed one job at a time, (12) means a job

must be moved from the buffer when the previous one on the

same machine has completed, (13) defines the total duration

of batch 𝑏, (14) means a machine is only able to process one

batch at a time in the last stage, (15) expresses the continuity

relationship between jobs in the same batch.

IV. PROPOSED ALGORITHM

A. Main idea of implementing CMA-ES

Optimization in subspace with
specific knowledge (Decoding)

x f (x)

 gene representation

(encoding)
iterative optimization

projection &

 dimension reduction

Fig. 3. Black-box optimization for scheduling

Comparing with the classic HFS scheduling problem, the

search space of a steelmaking scheduling problem is not very

huge, because the job sequence in each batch is deterministic.

Therefore, we can represent the search space with a lower-

dimensional genome (vector) and the primal problem can be

simplified as an easy-to-solve subproblem. The optimization

process is assumed to be a black box (as shown in Fig. 3).

Since there is no available gradient information during the

optimization process, we map the steelmaking scheduling

problem with a real-valued vector and try to seek an optimal

genome by the CMA-ES algorithm (as shown in Algorithm

I). Moreover, the MILP problem stated in Section III is

transformed into a continuous optimization problem, and

supposed to be solved more quickly than mathematical

solvers, like CPLEX, GUROBI, etc. In this optimization

procedure, the most important issue is how to integrate the

problem characteristics with EMA-ES to avoid a completely

blind search. In the following sub-sections, we implement a

novel encoding scheme, a high efficient evaluation method, a

boundary handling, and a restart policy.

Algorithm I: CMA-ES

Step 0: initialize λ, 𝑚, 𝜎, 𝐶 = 𝐼, 𝑝𝐶 = 0, 𝑝𝜎 = 0, 𝑁𝑇
Step 1: while not terminated

1.1 Sample λ new solutions

 for 𝑘 = 1 to λ
 (a) 𝜋𝑘 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑒𝑤_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑚, 𝜎2𝐶) /* ref. [27]*/

 (b) 𝐹𝑘 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜋𝑘) /* ref. Section IV.C */

1.2 Selection and recombination
 (a) 𝜋1⋯𝜇 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝜇_𝑏𝑒𝑠𝑡({(𝜋𝑘 , 𝐹𝑘)|1 ≤ 𝑘 ≤ 𝜆})

 (b) 𝑚 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑚(𝜋1…𝜇). /*ref. [27] */

1.3 Step-size control
 (a) 𝑝𝜎 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑠𝑖𝑔𝑚𝑎()/*ref. [27] */
 (b) 𝜎 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑖𝑔𝑚𝑎() /*ref. [27] */

1.4 Covariance matrix adaptation
 (a) 𝑝𝐶 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝐶()/*ref. [27] */
 (b) 𝐶 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝐶()/*ref. [27] */

1.5 Restart
 If 𝐹1 is not improved and reaches 𝑁𝑇 attempts then

 𝜋1⋯𝜆 = 𝑔𝑒𝑛𝑟𝑎𝑡𝑒_𝑛𝑒𝑤 _𝑠𝑙𝑢𝑡𝑖𝑜𝑛𝑠() /* ref. Section IV.E */

return 𝜋1

B. Real-valued encoding scheme (need to review again)

To make a good trade-off between external and internal

optimization within the black box, we develop a novel real-

valued encoding scheme incorporated with prior knowledge.

Usually, the solutions of a classic HFS scheduling problem

are represented as a job sequence in the first stage [21], last

stage [23], or bottleneck stage [34]. Due to the continuity and

setup constraints in the last stage, we need to seek an

encoding vector for mapping the steelmaking scheduling

problem which not only includes the sequence information

but also embodies timing information.

b*

b'

bidle

idle

idle

upstream stage

setup

setup

Cb*+utb
Cb'+utb"

Sb

b"

Fig. 4. Complete schedule in the casting stage

It is worth noted that a complete schedule in the last stage

with parallel machines is composed of working and idle

intervals (as shown in Fig 4). Once the processing sequence

is fixed, the starting time of the current batch (𝑆𝑏̅), can be

defined as 𝑆𝑏̅ = 𝑆𝑔,𝐵𝑏,1
= 𝐶𝑏̅∗ + 𝑢𝑡𝑏 + Δ𝑏 , where 𝐶𝑏̅∗ is the

completion time of the previous batch 𝑏′ on the same

machine as batch 𝑏. Additionally, we can also infer that the

upper bound of 𝑆𝑏̅, 𝑆𝑏̅ ≤ 𝐶̅
𝑏′ + 𝑢𝑡𝑏", where 𝑏′ is the previous

one of batch 𝑏 in the given cast sequence. Then, we define

∆𝑏= 𝛽𝑏 × (𝐶̅
𝑏′ + 𝑢𝑡𝑏" − 𝐶𝑏̅∗ − 𝑢𝑡𝑏), where 𝛽𝑏 ∈ [0,1] is the

idle ratio of batch 𝑏. In this paper, we identify the setup times

of all batches are fixed the same value, then we can calculate

∆𝑏= 𝛽𝑏 × (𝐶̅
𝑏′ − 𝐶𝑏̅∗).

Taking these cues, we devise a two-part real-value vector

𝜋 = (𝛼|𝛽) to map the search space, where 𝛼 ∈ [0,1] denotes

the priority of each batch, and 𝛽 ∈ [0,1] denotes the idle ratio

before it starts. Fig. 5 exemplifies the method, where five

batches are encoded with a priority vector α = {0.9,0.8,0.3,
0.5,06} and a idle ratio vector 𝛽 = {0.1,0.5,0.3,0.2,0.8} .

According to this encoding scheme, we sort jobs in

descending order of 𝛼 and allocate machines following the

earliest available machine (EAM) rule. Then, the final

schedule in the last stage can be determined by insert fixed

idle times indicated by 𝛽.

0.9 0.8 0.3 0.5

priority, α

idle ratio, β

0.6 0.1 0.5 0.3 0.2 0.8

Fig. 5. Two-part encoding scheme

According to this encoding scheduling, we can determine

a unique solution in the casting stage. It means that all

decision variables are projected on the variables in the casting

stage.

C. LP-based decoding Procedure

When decision variables are determined by a real-valued
vector, we can apply a backward list scheduling to get a

multi-dimensional vector with job list 𝑋𝑖,𝑘（𝑖 < 𝑔） and

batch list 𝑈𝑔,𝑘 allocated on each machine. Then, all

sequencing and allocation constraints of P can be removed,
and timing constraint (11), (12) and (14) can be simplified as:

𝑆𝑖,𝑗2
− 𝑆𝑖,𝑗1

≥ 𝑃𝑇𝑖,𝑗1
,  ∀𝑖 ∈ 𝐼𝑈, 〈𝑗1, 𝑗2〉 ∈ 𝑋𝑖,𝑘 (16)

𝐷𝑖,𝑗1
− 𝑆𝑖,𝑗2

≤ 𝑃𝑇𝑖,𝑗2

𝑡 ,  ∀𝑖 ∈ 𝐼𝑈, 〈𝑗1, 𝑗2〉 ∈ 𝑋𝑖,𝑘 (17)

𝑆𝑔,𝐵𝑏2,1
− 𝑆𝑔,𝐵𝑏1,𝑁𝑏1

≥ 𝑇𝑃𝑇𝑏1
+ 𝑠𝑢𝑏2 ,

, 〈𝑏1, 𝑏2〉 ∈ 𝑈𝑔,𝑘
(18)

where 〈𝑗1, 𝑗2〉 and 〈𝑏1, 𝑏2〉 are two consecutive jobs and

batches on the same machine.

When sequencing and allocation variables are fixed, we

formulate the following linear programming (LP) model

which can be solved very easily by commercial solvers.

 LP: {
𝐹 = 𝑓1 + 𝑓2

𝑠. 𝑡. (8 − 10), (13), (16 − 18)
 (19)

D. Boundary handling method

It is important to note that a new solution may violate its
bound constraint [0,1] of the two-part-vector representation
during the random sampling process. A good constraint
handling method is able to restrict the feasible region and
guide the algorithm toward a promising region [35]. In this
paper, we apply a penalty function proposed by Igel et al. [31]
to handle the boundary constraints.

 𝐹 = 𝐹(𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜋)) + 104‖𝜋 − 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜋)‖1 (20)

where

 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜋) = {
0 𝜋𝑟 < 0

𝜋𝑟 0 ≤ 𝜋𝑟 ≤ 1
1 𝜋𝑟 > 1

 (21)

E. DE-based Restart policy

In some cases, a rugged landscape of the studied scheduling
problem may cause the CMA-ES algorithm to explore an
unpromising region for many trials. Therefore, the result is
more likely to link with the initial population. It is necessary
to restart the algorithm to search for another promising region.
In this paper, we introduce a restart policy imitated the
operator in DE to avoid trapping into local optimums after
𝑁𝑆 10⁄ attempts, which is detailed in Algorithm II.

Algorithm II: DE-based restart policy

for 𝑟 = 1 to λ

(a)
randomly choose two indices 𝑟1 , 𝑟2 from 1 … 𝜆 , and

𝑟 ≠ 𝑟1 ≠ 𝑟2

(b) 𝜋𝑟 = {
𝜋𝑟 + 𝒩(0,1) ∗ (𝜋𝑟1

− 𝜋𝑟2
), 𝑖𝑓 𝑟𝑛𝑑 < 0.5

𝜋𝑟 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

(c) 𝐹𝑖 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜋𝑟) // optimized with a Solver.

end for

V. COMPUTATIONAL EXPERIMENTS

Because the formulation and benchmarks of the studied

scheduling problem have not been reported elsewhere, we

conduct computational experiments in this section to analyze

the performance of the proposed CMA-ES by comparisons.

All the related algorithms are coded in C++ language,

compiled with Visual Studio 2015, and executed on a win10

64bit Personal Computer with an 1.8550 GHz Intel Core i7-

8550U CPU and 16.0GB RAM.

A. Instance generation

We generated test instances in a random way, in which the
input data is collected from a large iron & steel company
located in the north of China. The production system has
more than one refining stage and is characterized as follows.

(1) The number of stages is four, and the number of
machines in each stage is {3, 4, 3, 3}.

(2) The processing time 𝑃𝑇𝑖,𝑗 is generated with following

uniform distributions, 𝑈(⋅,⋅):

 At the steelmaking stage, 𝑃𝑇1,𝑗~𝑈(27,32).

 At the first refining stage, 𝑃𝑇2,𝑗~𝑈(40,60).

 At the second refining stage, 𝑃𝑇3,𝑗~𝑈(40,60).

 At the casting stage, 𝑃𝑇4,𝑗~𝑈(30,40).

(3) The transfer time 𝑇𝑇𝑖,𝑖+1 =6.

(4) The setup time 𝑢𝑡𝑏 = 60.
(5) The buffer time 𝑄𝑖 = 5.

In the following experiments, three levels of batch size
𝑁 ∈ {6,9,12} is considered, and the job size of each batch is
a uniform random distribution, 𝑁𝑏~𝑈(8,12). We randomly
generate seven instances of each batch level, thus a total of
21 scheduling benchmarks are synthesized.

B. Competing algorithms

To verify the effectiveness of the model as well as to

compare the proposed CMA-ES of which initial parameters

are recommended by [27], we have selected the standard DE

algorithm and the CCABC as the competitors.

(1) DE, a well-known continuous EA, and its variants have

successfully applied in solving a variety of steelmaking

scheduling problems [5][13][18][23]. In this section,

experiments, a standard DE (DE/rand/1/bin) algorithm is

implemented with the same encoding and decoding

scheme proposed in this paper. The control parameters

are suggested by Ronkkonen et al. [36] where population

size, 𝑁𝑝 = 50 , scale factor, 𝐹 = 0.5 , crossover rate,

𝐶𝑟 = 0.9.

(2) CCABC, a state-of-the-art EA for solving steelmaking

scheduling problems which is similar to the studied

problem. In the following experiments, we implemented

the CCABC with its own encoding scheme but the

decoding procedure proposed in this paper. The control

parameters are recommended by Pan [22], where

population size, 𝑁𝑝 = 10 , neighbor search ratio, 𝛿 =
0.75, and number of consecutive iterations, 𝜃 = 50.

To make a fair competition, we randomly initialize the

population of all algorithms and terminate them when the

evaluation number reaches 5000. Especially, all decoding

procedures based on MILP or LP models are solved by the

commercial optimization solver GUROBI 9.0 (with default

settings).

C. Experimental Results

For each testing instance, we independently conduct each

algorithm 10 times to obtain the mean computational output.

The relative percentage deviation (RPD), defined in (22)

below, over the best solutions value found in the experiment

is computed.

 𝑅𝑃𝐷 =
𝐹 − 𝐹min

𝐹min
× 100% (22)

where 𝐹min is the minimum objective value obtained by

running the same algorithm in a multiple repeating way.

TABLE I. COMPUTATIONAL RESULTS OF COMPARATIVE ALGORITHMS

No.
CMA-ES DE CCABC

min.(%) max. (%) mean. (%) T(s) min.(%) max. (%) mean. (%) T(s) min.(%) max. (%) mean. (%) T(s)

1# 0.000E+00 3.030E+00 1.794E+00 36 2.403E+00 4.284E+00 3.448E+00 10 2.926E+00 1.996E+01 6.270E+00 14

2# 1.715E+00 4.609E+00 3.108E+00 41 0.000E+00 5.573E+00 3.537E+00 11 3.215E-01 1.115E+01 2.358E+00 16

3# 0.000E+00 2.564E+00 1.442E+00 39 2.350E+00 6.944E+00 6.197E+00 9 4.915E+00 1.603E+01 7.051E+00 14

4# 0.000E+00 4.019E+00 2.072E+00 42 2.056E+00 5.140E+00 3.458E+00 12 5.794E+00 1.804E+01 1.308E+01 18

5# 8.811E-01 5.727E+00 4.141E+00 37 0.000E+00 6.608E+00 3.084E+00 15 6.432E+00 2.282E+01 1.181E+01 19

6# 0.000E+00 4.102E+00 2.550E+00 38 4.435E+00 8.758E+00 7.095E+00 14 1.552E+00 3.492E+01 1.752E+01 20

7# 0.000E+00 4.958E+00 2.781E+00 40 2.297E+00 6.530E+00 3.748E+00 10 9.311E+00 3.301E+01 1.790E+01 18

8# 9.357E-01 4.971E+00 2.456E+00 55 0.000E+00 5.965E+00 2.924E+00 18 4.678E+00 1.591E+01 1.228E+01 27

9# 1.528E+00 5.501E+00 3.606E+00 53 2.078E+00 5.318E+00 4.034E+00 21 0.000E+00 3.368E+01 1.314E+01 30

10# 0.000E+00 4.715E+00 2.966E+00 51 7.072E+00 1.141E+01 8.897E+00 19 8.061E+00 1.954E+01 1.125E+01 26

11# 0.000E+00 5.139E+00 3.498E+00 53 4.568E+00 1.342E+01 7.780E+00 20 5.496E+00 3.269E+01 1.649E+01 26

12# 0.000E+00 3.041E+00 1.886E+00 57 2.433E-01 3.589E+00 3.041E-01 20 4.258E-01 1.052E+01 8.577E+00 27

13# 0.000E+00 3.351E+00 1.737E+00 52 4.617E+00 9.159E+00 7.074E+00 22 2.457E+00 2.278E+01 1.236E+01 30

14# 0.000E+00 2.717E+00 1.381E+00 54 4.705E+00 1.173E+01 7.886E+00 21 3.844E+00 2.180E+01 6.627E+00 29

15# 0.000E+00 2.137E+00 1.053E+00 68 0.000E+00 6.790E+00 4.463E+00 30 1.662E+00 2.284E+01 1.282E+01 40

16# 0.000E+00 3.065E+00 1.541E+00 73 9.045E-01 8.141E+00 6.131E+00 28 6.683E+00 1.930E+01 7.789E+00 38

17# 0.000E+00 2.572E+00 1.088E+00 69 4.797E+00 1.009E+01 7.962E+00 27 1.835E+01 2.977E+01 1.963E+01 37

18# 0.000E+00 2.642E+00 1.347E+00 75 1.677E+00 6.453E+00 4.370E+00 28 1.209E+01 3.547E+01 1.707E+01 37

19# 0.000E+00 1.406E+00 8.293E-01 70 4.867E-01 3.786E+00 1.947E+00 30 4.002E+00 2.466E+01 1.509E+01 42

20# 0.000E+00 2.991E+00 2.030E+00 71 3.752E+00 7.939E+00 5.982E+00 28 8.320E+00 3.018E+01 1.588E+01 38

21# 0.000E+00 3.233E+00 1.338E+00 72 5.422E+00 9.854E+00 8.238E+00 27 4.692E+00 2.419E+01 1.309E+01 37

avg. 2.409E-01 3.642E+00 2.126E+00 55 2.565E+00 7.499E+00 5.169E+00 20 5.334E+00 2.377E+01 1.229E+01 28

The computational results of the test instances with various

scales and structures are given in Table I. It reports the

minimum, maximum and mean values of RPD, and the

average CPU running time (seconds) of each algorithm (T).

To analyze how different performance between CMA-ES and

competed algorithms, we also apply a one-way ANOVA test

to confirm these mean results of RPD, where each algorithm

is identified as a single factor and mean PRD as a response

variable. The overall results are shown in Table II and plotted

in Fig. 6. Table II reports the source of variation including the

between-groups (Columns) and the within-groups (Error),

degrees of freedom (DF), the sum of squares (SS), the mean

squares (MS=SS/DF), the observed value (F) based on F-

statistic, and its test value (P-value). Similar to the T-tests, we

apply a significance level of 0.05 for testing. Fig. 6 also

provides a visual comparison based on the statistic results

among algorithms.

TABLE II. ANOVA TABLE FOR RPD

Source DF SS MS F P-value

Columns 2 1143.81 571.905 64.16 1.25173e-15

Error 60 534.82 8.914

Total 62 1678.63

Fig. 6. Box plot of the ANOVA result of RPD

Fig. 7. Multiple comparisons on means

From the comparison results, we observe the following: (1)

in comparisons of the value of PRD, the proposed CMA-ES

algorithm had 17 best outputs of the given 21 test instances,

which was significantly better than the other two algorithms.

According to the mean value and the statistic of ANOVA,

CMA-ES obtained the minimum average RPD mean value of

2.126 and significantly differed with others on RPD, since P-

value=1.25e-15<0.05, and confirmed by the multiple

comparisons on means (as shown in Fig. 7). Hence, CMA-ES

has the best optimality ability without offline tuning. (2) Due

to the complexity of matrix operations, the running time of

CMA-ES is higher than other algorithms, but it is within the

acceptable range (average around 1 minute).

VI. CONCLUSION

In this paper, we have studied a steelmaking scheduling
problem involving time buffers which has more practical
sense. We developed a MILP model to formulate the problem
by considering the practical requirements on temporal, spatial,
and technical factors. To solve the problem, we proposed an
improved CMA-ES algorithm integrated with prior problem
characteristics. It contains a novel encoding scheme, an LP-
based evaluation procedure and a DE-based restart policy.
Experimental results on 21 randomly synthesized instances
show that the proposed CMA-ES outperforms other tested
algorithms in optimality, but less competitive on efficiency.

Given these promising results, the proposed CMA-ES can
be served as a Benchmarking algorithm to develop new EAs.
Besides, we will explore new avenues improving the
computational speed of the proposed CMA-ES algorithm to
solve other types of steelmaking scheduling problems, such as
with multiple objectives, under dynamic disturbances or
uncertainties.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and the
editors for their constructive and pertinent comments. Sheng-
Long Jiang thanks the China Scholarship Council for
supporting a 1-year study at University College London.

REFERENCES

[1] L. Tang, J. Liu, A. Rong, and Z. Yang, “A mathematical programming
model for scheduling steelmaking-continuous casting production,” Eur.
J. Oper. Res., vol. 120, no. 2, pp. 423–435, Jan. 2000.

[2] L. Tang, P. B. Luh, J. Liu, and L. Fang, “Steel-making process
scheduling using Lagrangian relaxation,” Int. J. Prod. Res., vol. 40, no.
1, pp. 55–70, Nov. 2002.

[3] D. Pacciarelli and M. Pranzo, “Production scheduling in a steelmaking-
continuous casting plant,” Comput. Chem. Eng., vol. 28, no. 12, pp.
2823–2835, Nov. 2004.

[4] A. Atighehchian, M. Bijari, and H. Tarkesh, “A novel hybrid algorithm
for scheduling steel-making continuous casting production,” Comput.
Oper. Res., vol. 36, no. 8, pp. 2450–2461, Aug. 2009.

[5] L. Tang, Y. Zhao, and J. Liu, “An improved differential evolution
algorithm for practical dynamic scheduling in steelmaking-continuous
casting production,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp.
209–225, Apr. 2013.

[6] K. Mao, Q.-K. Pan, X. Pang, and T. Chai, “An effective Lagrangian
relaxation approach for rescheduling a steelmaking-continuous casting
process,” Control. Eng. Pract., vol. 30, pp. 67–77, Sept. 2014.

[7] J.-Q. Li, Q.-K. Pan, and K. Mao, “A hybrid fruit fly optimization
algorithm for the realistic hybrid flowshop rescheduling problem in
steelmaking systems,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp.
932–949, Apr. 2015.

[8] S. Yu, T. Chai, and Y. Tang, “An effective heuristic rescheduling
method for steelmaking and continuous casting production process
with multirefining modes,” IEEE Trans. Syst., Man, Cybern. Syst., vol.
46, no. 12, pp. 1675–1688, Dec. 2016.

[9] J. Long, Z. Zheng, and X. Gao, “Dynamic scheduling in steelmaking-
continuous casting production for continuous caster breakdown,” Int.
J. Prod. Res., vol. 55, no. 11, pp. 3197–3216, Dec. 2017.

[10] K. Worapradya and P. Thanakijkasem, “Worst case performance
scheduling facing uncertain disruption in a continuous casting process,”
in Proc. 2010 IEEE Int. Conf. Ind. Eng. Eng. Manage., Macao, 2010,
pp. 291-295.

[11] Y. Ye, J. Li, Z. Li, Q. Tang, X. Xiao, and C. A. Floudas, “Robust
optimization and stochastic programming approaches for medium-term

production scheduling of a large-scale steelmaking continuous casting
process under demand uncertainty,” Comput. Chem. Eng., vol. 66, pp.
165–185, July 2014.

[12] J. Hao, M. Liu, S. Jiang, and C. Wu, “A soft-decision based two-
layered scheduling approach for uncertain steelmaking-continuous
casting process,” Eur. J. Oper. Res., vol. 244, no. 3, pp. 966–979, Aug.
2015.

[13] S. Jiang, Z. Zheng, and M. Liu, “A multi-stage dynamic soft scheduling
algorithm for the uncertain steelmaking-continuous casting scheduling
problem,” Appl. Soft Comput., vol. 60, pp. 722–736, Nov. 2017.

[14] S. Jiang, M. Liu, and J. Hao, “A two-phase soft optimization method
for the uncertain scheduling problem in the steelmaking industry,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 416–431,
Mar. 2016.

[15] L. Tang, J. Guan, and G. Hu, “Steelmaking and refining coordinated
scheduling problem with waiting time and transportation
consideration,” Comput. Ind. Eng., vol. 58, no. 2, pp. 239–248, Mar.
2010.

[16] H. Missbauer, W. Hauber, and W. Stadler, “A scheduling system for
the steelmaking-continuous casting process. A case study from the
steel-making industry,” Int. J. Prod. Res., vol. 47, no. 15, pp. 4147–
4172, May. 2009.

[17] Y. Tan and S. Liu, “Models and optimisation approaches for
scheduling steelmaking–refining–continuous casting production under
variable electricity price,” Int. J. Prod. Res., vol. 52, no. 4, pp. 1032–
1049, May 2014.

[18] W. Xu, F. Zou, and L. Tang, “A subpopulation-based differential
evolution algorithm for scheduling with batching decisions in
steelmaking-continuous casting production,” in Proc. 2016 IEEE
Congr. Evol. Comput. (CEC), Vancouver, BC, 2016, pp. 2784–2790.

[19] A. Sbihi, A. Bellabdaoui, and J. Teghem, “Solving a mixed integer
linear program with times setup for the steel-continuous casting
planning and scheduling problem,” Int. J. Prod. Res., vol. 52, no. 24,
pp. 7276–7296, May 2014.

[20] K. Mao, Q. Pan, X. Pang, and T. Chai, “A novel Lagrangian relaxation
approach for a hybrid flowshop scheduling problem in the steelmaking-
continuous casting process,” Eur. J. Oper. Res., vol. 236, no. 1, pp. 51–
60, July 2014.

[21] Q.-K. Pan, L. Wang, K. Mao, J.-H. Zhao, and M. Zhang, “An effective
artificial bee colony algorithm for a real-world hybrid flowshop
problem in steelmaking process,” IEEE Trans. Autom. Sci. Eng., vol.
10, no. 2, pp. 307–322, Apr. 2012.

[22] Q.-K. Pan, “An effective co-evolutionary artificial bee colony
algorithm for steelmaking-continuous casting scheduling,” Eur. J.
Oper. Res., vol. 250, no. 3, pp. 702–714, May 2016.

[23] S. Jiang, M. Liu, J. Hao, and W. Qian, “A bi-layer optimization
approach for a hybrid flow shop scheduling problem involving
controllable processing times in the steelmaking industry,” Comput.
Ind. Eng., vol. 87, pp. 518–531, Sept. 2015.

[24] J. Li, Q. Pan, K. Mao, and P. N. Suganthan, “Solving the steelmaking
casting problem using an effective fruit fly optimisation algorithm,”
Knowl. Based Syst., vol. 72, pp. 28–36, Dec. 2014.

[25] J. Del Ser et al., “Bio-inspired computation: Where we stand and
what’s next,” Swarm Evol. Comput., vol. 48, pp. 220–250, Aug. 2019.

[26] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evol. Comput., vol. 11, no. 1, pp. 1–18,
Mar. 2003.

[27] N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, Apr. 2016.

[28] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn Res., vol. 13, no. 10, pp. 281–305, 2012.

[29] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[30] H.-G. Beyer and B. Sendhoff, “Simplify your covariance matrix
adaptation evolution strategy,” IEEE Trans. Evol. Comput., vol. 21, no.
5, pp. 746–759, Oct. 2017.

[31] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for
multi-objective optimization,” Evol Comput, vol. 15, no. 1, pp. 1–28,
Mar. 2007.

[32] Z. Li, Q. Zhang, X. Lin, and H.-L. Zhen, “Fast Covariance Matrix
Adaptation for Large-Scale Black-Box Optimization,” IEEE Trans.
Cybern., vol. 50, no. 5, pp. 2073-2083, May 2018.

[33] Z. Li, J. Deng, W. Gao, Q. Zhang, and H.-L. Liu, “An Efficient Elitist
Covariance Matrix Adaptation for Continuous Local Search in High
Dimension,” in Proc. 2019 IEEE Congr. Evol. Comput. (CEC),
Wellington, New Zealand, 2019, pp. 936–943

[34] C.-J. Liao, E. Tjandradjaja, and T.-P. Chung, “An approach using
particle swarm optimization and bottleneck heuristic to solve hybrid
flow shop scheduling problem,” Appl. Soft Comput., vol. 12, no. 6, pp.
1755–1764, June 2012.

[35] R. Biedrzycki, “Handling bound constraints in CMA-ES: An
experimental study,” Swarm Evol. Comput., vol. 52, p. 100627, Feb.
2020.

[36] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real-parameter
optimization with differential evolution,” in 2005 IEEE Congr. Evol.
Comput. (CEC) , Edinburgh, Scotland, 2005, pp. 506-513.

