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Abstract— The production system of a steelmaking plant 

always is thought of as a special hybrid flow shop (HFS). 

However, most scheduling models are not performed very well 

in practical environments due to practical problems are more 

complex than classic versions, and the algorithms are weak in 

solving problems with various scales and structures. This paper 

studies a practical scheduling problem involving time buffers, 

and propose an improved covariance matrix adaptation 

evolution strategy (CMA-ES) algorithm without painstaking 

parameter selections. First, the studied problem is formulated 

as a mixed-integer linear programming (MILP) model. Second, 

we develop an improved CMA-ES algorithm with a problem-

oriented encoding and decoding scheme, and a differential 

evolution (DE) based restart policy. Finally, the proposed 

algorithm is compared with the standard DE algorithm and the 

state-of-the-art algorithm named CCABC. Experimental results 

carried out on a variety of synthetic scheduling benchmarks 

demonstrate that the proposed technique shows the advantage 

in seeking optimums. 

Keywords—scheduling, buffer, CMA-ES, hybrid flow shop, 

steelmaking 

I. INTRODUCTION 

The steelmaking plant is a critical building block in a 

modern iron & steel manufacturing company, which mainly 

consists of a steelmaking stage, a single or multiple refining 

stages, and a casting stage (as shown in Fig. 1). The mission 

of a steelmaking plant is to produce qualified slabs or billets 

with suitable chemical percentages and physical shapes. In a 

practical industrial system, each job, molten steel poured from 

blast furnaces, must travel in a specific channel across from 

the steelmaking to the casting stage but may skip some 

refining stages. During the flow sheet, molten steel is poured 

into an intermediate vessel named ladle, and transfer to a 

continuous casting machine for solidification, in which a 

number of jobs are grouped into in a batch and processed 

without any time stopped due to its key part named Tundish is 

only available within a specific time range. Because of the 

requirement on high temperature (1600℃  above) and the 

strict chemical spectrums, each job must provide some time 

buffer to prepare processing materials and tools, and then 

move to the next stage. Concerning these topological flow and 

technical requirements, the steelmaking scheduling problem 

is commonly identified as a special hybrid flow shop (HFS) 

scheduling problem with complex constraints[1][2], including 

setup, continuity, and transferring, etc. After the job sequence 

and machine allocation are determined, a feasible schedule 

implemented in a steelmaking plant can be illustrated with a 

Gantt diagram containing serval continuous blocks in the last 

stage (as shown in Fig. 2). 
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Fig. 1. Flowsheet of a steelmaking plant

In recent years, the steelmaking scheduling problem is 

extensively studied both in academia and industry, because of 

its strong industrial background. However, there is very little 
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literature on its real-world application. The main reason is that 

most of the steelmaking scheduling models are simply 

assumed to be variants of the classic HFS scheduling problem, 

and cause a wide variety of related solving algorithms to be 

Utopian theories. In this study, we address these issues by 

modeling the steelmaking scheduling problems that considers 

more practical constraints and developing a high-efficiency 

solving algorithm. Section II reviews related works about 

steelmaking scheduling problems and a powerful optimization 

algorithm named covariance matrix adaptation evolution 

strategy (CMA-ES). Section III provides a mathematical 

model formulating the practical scheduling problem. In 

Section IV, we develop an improved CMA-ES algorithm 

integrating prior knowledge towards the steelmaking 

scheduling problem. In Section V, empirical studies are 

carried out to verify the effectiveness of the proposed 

algorithm. The final section draws some conclusions of this 

study and points out some future study topics.  
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Fig. 2. Gantt diagram for a feasible schedule executed in a steelmaking plant 

II. LITERATURE REVIEW 

From the 1990s, researchers have developed a large variety 

of models to describe the scheduling problem in steelmaking 

plants, most of which are assumed to be variants of a classic 

HFS scheduling problem. Tang et al. [1]-[4] proposed 

mathematic models involving batching, precedence, setup 

and transferring constraints, and punctual delivery, job 

waiting and make-span objectives. However, due to the 

complexity of the practical industrial system, the released 

schedule grounded on these models often suffers from 

performance variation and constraint violations. Therefore, a 

wide range of dynamic [5]-[9] and uncertain [10]-[14] 

models were also reported in recent publications. The main 

reason caused the instability and infeasibility is that most 

models are too Utopian to be implemented in a practical 

production system. Therefore, many practitioners try to seek 

reasonable models taking account of additional practical 

constraints. Tang et al. [15] integrated transporter-related 

constraints and objectives into the steelmaking scheduling 

model. Missbauer et al. [16] proposed a realistic scheduling 

model with controllable casting speeds and balanceable 

production capacities. Tan and Liu [17] developed a 

scheduling model considering a variable electricity price. Xu 

et al. [18] studied a batching-related scheduling problem in 

which allocating jobs in batches needed to be determined. 

Amid these practical constraints, the time buffer is one of the 

most important factors, because it is not only used for further 

processing molten steel but also provide flexibility to resist 

some uncertain disturbances.  

To solve these various scheduling problems, a wide range 

of problem-specific optimization algorithms have been raised. 

These approaches are mainly categorized into three types: (1) 

Heuristics based on dispatching rules [16]. (2) Mathematic 

programming mainly includes decomposition-based MILP 

[19] and Lagrangian relaxation [20]. (3) Evolutionary 

algorithm (EA), such as ant colony optimization (ACO) [4], 

differential evolution (DE) [5][23], artificial bee colony 

(ABC) [21][22], fruit fly optimization (FFO) [7] [24], etc. 

Among these algorithms, the EA is known as one of the 

powerful optimization tools for solving scheduling problems, 

because it scales well to high-dimension problems, and is 

robust to complex optimization problems. When applying an 

EA to solve steelmaking scheduling problems, we need to 

simplify a candidate solution as a genome and evaluate its 

objective value or fitness. For example, Pan et al. [21] and Li 

et al. [23][24] defined a job sequence at the first stage to 

represent as the scheduling genome, Tang et al. [5] defined a 

matrix with job sequence and machine allocation in all stages. 

The first way is a partly encoding way and is high efficient in 

the evolutionary process, but it is difficult to obtain an 

optimal evaluation in the sub-space represented by the vector 

gene. The second way is a complete encoding way and is well 

in seeking a local optimization evaluation, but it is weak in 

evolutionary optimization. Both of them are common for 

encoding HFS scheduling problem, and only modify the 

evaluation method in line with the problem characteristics. 

Therefore, some studies try to define problem-oriented 

scheduling genes. Jiang et al. [23] proposed a representation 

with a job sequence in the last stage, and develop an iterative 

backward list scheduling procedure. Pan [22] devised a 

special job sequence expression in which each job index was 

replaced with its batch index.  
Another shortage of applying EAs in practice is that 



control parameter tuning is indispensable before running an 

algorithm [25]. It cannot adapt very well to the practical 

scheduling problem with various scales and structures. In 

recent years, the CMA-ES is thought of as a top-notch black-

box optimization tool towards non-convex, multimodal, 

discontinuous, or ill-conditioned problems in continuous 

spaces [26][27]. It applies a covariance matrix to learn 

autonomously parameter distributions and dependencies, and 

to generate new solutions. It is also regarded as a variant of 

estimation of distribution algorithm (EDA) with Gaussian 

distribution. CMA-ES provides an extremely prospective in 

solving many machine learning tasks [28][29], because it has 

no discrepancy between the behaviors toward the varied 

nature of black-box problems and is easily generalizable. Due 

to these advantages, many improved variants of CMA-ES 

came out [30]-[33].  

As claimed by the tendency of modeling and the shortages 

of algorithms, we attempt to construct a practical scheduling 

model considering additional constraints and devise a CMA-

ES algorithm to solve it.  

III. PROBLEM STATEMENT 

In this section, we formulate the studied scheduling 

problem in the steelmaking plant with a mixed-integer linear 

programming (MILP) model.  

A. Symbols 

In this subsection, we list symbols used for illustrating the 

input and output information of the MILP model. 

Indices: 

𝑏 index of batches. 

𝑖 index of stages. 

𝑗 index of jobs.  

𝑘 index of machines. 

Sets: 

I stage set, 𝐼 = {1, ⋯ 𝑖, ⋯ , 𝑔}, and 𝐼𝑈 = 𝐼\{𝑔}. 

𝐽 job set, 𝐽 = {1, ⋯ 𝑗, ⋯ , 𝑛}, and 𝐽𝑖  denotes a job subset 

that needs to visit stage 𝑖. 

𝐵 batch set, 𝐵 = {1, ⋯ , 𝑏, ⋯ , 𝑁}. 

𝐵𝑏 job set of the 𝑏𝑡ℎ  batch with the size of 𝑁𝑏, and 𝐵𝑏,𝑟 

denotes the 𝑟𝑡ℎ job in batch 𝑏.  

𝑀𝑖 machine set of stage 𝑖 with the size of 𝑚𝑖, and 𝑀𝑖,𝑘  

denotes the 𝑘𝑡ℎ machine in stage 𝑖. 
𝐻𝑗 stage list of job 𝑗 with the size of ℎ𝑗, and 𝐻𝑗,𝑞 denotes 

the 𝑞𝑡ℎ stage visited by job 𝑗. 

Parameters: 

𝑎𝑡𝑗 arrival time of the feeding materials for job 𝑗. 

𝑃𝑇𝑖,𝑗  standard duration of task 〈𝑖, 𝑗〉. 

𝑇𝑇𝑖,𝑖+1 transfer time from stage 𝑖 to stage 𝑖 + 1. 

𝑄𝑖 predefined buffer time after stage 𝑖. 

𝑢𝑡𝑏 setup time of the 𝑏𝑡ℎ  batch. 

𝛾1 objective coefficient of make-span. 

𝛾2 objective coefficient of transit times. 

𝐿  sufficiently large positive constant. 

Decision Variables: 

𝑥𝑖,𝑗,𝑘 binary variable, if task 〈𝑖, 𝑗〉 is allocated on machine 

𝑀𝑖,𝑘 , 𝑥𝑖,𝑗,𝑘 = 1; otherwise 𝑥𝑖,𝑗,𝑘 = 0.  

𝑦𝑖,𝑗1,𝑗2 binary variable, if task 〈𝑖, 𝑗1〉  and 〈𝑖, 𝑗2〉  are 

contiguously processed, 𝑦𝑖,𝑗1,𝑗2
= 1 ; otherwise 

𝑦𝑖,𝑗1,𝑗2
= 0. 

𝑢𝑘,𝑏 binary variable, if batch 𝑏  is allocated on machine 

𝑀𝑔,𝑘 , 𝑢𝑘,𝑏 = 1; otherwise, 𝑢𝑘,𝑏 = 0. 

𝑧𝑏1,𝑏2  binary variable, if batch 𝑏1  and 𝑏2  are contiguously 

processed, 𝑧𝑏1,𝑏2
= 1; otherwise 𝑧𝑏1,𝑏2

= 0. 

𝑆𝑖,𝑗 starting time of task 〈𝑖, 𝑗〉. 

𝐷𝑖,𝑗 departure time of task 〈𝑖, 𝑗〉. 

B. Objectives 

In a practical steelmaking system, the mission of 

scheduling decision is to seek the optimal objectives 

involving both production efficiency and cost. The first one 

is defined by the maximum completion time (𝑓1), and the 

second one is defined by the total transit time (𝑓2).  

𝑓1 = 𝐶𝑚𝑎𝑥 = max
𝑗∈𝐽

{𝐷𝑔,𝑗} (1) 

𝑓2 = ∑(𝑆𝑔,𝑗 − 𝑆1,𝑗)

𝑛

𝑗=1

 (2) 

The objective of the scheduling problem is formulated as,  

(P) 𝐹 = 𝑓1 + 𝑓2 (3) 

C. Constraints 

1) Sequencing and allocation 

∑ 𝑥𝑖,𝑗,𝑘

𝑚𝑖

𝑘=1

= 1, ∀𝑖 ∈ 𝐼𝑈, 𝑗 ∈ 𝐽𝑖 (4) 

𝑦𝑖,𝑗1,𝑗2
+ 𝑦𝑖,𝑗2,𝑗2

= 1, ∀𝑖 ∈ 𝐼𝑈,   𝑗1, 𝑗2 ∈ 𝐽𝑖,   𝑗1 ≠ 𝑗2 (5) 

∑ 𝑢𝑘,𝑏

𝑚𝑔

𝑘=1

= 1, ∀𝑏 ∈ 𝐵 (6) 

z𝑏1,𝑏2
+ 𝑧𝑏2,𝑏1

= 1, ∀𝑏1, 𝑏2 ∈ 𝐵,   𝑏1 ≠ 𝑏2 (7) 

Equation (4) and (5) ensure the uniqueness of the job 

allocation and sequencing, and (6) and (7) impose the same 

constraint on batches. 

2) Timing constraints 

𝑆1,𝑗 ≥ 𝑎𝑡𝑗 ,  ∀𝑗 ∈ 𝐽 (8) 

𝑆𝑖2,𝑗 − 𝐷𝑖1,𝑗 ≥ 𝑇𝑇𝑖1,𝑖2
 , 𝑖1 = 𝐻𝑗,𝑞 , 𝑖2 = 𝐻𝑗,𝑞+1, 

 ∀𝑞 ∈ {1, . . , ℎ𝑗 − 1}, 𝑗 ∈ 𝐽 
(9) 

𝐷𝑖,𝑗 − 𝑆𝑖,𝑗 ≤ 𝑃𝑇𝑖,𝑗 + 𝑄𝑖 , ∀𝑖 ∈ 𝐼𝑈, 𝑗 ∈ 𝐽 (10) 

𝑆𝑖,𝑗2
− 𝑆𝑖,𝑗1

+ 𝐿(3 − 𝑥𝑖,𝑗1,𝑘 − 𝑥𝑖,𝑗2,𝑘 − 𝑦𝑖,𝑗1,𝑗2
)

≥ 𝑃𝑇𝑖,𝑗1
,  ∀𝑖 ∈ 𝐼𝑈, 𝑗1, 𝑗2 ∈ 𝐽, 𝑗1 ≠ 𝑗2 

(11) 

𝐷𝑖,𝑗1
− 𝑆𝑖,𝑗2

+ 𝐿(3 − 𝑥𝑖,𝑗1,𝑘 − 𝑥𝑖,𝑗2,𝑘 − 𝑦𝑖,𝑗1,𝑗2
)

≤ 𝑃𝑇𝑖,𝑗2
,  ∀𝑖 ∈ 𝐼𝑈, 𝑗1, 𝑗2 ∈ 𝐽, 𝑗1 ≠ 𝑗2  

(12) 



𝑇𝑃𝑇𝑏 = ∑ 𝑃𝑇𝑔,𝐵𝑏,𝑟

𝑁𝑏

𝑟=1

, ∀𝑏 ∈ 𝐵 (13) 

𝑆𝑔,𝐵𝑏2,1
− 𝑆𝑔,𝐵𝑏1,𝑁𝑏1

+ 𝐿(3 − 𝑢𝑘,𝑏1
− 𝑢𝑘,𝑏2

− 𝑧𝑏1,𝑏2
) 

≥ 𝑇𝑃𝑇𝑏1
+ 𝑢𝑡𝑏2

, ∀𝑏1, 𝑏2 ∈ 𝐵,   𝑏1 ≠ 𝑏2 
(14) 

𝑆𝑔,𝐵𝑏,𝑟+1
− 𝑆𝑔,𝐵𝑏,𝑟

= 𝑃𝑇𝑔,𝐵𝑏,𝑟
, 

 ∀𝑏 ∈ 𝐵, 𝑟 ∈ {1,2, … , 𝑁𝑏 − 1} 
(15) 

Equation (8) denotes a job starts only after its feeding hot 

metal arrives, (9) means that a job starts in the current stage 

only after it departed from the previous stage and has been 

arrived at the stage, (10) indicates a not started task must be 

protected by a predefined time buffer, (11) means a machine 

is only able to processed one job at a time, (12) means a job 

must be moved from the buffer when the previous one on the 

same machine has completed, (13) defines the total duration 

of batch 𝑏, (14) means a machine is only able to process one 

batch at a time in the last stage, (15) expresses the continuity 

relationship between jobs in the same batch. 

IV. PROPOSED ALGORITHM 

A. Main idea of implementing CMA-ES 
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x f (x)

 gene representation

(encoding)
iterative optimization

projection &

 dimension reduction 

 

Fig. 3. Black-box optimization for scheduling 

Comparing with the classic HFS scheduling problem, the 

search space of a steelmaking scheduling problem is not very 

huge, because the job sequence in each batch is deterministic. 

Therefore, we can represent the search space with a lower-

dimensional genome (vector) and the primal problem can be 

simplified as an easy-to-solve subproblem. The optimization 

process is assumed to be a black box (as shown in Fig. 3). 

Since there is no available gradient information during the 

optimization process, we map the steelmaking scheduling 

problem with a real-valued vector and try to seek an optimal 

genome by the CMA-ES algorithm (as shown in Algorithm 

I). Moreover, the MILP problem stated in Section III is 

transformed into a continuous optimization problem, and 

supposed to be solved more quickly than mathematical 

solvers, like CPLEX, GUROBI, etc. In this optimization 

procedure, the most important issue is how to integrate the 

problem characteristics with EMA-ES to avoid a completely 

blind search. In the following sub-sections, we implement a 

novel encoding scheme, a high efficient evaluation method, a 

boundary handling, and a restart policy.  

Algorithm I: CMA-ES 

Step 0: initialize λ, 𝑚, 𝜎, 𝐶 = 𝐼, 𝑝𝐶 = 0, 𝑝𝜎 = 0, 𝑁𝑇 
Step 1: while not terminated 

1.1 Sample λ new solutions  

   for 𝑘 = 1 to λ  
    (a) 𝜋𝑘 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑒𝑤_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑚, 𝜎2𝐶) /* ref. [27]*/ 

    (b) 𝐹𝑘 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜋𝑘)   /* ref. Section IV.C */ 

1.2 Selection and recombination 
    (a) 𝜋1⋯𝜇 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝜇_𝑏𝑒𝑠𝑡({(𝜋𝑘 , 𝐹𝑘)|1 ≤ 𝑘 ≤ 𝜆})  

    (b) 𝑚 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑚(𝜋1…𝜇). /*ref. [27] */ 

1.3 Step-size control 
   (a)  𝑝𝜎 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑠𝑖𝑔𝑚𝑎()/*ref. [27] */ 
   (b)  𝜎 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑖𝑔𝑚𝑎()  /*ref. [27] */ 

1.4 Covariance matrix adaptation 
    (a)  𝑝𝐶 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝐶()/*ref. [27] */ 
    (b)  𝐶 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝐶()/*ref. [27] */ 

1.5 Restart 
          If 𝐹1 is not improved and reaches 𝑁𝑇 attempts then 

 𝜋1⋯𝜆 = 𝑔𝑒𝑛𝑟𝑎𝑡𝑒_𝑛𝑒𝑤 _𝑠𝑙𝑢𝑡𝑖𝑜𝑛𝑠() /* ref. Section IV.E */ 

return 𝜋1 

B. Real-valued encoding scheme (need to review again) 

To make a good trade-off between external and internal 

optimization within the black box, we develop a novel real-

valued encoding scheme incorporated with prior knowledge. 

Usually, the solutions of a classic HFS scheduling problem 

are represented as a job sequence in the first stage [21], last 

stage [23], or bottleneck stage [34]. Due to the continuity and 

setup constraints in the last stage, we need to seek an 

encoding vector for mapping the steelmaking scheduling 

problem which not only includes the sequence information 

but also embodies timing information. 
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Fig. 4. Complete schedule in the casting stage 

It is worth noted that a complete schedule in the last stage 

with parallel machines is composed of working and idle 

intervals (as shown in Fig 4). Once the processing sequence 

is fixed, the starting time of the current batch (𝑆𝑏̅), can be 

defined as 𝑆𝑏̅ = 𝑆𝑔,𝐵𝑏,1
= 𝐶𝑏̅∗ + 𝑢𝑡𝑏 + Δ𝑏 , where 𝐶𝑏̅∗  is the 

completion time of the previous batch 𝑏′  on the same 

machine as batch 𝑏. Additionally, we can also infer that the 

upper bound of 𝑆𝑏̅, 𝑆𝑏̅ ≤ 𝐶̅
𝑏′ + 𝑢𝑡𝑏", where 𝑏′ is the previous 

one of batch 𝑏 in the given cast sequence. Then, we define 

∆𝑏= 𝛽𝑏 × (𝐶̅
𝑏′ + 𝑢𝑡𝑏" − 𝐶𝑏̅∗ − 𝑢𝑡𝑏), where 𝛽𝑏 ∈ [0,1] is the 

idle ratio of batch 𝑏. In this paper, we identify the setup times 

of all batches are fixed the same value, then we can calculate 



∆𝑏= 𝛽𝑏 × (𝐶̅
𝑏′ − 𝐶𝑏̅∗).  

Taking these cues, we devise a two-part real-value vector 

𝜋 = (𝛼|𝛽) to map the search space, where 𝛼 ∈ [0,1] denotes 

the priority of each batch, and 𝛽 ∈ [0,1] denotes the idle ratio 

before it starts. Fig. 5 exemplifies the method, where five 

batches are encoded with a priority vector α = {0.9,0.8,0.3,  
0.5,06}  and a idle ratio vector   𝛽 = {0.1,0.5,0.3,0.2,0.8} . 

According to this encoding scheme, we sort jobs in 

descending order of 𝛼 and allocate machines following the 

earliest available machine (EAM) rule. Then, the final 

schedule in the last stage can be determined by insert fixed 

idle times indicated by 𝛽.  

0.9 0.8 0.3 0.5

priority, α

idle ratio, β

0.6 0.1 0.5 0.3 0.2 0.8

 
Fig. 5. Two-part encoding scheme 

According to this encoding scheduling, we can determine 

a unique solution in the casting stage. It means that all 

decision variables are projected on the variables in the casting 

stage.  

C. LP-based decoding Procedure 

When decision variables are determined by a real-valued 
vector, we can apply a backward list scheduling to get a 

multi-dimensional vector with job list 𝑋𝑖,𝑘（𝑖 < 𝑔）  and 

batch list 𝑈𝑔,𝑘  allocated on each machine. Then, all 

sequencing and allocation constraints of P can be removed, 
and timing constraint (11), (12) and (14) can be simplified as:  

𝑆𝑖,𝑗2
− 𝑆𝑖,𝑗1

≥ 𝑃𝑇𝑖,𝑗1
,  ∀𝑖 ∈ 𝐼𝑈, 〈𝑗1, 𝑗2〉 ∈ 𝑋𝑖,𝑘 (16) 

𝐷𝑖,𝑗1
− 𝑆𝑖,𝑗2

≤ 𝑃𝑇𝑖,𝑗2

𝑡 ,  ∀𝑖 ∈ 𝐼𝑈, 〈𝑗1, 𝑗2〉 ∈ 𝑋𝑖,𝑘 (17) 

𝑆𝑔,𝐵𝑏2,1
− 𝑆𝑔,𝐵𝑏1,𝑁𝑏1

≥ 𝑇𝑃𝑇𝑏1
+ 𝑠𝑢𝑏2 ,

, 〈𝑏1, 𝑏2〉 ∈ 𝑈𝑔,𝑘 
(18) 

where 〈𝑗1, 𝑗2〉  and 〈𝑏1, 𝑏2〉  are two consecutive jobs and 

batches on the same machine.  

When sequencing and allocation variables are fixed, we 

formulate the following linear programming (LP) model 

which can be solved very easily by commercial solvers.  

 LP: {
𝐹 = 𝑓1 + 𝑓2                   

𝑠. 𝑡. (8 − 10), (13), (16 − 18)
 (19) 

D. Boundary handling method 

It is important to note that a new solution may violate its 
bound constraint [0,1] of the two-part-vector representation 
during the random sampling process. A good constraint 
handling method is able to restrict the feasible region and 
guide the algorithm toward a promising region [35]. In this 
paper, we apply a penalty function proposed by Igel et al. [31] 
to handle the boundary constraints.  

 𝐹 = 𝐹(𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜋)) + 104‖𝜋 − 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜋)‖1 (20) 

where 

 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜋) = {
0 𝜋𝑟 < 0

𝜋𝑟  0 ≤ 𝜋𝑟 ≤ 1
1 𝜋𝑟 > 1

 (21) 

E. DE-based Restart policy  

In some cases, a rugged landscape of the studied scheduling 
problem may cause the CMA-ES algorithm to explore an 
unpromising region for many trials. Therefore, the result is 
more likely to link with the initial population. It is necessary 
to restart the algorithm to search for another promising region. 
In this paper, we introduce a restart policy imitated the 
operator in DE to avoid trapping into local optimums after 
𝑁𝑆 10⁄  attempts, which is detailed in Algorithm II.  

Algorithm II: DE-based restart policy 

for 𝑟 = 1 to λ 

(a) 
randomly  choose two indices 𝑟1 , 𝑟2 from 1 … 𝜆 , and 

𝑟 ≠ 𝑟1 ≠ 𝑟2 

(b) 𝜋𝑟 = {
𝜋𝑟 + 𝒩(0,1) ∗ (𝜋𝑟1

− 𝜋𝑟2
), 𝑖𝑓 𝑟𝑛𝑑 < 0.5

𝜋𝑟                                              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
. 

(c) 𝐹𝑖 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜋𝑟)   // optimized with a Solver. 

end for 

V. COMPUTATIONAL EXPERIMENTS 

Because the formulation and benchmarks of the studied 

scheduling problem have not been reported elsewhere, we 

conduct computational experiments in this section to analyze 

the performance of the proposed CMA-ES by comparisons. 

All the related algorithms are coded in C++ language, 

compiled with Visual Studio 2015, and executed on a win10 

64bit Personal Computer with an 1.8550 GHz Intel Core i7-

8550U CPU and 16.0GB RAM. 

A. Instance generation 

We generated test instances in a random way, in which the 
input data is collected from a large iron & steel company 
located in the north of China. The production system has 
more than one refining stage and is characterized as follows.  

(1) The number of stages is four, and the number of 
machines in each stage is {3, 4, 3, 3}.  

(2) The processing time 𝑃𝑇𝑖,𝑗 is generated with following 

uniform distributions, 𝑈(⋅,⋅): 

 At the steelmaking stage, 𝑃𝑇1,𝑗~𝑈(27,32). 

 At the first refining stage, 𝑃𝑇2,𝑗~𝑈(40,60). 

 At the second refining stage, 𝑃𝑇3,𝑗~𝑈(40,60). 

 At the casting stage, 𝑃𝑇4,𝑗~𝑈(30,40). 

(3) The transfer time 𝑇𝑇𝑖,𝑖+1 =6. 

(4) The setup time 𝑢𝑡𝑏 = 60.  
(5) The buffer time 𝑄𝑖 = 5. 

In the following experiments, three levels of batch size 
𝑁 ∈ {6,9,12} is considered, and the job size of each batch is 
a uniform random distribution, 𝑁𝑏~𝑈(8,12). We randomly 
generate seven instances of each batch level, thus a total of 
21 scheduling benchmarks are synthesized. 

B. Competing algorithms  

To verify the effectiveness of the model as well as to 

compare the proposed CMA-ES of which initial parameters 

are recommended by [27], we have selected the standard DE 

algorithm and the CCABC as the competitors.  



(1) DE, a well-known continuous EA, and its variants have 

successfully applied in solving a variety of steelmaking 

scheduling problems [5][13][18][23]. In this section, 

experiments, a standard DE (DE/rand/1/bin) algorithm is 

implemented with the same encoding and decoding 

scheme proposed in this paper. The control parameters 

are suggested by Ronkkonen et al. [36] where population 

size, 𝑁𝑝 = 50 , scale factor, 𝐹 = 0.5 , crossover rate, 

𝐶𝑟 = 0.9.  

(2) CCABC, a state-of-the-art EA for solving steelmaking 

scheduling problems which is similar to the studied 

problem. In the following experiments, we implemented 

the CCABC with its own encoding scheme but the 

decoding procedure proposed in this paper. The control 

parameters are recommended by Pan [22], where 

population size, 𝑁𝑝 = 10 , neighbor search ratio, 𝛿 =
0.75, and number of consecutive iterations, 𝜃 = 50.  

To make a fair competition, we randomly initialize the 

population of all algorithms and terminate them when the 

evaluation number reaches 5000. Especially, all decoding 

procedures based on MILP or LP models are solved by the 

commercial optimization solver GUROBI 9.0 (with default 

settings). 

C. Experimental Results 

For each testing instance, we independently conduct each 

algorithm 10 times to obtain the mean computational output. 

The relative percentage deviation (RPD), defined in (22) 

below, over the best solutions value found in the experiment 

is computed.  

 𝑅𝑃𝐷 =
𝐹 − 𝐹min

𝐹min
× 100% (22) 

where 𝐹min  is the minimum objective value obtained by 

running the same algorithm in a multiple repeating way.  

 

TABLE I.  COMPUTATIONAL  RESULTS OF COMPARATIVE ALGORITHMS 

No. 
CMA-ES DE CCABC 

min.(%) max. (%) mean. (%) T(s) min.(%) max. (%) mean. (%) T(s) min.(%) max. (%) mean. (%) T(s) 

1# 0.000E+00 3.030E+00 1.794E+00 36 2.403E+00 4.284E+00 3.448E+00 10 2.926E+00 1.996E+01 6.270E+00 14 

2# 1.715E+00 4.609E+00 3.108E+00 41 0.000E+00 5.573E+00 3.537E+00 11 3.215E-01 1.115E+01 2.358E+00 16 

3# 0.000E+00 2.564E+00 1.442E+00 39 2.350E+00 6.944E+00 6.197E+00 9 4.915E+00 1.603E+01 7.051E+00 14 

4# 0.000E+00 4.019E+00 2.072E+00 42 2.056E+00 5.140E+00 3.458E+00 12 5.794E+00 1.804E+01 1.308E+01 18 

5# 8.811E-01 5.727E+00 4.141E+00 37 0.000E+00 6.608E+00 3.084E+00 15 6.432E+00 2.282E+01 1.181E+01 19 

6# 0.000E+00 4.102E+00 2.550E+00 38 4.435E+00 8.758E+00 7.095E+00 14 1.552E+00 3.492E+01 1.752E+01 20 

7# 0.000E+00 4.958E+00 2.781E+00 40 2.297E+00 6.530E+00 3.748E+00 10 9.311E+00 3.301E+01 1.790E+01 18 

8# 9.357E-01 4.971E+00 2.456E+00 55 0.000E+00 5.965E+00 2.924E+00 18 4.678E+00 1.591E+01 1.228E+01 27 

9# 1.528E+00 5.501E+00 3.606E+00 53 2.078E+00 5.318E+00 4.034E+00 21 0.000E+00 3.368E+01 1.314E+01 30 

10# 0.000E+00 4.715E+00 2.966E+00 51 7.072E+00 1.141E+01 8.897E+00 19 8.061E+00 1.954E+01 1.125E+01 26 

11# 0.000E+00 5.139E+00 3.498E+00 53 4.568E+00 1.342E+01 7.780E+00 20 5.496E+00 3.269E+01 1.649E+01 26 

12# 0.000E+00 3.041E+00 1.886E+00 57 2.433E-01 3.589E+00 3.041E-01 20 4.258E-01 1.052E+01 8.577E+00 27 

13# 0.000E+00 3.351E+00 1.737E+00 52 4.617E+00 9.159E+00 7.074E+00 22 2.457E+00 2.278E+01 1.236E+01 30 

14# 0.000E+00 2.717E+00 1.381E+00 54 4.705E+00 1.173E+01 7.886E+00 21 3.844E+00 2.180E+01 6.627E+00 29 

15# 0.000E+00 2.137E+00 1.053E+00 68 0.000E+00 6.790E+00 4.463E+00 30 1.662E+00 2.284E+01 1.282E+01 40 

16# 0.000E+00 3.065E+00 1.541E+00 73 9.045E-01 8.141E+00 6.131E+00 28 6.683E+00 1.930E+01 7.789E+00 38 

17# 0.000E+00 2.572E+00 1.088E+00 69 4.797E+00 1.009E+01 7.962E+00 27 1.835E+01 2.977E+01 1.963E+01 37 

18# 0.000E+00 2.642E+00 1.347E+00 75 1.677E+00 6.453E+00 4.370E+00 28 1.209E+01 3.547E+01 1.707E+01 37 

19# 0.000E+00 1.406E+00 8.293E-01 70 4.867E-01 3.786E+00 1.947E+00 30 4.002E+00 2.466E+01 1.509E+01 42 

20# 0.000E+00 2.991E+00 2.030E+00 71 3.752E+00 7.939E+00 5.982E+00 28 8.320E+00 3.018E+01 1.588E+01 38 

21# 0.000E+00 3.233E+00 1.338E+00 72 5.422E+00 9.854E+00 8.238E+00 27 4.692E+00 2.419E+01 1.309E+01 37 

avg. 2.409E-01 3.642E+00 2.126E+00 55  2.565E+00 7.499E+00 5.169E+00 20  5.334E+00 2.377E+01 1.229E+01 28  

The computational results of the test instances with various 

scales and structures are given in Table I. It reports the 

minimum, maximum and mean values of RPD, and the 

average CPU running time (seconds) of each algorithm (T). 

To analyze how different performance between CMA-ES and 

competed algorithms, we also apply a one-way ANOVA test 

to confirm these mean results of RPD, where each algorithm 

is identified as a single factor and mean PRD as a response 



variable. The overall results are shown in Table II and plotted 

in Fig. 6. Table II reports the source of variation including the 

between-groups (Columns) and the within-groups (Error), 

degrees of freedom (DF), the sum of squares (SS), the mean 

squares (MS=SS/DF), the observed value (F) based on F-

statistic, and its test value (P-value). Similar to the T-tests, we 

apply a significance level of 0.05 for testing. Fig. 6 also 

provides a visual comparison based on the statistic results 

among algorithms. 

TABLE II.  ANOVA TABLE FOR RPD 

Source DF SS MS F P-value 

Columns 2 1143.81 571.905 64.16 1.25173e-15 

Error 60 534.82 8.914   

Total 62 1678.63    

 
Fig. 6. Box plot of the ANOVA result of RPD 

 
Fig. 7. Multiple comparisons on means 

From the comparison results, we observe the following: (1) 

in comparisons of the value of PRD, the proposed CMA-ES 

algorithm had 17 best outputs of the given 21 test instances, 

which was significantly better than the other two algorithms.  

According to the mean value and the statistic of ANOVA, 

CMA-ES obtained the minimum average RPD mean value of 

2.126 and significantly differed with others on RPD, since P-

value=1.25e-15<0.05, and confirmed by the multiple 

comparisons on means (as shown in Fig. 7). Hence, CMA-ES 

has the best optimality ability without offline tuning. (2) Due 

to the complexity of matrix operations, the running time of 

CMA-ES is higher than other algorithms, but it is within the 

acceptable range (average around 1 minute). 

VI. CONCLUSION 

In this paper, we have studied a steelmaking scheduling 
problem involving time buffers which has more practical 
sense. We developed a MILP model to formulate the problem 
by considering the practical requirements on temporal, spatial, 
and technical factors. To solve the problem, we proposed an 
improved CMA-ES algorithm integrated with prior problem 
characteristics. It contains a novel encoding scheme, an LP-
based evaluation procedure and a DE-based restart policy. 
Experimental results on 21 randomly synthesized instances 
show that the proposed CMA-ES outperforms other tested 
algorithms in optimality, but less competitive on efficiency.  

Given these promising results, the proposed CMA-ES can 
be served as a Benchmarking algorithm to develop new EAs. 
Besides, we will explore new avenues improving the 
computational speed of the proposed CMA-ES algorithm to 
solve other types of steelmaking scheduling problems, such as 
with multiple objectives, under dynamic disturbances or 
uncertainties.  
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