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Abstract—Redistricting problems arise when due to evolving
attributes, current districts get increasingly inefficient or even
infeasible. A typical example are electoral districts of roughly the
same population, which after changes in its distribution, become
imbalanced. Since the cost of creating entirely new districts, in
general, is too high, redistricting problems have two conflicting
objectives: to find an improved or optimal solution while keeping
the changes to existing districts small. In this paper we propose
an efficient heuristic for redistricting problems, which can con-
sider similarity to existing districts together with several other
constraints, such as balance, connectedness, and compactness. In
an experimental study, we evaluate the contribution of heuristic
strategies, the effect of different attribute modification models,
and the effect of different similarity metrics on the quality of the
redefined districts.

Index Terms—districting, redistricting, heuristics

I. INTRODUCTION

Districting problems arise when a set of geographical basic
units must be partitioned into districts, subject to additional
constraints such as connectivity, compactness, or attribute bal-
ancing. A standard model is an undirected graph G = (V,E)
where the set of vertices V represents the basic units, and the
edge set E neighborhood relations between them. A solution
S = (D1, . . . , Dp) is a p-partition of V into p districts, each
inducing a connected subgraph of V . Basic units v ∈ V
may have a set of attributes a1v, . . . , a

l
v; for each j ∈ [l]

district D has a total attribute value of Aj(D) =
∑
v∈D a

j
v .

The imbalance of a district D with respect to attribute j is
Bj(D) = |Aj(D)/āj − 1|, where āj = Aj(V )/p is the
average attribute value of a district. A district is balanced
if, for each j ∈ [l] its imbalance with respect to j does not
exceed a given tolerance τ j ≥ 0. Common districting prob-
lems aim to maximize a compactness measure over districts.
The three most common such measures are the maximum
diameter d(D) = maxi,j∈D dij of a district for given distances
dij ≥ 0, the maximum distance c(D, c1) = maxi∈D di,c1
from the district’s 1-center c1 = c1(D) = argmini∈D c(D, i)
(in so-called p-center problems), or as the maximum total
distance m(D,m1) =

∑
i∈D di,m1

from the district’s 1-
median m1(D) = argmini∈Dm(D, i), i.e. the basic unit that
minimizes the total distance to all other units in the district (in
so-called p-median problems). An example of a districting plan
is shown in Figure 1. In this paper we measure compactness by

Fig. 1. Example of a districting in the city of Monterrey (instance from [1]).

the maximum total distance from the 1-medians, since this is
the most common among the three above and tends to produce
(but does not guarantee) connected districts.

In redistricting problems we additionally have an already
existing solution S0 = (D0

1, . . . , D
0
p), and the solution S =

(D1, . . . , Dp) should be similar to S0 according to some
given similarity metric d(S, S0). In summary, the problem we
address in this paper is:

min
S∈{V

p }

∑
D∈S

m(D,m1(D)) (1)

subject to Bj(D) ≤ τ, ∀D ∈ P, j ∈ [l], (2)
Connected(D), ∀D ∈ P, (3)

d(S, S0) ≥ d, (4)

d(Dj , D
0
m(j)) ≥ d̄ ∀i ∈ [p]. (5)

i.e., to maximize the p-median compactness subject to balance,
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connectivity, and similarity constraints over the set of all p-
partitions of basic units

{
V
p

}
, where d̄ is an lower bound

on the similarity of the new and old solution. Usually only
one of constraints (4) and (5) will be active, as explained in
Section II.

In this paper we propose a flexible heuristic solver for
addressing districting problems with similarity requirements
which extends a previous state-of-the-art heuristic for district-
ing. In experiments we show that it is effective in handling
both global (constraints (4)) and as a local (constraints (5))
similarity measures, and can treat them as either hard or
soft constraint. We further propose two attribute propagation
models which modify existing instances to emulate real-world
redistricting scenarios, and evaluate them experimentally. In
the next section we give an overview on different similarity
measures, and then discuss related work in Section III. In
Section IV we detail our main algorithm. We present an
empirical evaluation in Section V and conclude in Section VI.

II. SIMILARITY MEASURES

A similarity measure quantifies by how much districts have
changed over time [2]. As noted by [3], there is comparatively
little literature on similarity measures. A measure usually
requires a mapping m : [p] → [p] of old to new districts to
evaluate changes in individual districts. Given such a mapping
and a measure of similarity d(D,D0) for pairs of districts, we
can then define a global similarity measure as:

d(S, S0) =
∑
i∈[p]

d(Dj , D
0
m(j))/p. (6)

This measure has range [0, 1] with d(S, S0) = 0 for totally
dissimilar districtings, and d(S, S0) = 1 for identical ones.

Most similarity measures defined in the literature fit into this
model. A natural choice for such a mapping is a bijection. In
this case the mapping can be defined by a perfect matching
maximizing the sum of pairwise district similarities. If district
similarities are symmetric, then the overall value will be,
too. A simpler choice for problems where centers are defined
(e.g. p-median or p-center problems) can be to use the fixed
mapping defined by the district centers of the initial solution.
This approach is applied, for example, by [4].

Pairwise distance measures are usually defined in terms of
overlaps: for an attribute j ∈ [l], let the overlap of two districts
D,D′ be O(D,D′) = Aj(D∩D′)/Aj(V ). The choice of the
attribute depends on the application and can be, for example,
area or population.

Mapping m is not necessarily bijective. [5] define similarity
of solutions by the sum of the maximum overlaps of every
district with some original district. In this case the mapping
is defined as

m(i) = argmaxk∈[p]O(Di, D
0
k).

[5] use the area of the basic units as main attribute, but as
observed above, for some applications other attributes may be
more adequate, e.g. the population for political districting. An
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Fig. 2. A simple example with p = 3 districts and different similarity
measures. Similarities are 0.5, 1/3, and 2/3, for matching-based mapping,
center-based mapping, and the mapping of [5], respectively.

advantage of this approach is that it also works if S and S′

have a different number of districts.
Figure 2 illustrates the effect of these different similarity

measures. Observe that, when we require a high similarity
(e.g. 0.8 or more) then these measures produce the same
mapping m, and consequently the same similarity. In this
paper, we therefore adopt a center-based fixed mapping m. We
further study two constraints, a global similarity constraint

d(S, S0) ≥ d̄

(used by e.g. [1]) where similarity is defined as the percentage
of the attribute values that remain in their original districts, and
local similarity constraints

d(Dj , D
0
m(j)) ≥ d̄ ∀i ∈ [p],

where similarity is similarly defined as the percentage of
attribute values in the district that remain in their original
district.

III. RELATED WORK

Districting problems appear in a wide range of applications,
such as the design of electoral [6], [7], [8], [5], police [9], [10]
or commercial [11], [12], [13] districts, waste collection [14],
[15], salt spreading [16], health care systems [17], and land
allocation [18], [19]. Since real-world scenarios often translate
to large (≥ 1000 basic units) instances solution methods
are usually heuristic, mainly through metaheuristics such as
tabu search [5], GRASP [20], [12], genetic algorithms [19],
[21] or hybrid approaches [22], [23], although several exact
algorithms based on mathematical programming have been
proposed that can handle smaller instances [6], [7], [24]. [25]
provides an extensive overview of the most common districting
domains, models and solution methods.

[6] were one of the first to propose computational methods
for political redistricting, although they do not consider simi-
larity constraints directly. They present a mathematical model
based on a weighted p-median objective function and propose
a heuristic based on location-allocation, which iteratively
selects a center units for each district and allocates the districts
optimally with respect to the fixed centers.

[5] propose a tabu search for a political redistricting problem
with a single-objective model that minimizes a convex combi-
nation of several criteria, including similarity to existing plans
measured for each district by its maximum overlap with some
other district in a previous plan.



[26] present a broad overview of exact and heuristic solu-
tions focused on redistricting problems in Germany. The prob-
lem considers several criteria as soft requirements, including
similarity to existing plans. Because no clear legal guidelines
exist the authors do not provide a mathematical measure for
similarity, but state that it should be as high as possible, as
long as balancing constraints are satisfied. Using adaptations
of exact and heuristic approaches, the authors report that the
tabu search of [5] outperforms a set of methods from literature.

[4] also consider political redistricting in Germany, and
propose three solution methods via constrained geometric
clustering. Since again similarity is not clearly defined by law,
the authors measure it by the number of pairs of units that
used to share a common district, but are assigned to different
ones in the new plan. To account for similarity, the methods
start optimizing from the original districts. Experimentally the
authors report that an anisotropic power diagram approach
finds the most similar districts overall.

[1] study a commercial territory design model that handles
similarity to previous plans both as a hard constraint, by
setting a maximum allowed deviation in number of units
between old and new districts, and as an objective, by favoring
the assignment of units to their previous districts in the
objective function. The authors propose an exact algorithm
that iteratively solves an integer model without connectivity
constraints, and includes new connectivity constraints as cuts
at each iteration until the solution becomes feasible. A similar
approach has been proposed by [27], who consider commercial
districting models without similarity requirements.

[28] propose a GRASP algorithm for a redistricting prob-
lem in power distribution networks. The problem considers
diameter-based compactness as an objective and handles sim-
ilarity by setting upper bounds on the number of basic units
that can change districts.

The districting problem in the exact form studied in this
paper has not been studied in the literature, to the best of
our knowledge; the paper closest to our problem is [1]. For
completeness, we present here an explicit mathematical model
of our problem.

Let j̃ be the modified attribute in the redistricting process,
ãj the current attribute vector (ãjv = ajv, j ∈ [l], j 6= j̃), and
a′
j

= (
∑
v∈V ã

j
v)/p the average attribute value of a district.

We take duv as the shortest-path distance between u, v ∈ V .
Define Di ⊆ V as the set of basic units that belong to district
i in the former plan. Now, let xuv ∈ {0, 1} be a variable equal
to one if basic unit v is assigned to a district with center u,
and yiu be a binary variable equal to one if center u ∈ V is
allocated to district i. The proposed formulation is presented
as follows.

min .
∑
u,v∈V

duvxuv (7)

s.t.
∑
u∈V

xuu = p, (8)∑
u∈V

xuv = 1, ∀v ∈ V, (9)

(1− τ j)a′jxuu ≤
∑
v∈V

ãjvxuv, ∀u ∈ V, j ∈ [l], (10)∑
v∈V

ãjvxuv ≤ (1 + τ j)a′
j
xuu, ∀u ∈ V, j ∈ [l], (11)∑

i∈[p]

yiu = xuu, ∀u ∈ V, (12)

∑
u∈V

yiu = 1, ∀i ∈ [p], (13)∑
v∈Di

ãj̃vxuv ≥ dyiu, ∀i ∈ [p], u ∈ V, (14)

xi(δ(S)) ≥ 1− |S|+ xi(S),

∀i ∈ I, S ⊆ V \ (δ(i) ∪ {i}) (15)
xuv ∈ {0, 1}, ∀u, v ∈ V, (16)
yiu ∈ {0, 1}, ∀i ∈ [p],∀u ∈ V. (17)

In the model (7) is the p-median objective function. Con-
straint (8) establishes the creation of p districts. Constraints
(9) indicate that each vertex must be assigned to a single
center. Inequalities (10)–(11) are the balance constraints. Cou-
pling constraints (12) and (13) define the variables y. These
equations state that a vertex u is candidate to be a center
of a district if xuu is one, and there is only one center per
district, respectively. Constraints (14) guarantee a minimum
local similarity, taking into account the former distribution
of basic units over the districts. Constraints (15) guarantee
connectivity and have been introduced by [6]. In this constraint
xi(S) =

∑
j∈S xij and δ(S) is the set of all neighbors of S

not in S. Since the number of these constraints is exponential
in the size of the instances, this model usually is solved
by cut generation. The domain of variables are indicated by
Constraints (16) and (17).

IV. A HYBRID HEURISTIC ALGORITHM

In this section we present a hybrid heuristic for districting
with similarity constraints. Its overall strategy is similar to an
evolutionary GRASP heuristic [29] and adapts the heuristic
strategy proposed by [23].

An overview is given in Algorithm 1. We use two objective
functions: the total balance excess

E(S) =
∑
i∈[p]

max{0, Bj(Di)− τ j | j ∈ [l]} ∪ {0}

of solution S = (D1, . . . , Dp) and its compactness C(S),
and also two lexicographic versions of the objective functions
EC(S) = (E(S), C(S)) and CE(S) = (C(S), E(S)), which
order solutions by balance excess followed by compactness,
and vice-versa. A solution with balance excess E(S) = 0 is
called balanced.

The heuristic maintains a pool of good solutions, to which
it adds at the start of each iteration p new solutions created
by a constructive algorithm, but keeps only up to 2p of the
best solutions. Each iteration extracts the best solution from the
pool and applies an improvement procedure. The improvement
procedure alternates between improving the balance and the



Algorithm 1 A hybrid heuristic for re-districting.
1: P ← ∅
2: repeat
3: for i ∈ [p] do
4: P ← P ∪ {construct(S0)}
5: remove max{0, |P | − 2p} worst solutions from P
6: S ← P0, P ← P \ {P0} for best solution P0 in P
7: S ← optimizeBalance(S′, S)
8: if E(S) > 0 then
9: return S

10: for i ∈ [Amax] do
11: S′ ← optimizeCompactness(S)
12: S ← optimizeBalance(S′, S)
13: if E(S) > 0 then
14: break
15: until time or iteration limit reached
16: return S∗

compactness of the solution, starting with the balance, if the
solution is not balanced initially. When improving compact-
ness, it accepts solutions with an imbalance of up to α%.
If a solution is not balanced after improving compactness,
it will be balanced again in the subsequent balance step; if
that fails the current iteration terminates. We also terminate an
iteration early, if the solution after optimizing balance has been
visited already, to avoid cycling. The alternating improvement
steps are repeated at most Amax times. During optimization
we always maintain all districts connected. The algorithm
terminates after a maximum number of iterations or when a
time limit is reached.

To handle similarity we have implemented two different
strategies, a hard constraint and a soft constraint, that will
be compared experimentally. When using hard constraints, all
steps guarantee that the similarity is always kept above the
minimum similarity of d. This is achieved by modifying the
constructive and neighborhood search heuristics, as explained
below. When using soft constraints, we treat similarity as
another set of balancing constraints, and use an extended
balance excess function

E′(S) = E(S) + d(S, S0).

We next describe the algorithmic components in more detail.
In the procedures we allow partial solutions, where some of
the vertices are not yet assigned. For a solution S, partial or
complete, we denote the index of the district of a vertex v ∈ V
by ι(v), and the boundary of district D by ∂D = {v ∈ V | v 6∈
D ∧ ∃u ∈ N(v) : Dι(u) = D}. The neighborhood searches
will use two types of moves, a shift u → k which assigns
vertex u to district k, and a swap u↔ v which applies shifts
u→ ι(v) and v → ι(u).

A. Initial solutions

Initial solutions are created by a constructive greedy algo-
rithm, following known strategies from the literature [30], [31].
For constructing a complete solution from scratch, we first

initialize the p districts with p seed vertices. The seed vertices
are selected to maximize the minimum distance between two
seeds, and are chosen greedily, using the technique of [23].
During the construction we maintain for each district Di

a candidate vertex κi, which is the vertex from ∂Di that
increases C(S) least. If there are multiple candidates, one is
chosen randomly. We then repeatedly assign to the district
D of minimum total weight

∑
j∈[l]A

j(D) its best candidate
vertex, until a complete solution has been constructed.

When redistricting the constructive heuristic also considers
the similarity measure, and generates districts with a similarity
above the lower bound of d. To this end, a random vertex
from each district is chosen as the seed, and the candidates
of each district are restricted to those vertices in ∂Di that
belong to the previous district, until the district has reached
a similarity of at least d. After feasibility is guaranteed,
the construction proceeds as described above. This procedure
guarantees solutions that are feasible with respect to similarity,
and variation of the districts by ignoring the previous districts
after reaching the minimum similarity.

B. Improving compactness

We use a tabu search on the shift neighborhood to improve
the compactness of the solution. In each iteration the best non-
tabu move is selected. On applying a move, the shifted vertex
is declared tabu for τ iterations, i.e. cannot participate in the
next τ moves, where τ is the tabu tenure. The search stops
on stagnation, defined as Imax iterations without improving the
incumbent.

C. Improving balance

We use a tabu search on the shift and swap neighborhoods
embedded into a binary search for improving balance. The tabu
search selects in each iteration the best non-tabu move, and
applies it. Swap moves are only considered if no improving
shift move could be found. On applying a move, the partic-
ipating vertices (i.e. vertex u for a shift move u → k, and
vertices u and v for a swap move u ↔ v) are declared tabu
for τ iterations, as for the compactness search.

Balancing a solution may increase its compactness measure.
To avoid increasing compactness too much, each tabu search
runs with a maximum compactness Cm, and considers only
moves that do not exceed Cm. Since the optimal value of Cm
that still can be balanced is not known, the tabu search is
embedded into a binary search for the smallest compactness
value Cm ∈ [Cl, Cu] that can be balanced. The upper bound
Cu is set to the compactness value of the incumbent (i.e. the
currently most compact, balanced solution), or to two times
the current compactness, when no balanced solution has been
found yet; the lower bound Cl is the compactness of the
solution to be balanced.

D. Data structures for maintaining similarity

During the computation we need to maintain either the local
similarity for each district, or the global similarity, under shift
and swap operations. This can be done efficiently by updating



TABLE I
CHARACTERISTICS OF THE INSTANCES USED IN THE COMPUTATIONAL

EXPERIMENTS.

Set N n p Attr. Ref.

2DU60 20 60 6 Uniform [27]
2DU80 20 80 8 Uniform [27]
2DU100 20 100 10 Uniform [27]
2DU120 20 120 12 Uniform [27]
DU150 10 150 15 Uniform [27]
DU200 10 200 20 Uniform [27]
d500 20 500 10 Uniform [12]
DT500 20 500 10 Symmetric [12]
DT1000 15 1000 40 Symmetric [32]
DU1000 30 1000 10 Symmetric [32]

the corresponding values when executing moves. Let ω(v) be
the original district of vertex v. Then, for a shift v → k, if
ι(v) = ω(v) the current total attribute value (and consequently
the similarity) of district ι(v) decreases, since vertex v is
removed from its original district. The same holds for the
global similarity. If, on the other hand, ω(v) = k, then total
global and local attribute values for district k increase. These
values can be similarly updated for swaps u ↔ v. Overall
we can maintain the total attribute values with cost O(1)
for updates, and query the total similarity in time O(p) by
summing over all districts.

V. COMPUTATIONAL EXPERIMENTS

In this section we report on computational experiments.
We present the experimental methodology in Section V-A,
introduce attribute modification models in Section V-B, eval-
uate in Section V-C the effectiveness of the soft versus hard
constraints for maintaining similarity. In Section V-E we assess
the effect of different similarity metrics.

A. Experimental methodology

We use the ten instance sets shown in Table I in our
experiments. For each set the table shows the total number of
instances N , the number of vertices n, the number of districts
p, the attribute generation method, and gives a reference
to the paper that introduced the set. These sets have been
selected to cover a wide range of instances of different size,
number of districts, and attribute ranges. All instances have 3
attributes, which were generated with a uniform distribution
over a fixed interval, or with a non-uniform, but symmetric
distribution [12].

The heuristics have been implemented in C++ and compiled
with GCC 7.3.0 at maximum optimization. All tests have been
run on a PC with a Core i7 930 CPU running at 2.8 GHz and
12 GB of main memory, and running Ubuntu Linux 18.04.
Each test has been run on a single core. Following [23] we
have fixed parameters Amax and Imax at 100, and set the tabu
tenure to 1.5p. Our algorithm runs with a fixed random seed
and is deterministic. The balancing tolerances τ j were set to

0.05 for all j ∈ [l], which is the most common value in the
literature. If not specified otherwise, we have run the heuristics
with a time limit of 600 seconds and 1000 iterations.

B. Attribute modification models

The main reason for applying redistricting is when the exist-
ing attribute values have changed and thus lead to inefficient
districts (e.g. when the total sum of the distances of voters
to their voting center gets too large) and infeasible solutions
(e.g. when the current districts are violating balancing con-
straints).

We model changes in attribute values over time by a discrete
diffusion model. Instead of the input graph G = (V,E)
we work here with its directed version Gd = (V,A), with
A = {(u, v) | u, v ∈ V, {u, v} ∈ E}, where each edge
{u, v} ∈ E has been expanded into two arcs (u, v) and
(v, u). A diffusion model is defined by a doubly stochastic
matrix P j = (pjuv)u∈V,j∈V for each attribute value j ∈ [l],
i.e.

∑
u∈V p

j
uv = 1 for all v ∈ V and

∑
v∈V p

j
uv = 1 for all

u ∈ V . Here pjuv is the probability that an attribute value
at u ∈ V diffuses to vertex v ∈ V . In particular pjuu is
the probability of an attribute value remaining at its current
vertex. Diffusion is limited to neighbors, i.e. pjuv = 0 for all
(u, v) 6∈ A. In one step of the diffusion, values of attribute
j ∈ [l] change to P jaj where aj = (ajv)v∈V is the vector of
the jth attribute values.

We study two diffusion models here, a uniform model and a
migration model. In both we define a basic probability pr for
an attribute value to remain at the current vertex v ∈ V , and
set pjvv = pr for all j ∈ [l]. In our experiments we have used
pr = 0.95 which models a high probability of remaining at
the current vertex. We then distribute the remaining probability
1− pr over the neighbors of a vertex. In the uniform model,
we define pjuv = (1 − pr)/|N(u)| for all v ∈ N+(u), where
N+(u) are the (outgoing) neighbors of vertex u in graph Gd.
This represents an unspecific diffusion to the neighbors.

In the migration model, we model the concentration of
attributes in centers. This usually applies to the population.
To this end we use the gravity model of migration that
assumes that interaction between places u, v is proportional
to I(u, v) = aju

αuajv
αv/dγuv for some attribute j ∈ [l] [33].

Following [34] we select values αv ∈ U [0.8, 0.9] for all
vertices v ∈ V , and γ ∈ U [0.8, 0.9]. As before, we set
pjvv = pr for all v ∈ V , and distribute the remaining
probability 1 − pr. For each neighboring vertex u ∈ N(a)
we define a utility value of Uv(u) = I(u, v). Then the
probability of a attribute value ajv migrating to neighbor u
is pjvu = Uv(u)/

∑
u∈N(v) Uv(u).

C. Comparison of hard and soft constraints for similarity

In our first experiment we analyze whether it is better to
handle the similarities as a hard or a soft constraint. When
treated as a hard constraint, the similarity is always maintained
above the minimum d. Consequently, initial solutions that
do not satisfy the minimum similarity, and moves in local
searches that violate it are discarded. On the other hand, when



TABLE II
RESULTS FOR THE UNIFORM MODEL AFTER 5 AND 10 STEPS WHEN

SIMILARITY IS A HARD CONSTRAINT.

5 steps 10 steps

Inst. b0 [%] b [%] m1 d [%] b0 [%] b [%] m1 d [%]

2DU60 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0
2DU80 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0
2DU100 90.0 100.0 1.5 100.0 85.0 100.0 2.0 100.0
2DU120 100.0 100.0 −0.8 100.0 80.0 100.0 1.5 100.0
DU150 70.0 100.0 2.1 100.0 70.0 100.0 2.3 100.0
DU200 100.0 100.0 −1.1 100.0 80.0 100.0 0.7 100.0
d500 40.0 100.0 −19.9 100.0 30.0 100.0 −17.2 100.0
DT500 90.0 100.0 −1.7 100.0 85.0 100.0 −1.7 100.0
DT1000 33.3 100.0 −21.3 100.0 0.0 100.0 −21.4 100.0
DU1000 76.7 100.0 −1.0 100.0 70.0 100.0 −1.2 100.0

Avg./Tot. 80.0 100.0 −4.2 100.0 70.0 100.0 −3.5 100.0

TABLE III
RESULTS FOR THE UNIFORM MODEL AFTER 5 AND 10 STEPS WHEN

SIMILARITY IS A SOFT CONSTRAINT.

5 steps 10 steps

Inst. b0 [%] b [%] m1 d [%] b0 [%] b [%] m1 d [%]

2DU60 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0
2DU80 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0
2DU100 90.0 100.0 1.4 100.0 85.0 100.0 6.4 100.0
2DU120 100.0 100.0 −0.8 100.0 80.0 100.0 1.0 100.0
DU150 70.0 100.0 2.1 100.0 70.0 100.0 2.3 100.0
DU200 100.0 100.0 −1.3 100.0 80.0 100.0 3.6 100.0
d500 40.0 100.0 −18.4 100.0 30.0 100.0 −17.1 100.0
DT500 90.0 100.0 −1.6 100.0 85.0 100.0 −2.0 100.0
DT1000 33.3 100.0 −21.4 100.0 0.0 100.0 −22.4 100.0
DU1000 76.7 100.0 −1.2 100.0 70.0 100.0 −1.1 100.0

Avg./Tot. 80.0 100.0 −4.1 100.0 70.0 100.0 −2.9 100.0

treated as a soft constraint, similarity is handled as a balance
constraint: we allow arbitrary low values, in particular after
improving the compactness, but insist in subsequent balancing
steps on a feasible solution. If a feasible solution is not found
we proceed with the next iteration.

For the comparison we first create an initial districting plan
by running the full heuristic. We next run the diffusion model
with a uniform diffusion model for 5 and 10 steps, and then
apply the redistricting to the new instances, with the districts
obtained in the first steps, and a local similarity of at least
0.8. The results when using the hard constraint can be seen
in Table II, and for soft constraints in Table III. Both tables
show the percentage of balanced instances at the beginning
b0 and the end b, the relative deviation m1 from the initial
compactness, and the percentage d of instances that satisfy
the similarity constraint.

We can see that with an increasing number of diffusion
steps, the percentage of initially balanced instances decreases.
Similarly the compactness decreases (i.e. the p-median in-
creases). This is expected, since the attribute distributions get
increasingly different, leading to unbalanced instances. In all

TABLE IV
RESULTS FOR THE GRAVITY MODEL AFTER 5 AND 10 STEPS WHEN

SIMILARITY IS A HARD CONSTRAINT.

5 steps 10 steps

Inst. b0 [%] b [%] m1 d [%] b0 [%] b [%] m1 d [%]

2DU60 100.0 100.0 0.0 100.0 60.0 100.0 95.4 100.0
2DU80 90.0 100.0 8.9 100.0 25.0 90.0 47.0 100.0
2DU100 25.0 100.0 41.7 100.0 5.0 100.0 65.4 100.0
2DU120 35.0 100.0 40.2 100.0 0.0 75.0 249.4 100.0
DU150 50.0 100.0 24.1 100.0 0.0 100.0 190.9 100.0
DU200 30.0 100.0 21.5 100.0 0.0 80.0 144.1 100.0
d500 10.0 100.0 −4.1 100.0 0.0 100.0 37.2 100.0
DT500 10.0 100.0 3.3 100.0 0.0 100.0 11.7 100.0
DT1000 0.0 100.0 −3.9 100.0 0.0 20.0 16.8 100.0
DU1000 10.0 100.0 1.2 100.0 0.0 100.0 7.8 100.0

Avg./Tot. 36.0 100.0 13.3 100.0 9.0 86.5 86.6 100.0

cases the redistricting method found a new feasible, balanced
solution. The compactness of the instances after redistricting
is sometimes smaller, and the improvement increases with
the instance size. This can be explained by the additional
computation time invested. Comparing the compactness values
in Tables II and III we can see that the hard constraints overall
work slightly better, and we use this strategy in the remaining
experiments.

D. Effect of different attribute modification models

In this experiment we look at the gravity diffusion model.
As above we run the model for 5 and 10 steps on the initial
districts from the first experiment, and then the redistricting
heuristic with similarity as a hard constraint.

The results are summarized in Table IV. We can see that
the percentage of initially infeasible instances with 36% and
9% after 5 and 10 steps is much lower. The reason is that the
gravity model is a global model, where all basic units interact,
and thus the change in attributes is higher. Furthermore, the
gravity model leads to a concentration of attribute values. As a
consequence these instances are more realistic but also harder
to solve. After 5 steps the heuristic still is able to find a feasible
solution for all instances, after 10 steps 85% of the instances
can still be balanced. All found solutions satisfy the minimum
similarity of 80%. Looking at the relative deviations from the
p-median value of the initial district, which are considerably
higher, we can see that these instances are harder to solve; the
heuristic must invest more time in balancing the solutions. An
exception are instance sets d500 and DT1000 after 5 steps,
which improve the p-median slightly.

In Table V we show performance data for the gravity
model: for 5 and 10 steps we present the average number of
iterations (column “it.”), the average time find the best solution
(column “tb”, in seconds), and the total runtime (column “t”,
in seconds). We can see that for the smaller instances with up
to 200 vertices, the limit of 1000 iterations is reached in less
than two minutes, and the best solution is found quickly, within
at most 20 seconds. The larger instances also achieve close to



TABLE V
NUMBER OF ITERATIONS, TIME TO BEST AND TOTAL RUNTIME FOR THE
GRAVITY MODEL AFTER 5 AND 10 STEPS WHEN SIMILARITY IS A HARD

CONSTRAINT.

5 steps 10 steps

Inst. it. tb[s] t[s] it. tb[s] t[s]

2DU60 1000.0 0.0 3.9 1000.0 0.1 7.3
2DU80 1000.0 0.0 14.9 1000.0 0.1 20.0
2DU100 1000.0 0.2 17.2 1000.0 0.5 24.4
2DU120 1000.0 0.1 34.7 1000.0 1.6 51.6
DU150 1000.0 0.2 38.6 1000.0 2.0 64.4
DU200 1000.0 2.0 62.8 1000.0 19.6 103.0
d500 968.6 147.6 546.2 974.1 198.7 512.7
DT500 1000.0 85.3 436.6 998.8 115.1 468.9
DT1000 1000.0 216.2 429.2 1000.0 199.4 414.1
DU1000 259.8 158.3 600.0 268.5 240.0 600.0

Avg./Tot. 922.8 61.0 218.4 924.1 77.7 226.6

TABLE VI
LOCAL AND GLOBAL SIMILARITY IN THE GRAVITY MODEL AFTER 5 AND

10 STEPS.

5 steps 10 steps

Inst. sl [%] sg [%] sl [%] sg [%]

2DU60 100.0 100.0 96.3 97.3
2DU80 98.4 99.0 91.5 96.0
2DU100 94.0 97.7 90.9 96.1
2DU120 95.1 98.6 89.2 94.2
DU150 95.8 98.2 89.1 94.9
DU200 94.1 98.3 86.1 93.5
d500 90.0 95.1 88.3 94.0
DT500 97.2 99.0 95.2 98.4
DT1000 87.2 95.5 92.8 98.2
DU1000 97.0 98.9 95.1 98.3

Avg./Tot. 94.9 98.0 91.5 96.1

1000 iterations within 10 minutes, except for DU1000 which
always hits the time limit after less than 300 iterations. The
performance of the heuristics is mainly driven by instances
size, and less dependent on the number of steps. We do not
show results for the uniform model, which are very similar.

E. Effect of different similarity metrics

In this section we look at the difference between local and
global similarity measures after running 5 and 10 steps of
the gravity model. In Table VI we show the smallest local
similarity sl over all p districts and the global similarity sg .
We find that, as expected, the global similarity is always
higher than the local similarity, and the similarities decrease
with an increasing number of steps. Similarities are always
well above the lower limit of 80%, showing that a high
similarity can be maintained, and the difficulties in finding
feasible solutions lie in the balancing step. As a consequence,
we believe that imposing a local, per-district similarity lower
bound is preferable, since global similarity alone may lead to
a solution where a few districts suffer a large change.

VI. CONCLUSIONS

We have proposed a heuristic algorithm for districting
problems with similarity constraints. Its main algorithmic
components are a constructive algorithm that generates ini-
tially feasible solutions for a given minimum similarity, and
a hybrid search strategy that alternates between improving
the compactness objective and satisfying balance constraints
via tabu search, maintaining feasible solutions throughout the
search and updating current similarity values efficiently.

For the experimental analysis we have introduced two dif-
fusion models for generating instances with modified attribute
values. In the experiments we found that maintaining feasible
solutions with respect to similarity tends to be more effective
than allowing solutions that go below the minimum similarity.
Global and local similarity values of solutions produced are
well above the lower limit of 80%, and imposing local
similarity constraints seems preferable. The heuristic finds in
most cases new feasible solutions of the required similarity,
and is sometimes able to improve the compactness of the so-
lution. Overall we believe that our approach demonstrates that
efficient heuristic redistricting is possible with a few selected
modifications of constructive and local search algorithms.
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