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Abstract—In this paper, software patches modifying a single
line (aka 1-edit degree patches) of buggy Java open-source
projects have been generated automatically using computational
search and experimentally evaluated. We carried out the pre-
sumably largest to date experiment related to 1-edit degree
patches, consisting of almost 27,000 computational jobs upper
bounded with 107,000 computational hours. Our experiments
show the benefits and drawbacks of such kind of patches. In
particular, the search space size has been shown to be reduced
by several orders of magnitude. The volume of tests that can be
filtered out without any negative impact while generating 1-edit
degree patches has been increased by about 97%. Finally, the
effectiveness of finding 1-edit plausible patches is compared with
multi-line plausible patches found with state-of-the-art syntax-
based Automatic Program Repair tools. It is shown that despite
patching fewer bugs in total, 1-edit degree patches have potential
to patch some extra bugs.

I. INTRODUCTION

Syntax-based automatic program repair (APR), a main
branch of APR, focuses on synthesising fixes for identified
software defects (bugs) through the application of syntactic
source code modifications [1]. State-of-the-art approaches of
this APR paradigm employ search-based techniques (e.g.,
genetic programming, evolutionary algorithms) to manipulate
source code extracts by applying mutation and crossover
operations to the original (buggy) source code. The seminal
work on GenProg demonstrated the feasibility of this paradigm
by synthesising patches for 55 out of 105 bugs in 8 open-
source programs totalling 5.1 million lines of C++ code and
involving 10,193 test cases [2]. The crux of the paradigm lies
at generating candidate repairs to replace the suspicious source
code extracts, termed modification points (MPs), with each
candidate repair being an evolved sequence of edit operations
(i.e., deletion, insertion, replacement) of source code fragments
from the same software project, which are termed ingredients.
Driven by these encouraging results, recent research proposed
new syntax-based APR techniques aiming at reducing the
substantial manual effort required to debug the software and
generate patches [3], [4].

Despite the benefits of this paradigm, further analysis of the
GenProg approach pointed several drawbacks. Recent research
has shown that random search is more effective that the more
sophisticated genetic approach applied in GenProg both in the
number of patch trials and test case executions for most of the
examined cases [5]. More importantly, [6] demonstrates that
more than 90% of plausible patches (i.e., test-suite adequate,
though not necessarily correct) generated by GenProg are

equivalent to a single modification that removes functionality.
The authors also stress that plausible patches could have
significant negative effects. Moreover, due to the randomness
of genetic operators used in GenProg, it is likely that an
automatically generated patch would contain at least an order-
of-magnitude more changes than are necessary to repair the
program and these extra edits incorporate insignificant or even
dangerous changes which are not captured due to test suite
imperfection [2]. Hence, GenProg applied repair minimisa-
tion to eliminate the modifications that do not influence the
testing result, yet in [7] it was demonstrated that such patch
minimisation does not reduce overfitting. Interestingly, a large
percentage of bugs repaired by GenProg can be also repaired
with just a single edit, i.e., with 1-edit degree patches [8].
Yet, this kind of patches have not been analysed heavily in
the past, especially with regards to the benefits and drawbacks
stemming from the respective significant search space pruning
and test filtering. In this paper, we fill this gap by performing a
large-scale experiment generating solely 1-edit degree patches
and analysing its results.

As reported in [9], the majority of syntax-based APR
tools use GZoltar [10] to determine suspiciousness of faulty
statements (ranging from 0 to 1) to form a set of potential
MPs in the source code and define the granularity of MPs
at the code line level. The suspiciousness threshold is a
parameter of GZoltar and no guidance for selecting values
of this parameter has been published so far. In the popular
ARJA framework [11], the 40 most suspicious lines are used
by default, but this limit can be overridden with a command-
line parameter. It is worth stressing that for several bugs in
Defects4J [12], the most popular APR benchmark [13], the
buggy lines can be filtered out with that default setting and
hence cannot be patched regardless of the remaining settings
[14]. Similarly, the Cardumen mode of ASTOR described in
[15] uses suspiciousness threshold γ for values computed by
GZoltar. It is then worth analysing the correlation between the
suspiciousness value assigned to an MP by GZoltar and the
likelihood of that MP to be plausibly patched. Furthermore,
the total number of suspicious lines as identified by GZoltar
should be evaluated. Then, the search space size could be
determined in popular benchmark projects by analysing the
number of MPs and their compatible ingredients.

Benefiting from the independence of 1-edit degree patch
generation, we performed a large-scale parallel execution of an
APR tool in a high performance computing cluster on popular
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open-source Java projects. Eventually, we make the following
contributions:
• We have evaluated experimentally the 1-edit degree patch

search space size and found that, on average, it is smaller
by a few hundreds orders of magnitude in comparison
with the search space sizes of the corresponding multi-
edit degree patches,

• We have assessed the reduction of the test number needed
to evaluate 1-edit degree patches and demonstrated its
significant decrease by 97% in comparison with the
figures for the corresponding multi-edit degree patches,

• We have determined that the number of MPs (i.e., suspi-
cious lines) with insufficient test coverage is significant
and in all considered projects there are MPs with no
positive tests,

• We have determined the impact of the usual MP trimming
on the number of plausible tests generated and found that
several plausibly patchable MPs are likely to be filtered
out by typical APR tools due to their low suspiciousness,

• We have compared the number of 1-edit degree plausible
patches with the number of plausible patches of a higher
edit degree generated for the same software projects and
found that although this number is lower, new bugs can
be plausibly patched due to the lack of trimming the MPs
with lower suspiciousness.

The rest of this paper is organised as follows. In the next
section, five important research questions related to 1-edit
degree patches are formulated. Section III describes the exper-
iment conducted to answer the research questions, followed
by the presentation of the experimental results in Section
IV. Section V briefly describes related work and Section VI
concludes the paper.

II. RESEARCH QUESTIONS

Our systematic experimental evaluation involves carrying
out a large-scale experiment trying to mutate all suspicious
MPs of open-source Java projects included in the popular
Java benchmark for APR, Defects4J [12]. The goal of this
experiment is to answer a number of fundamental questions
regarding the MPs, tests and plausible 1-edit degree patches, as
enumerated below together with the rationale behind choosing
these questions.

RQ1. What is the typical number of suspicious lines in
open source Java projects and what is the number of the
ingredients these lines can be replaced with?

The answer to this question can help to select a technique
for performing APR. In case of a low number of suspicious
lines, each of them can be attempted to be modified in order
to find a patch. In such situation, the line suspiciousness
can be used not as a base for trimming the number of MPs
under analysis, but to define an order in which MPs are
analysed in sequence, to maximise the chances of finding
a plausible patch earlier. Assuming 1-edit degree only (i.e.,
single MP), modifications of various MPs can be performed
independently in parallel. Moreover, if the number of their

1 i f ( f a ∗ fb >= 0 . 0 ) {
2 throw new C o n v e r g e n c e E x c e p t i o n (
3 ” number o f i t e r a t i o n s ={0} ,
4 maximum i t e r a t i o n s ={1} , ” +
5 ” i n i t i a l ={2} , l ower bound ={3} ,
6 uppe r bound ={4} , f i n a l a v a l u e ={5} , ” +
7 ” f i n a l b v a l u e ={6} , f ( a )={7} , f ( b )={8} ” ,
8 n u m I t e r a t i o n s , max imumI te r a t i ons , i n i t i a l ,
9 lowerBound , upperBound , a , b , fa , fb ) ;

10 }

Listing 1. Math-85 bug example from Defects4J benchmark

ingredients (i.e., the compatible code extracts that can be
used to replace these MPs) is low, the MP replacing can be
performed exhaustively (as in [8]). Otherwise, the ingredients
can be selected randomly. By knowing the search-space size,
it is possible to assess the percentage of the tried patches and
draw some statistical conclusions regarding the probability of
the plausible patch finding.

RQ2. What is the number of tests in test suites of typical
open source Java projects that cover the suspicious lines?

The importance of this RQ2 stems from the possibility of
reduction of the number of tests needed to be executed in order
to determine the 1-edit degree patch quality, as the tests not
executing the code line with the MP under analysis can be
filtered out. As the tests are usually executed sequentially and
their execution can constitute even more than 60 per cent of
the entire APR process [4], decreasing the number of executed
tests can reduce the computation time to a large extent. How-
ever, too low number of tests for an MP is also undesired, as it
can lead to a mutation removing a vital functionality or having
an adverse side-effect. This problem can be exemplified with
the Math-85 bug from Defects4J, which is shown in Listing 1.
This bug is detected by one unit test. The human-written patch
changed the relational operator in line 1 from greater-than-or-
equal-to to greater-than. However, this fix is relatively difficult
to be found by an automatic tool as there is no positive test
for MP in line 2 (in contrast to line 1, which has 16 positive
tests). Hence, any side-effect-free modification of line 2 would
make the negative test pass as no exception will be thrown.
For example, one of the fixes found by jGenProg replaces
the throw statement with rather useless substitution double
ret=Double.NaN;. What is even worse, the throw state-
ment is more likely to be replaced than the conditional
expression (i.e., the real bug) as its suspiciousness determined
by GZoltar is much lower. Actually, based on the suspicious-
ness value, this modification point would be removed by
default e.g. by ARJA as it considers only the 40 the most
suspicious MPs (this value can be modified with parameter
maxNumberOfModificationPoints), as written earlier
in this paper.

The analysis of the number of tests of each MP can indicate
the under-tested code lines and encourage the developers to
add a number of missing unit tests. Also, when a number of
alternative plausible patches needs to be analysed by develop-
ers, it may be beneficial to start with the patches modifying
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Fig. 1. A general scheme of the conducted experiment

MPs tested with the largest numbers of positive tests as they
may be considered as being more likely to be correct.
RQ3. What is the correlation between the line suspicious-

ness and their modification in plausible patches?
As discussed earlier, only a subset of suspicious lines is

usually considered by APR tools. The strategy of omitting
the less suspicious lines during the APR process, although
intuitively promising, could possibly lead to decreasing the
number of plausibly patched bugs. This consideration is in
line with the conclusions from [9], where it was shown that
increasing the number of MPs by using a newer version of
GZoltar can localise 58 more bugs in the Defects4J benchmark
set.

RQ4. How common is that the set of plausible 1-edit
degree patches of the same bug alter more than one MP?

Ideally, a bug is located in one line and hence all cor-
responding plausible 1-edit degree patches would alter the
same MP that includes the bug. However, due to possibility of
multi-line bug existence or under-tested MPs (as exemplified
earlier with the Math-85 issue), it is possible that the patches
generated by an APR tool change more than one line. This
situation would harden the fault localisation process. The
planned large-scale 1-edit degree patch generation can help
in determining the likelihood of such an event.
RQ5. Is the number of bugs plausibly patched by 1-edit

degree patches equal to the number of bugs that have
been reported to date to have been patched with multi-
edit degree patches by syntax-based APR tools?

Prior research such as [8] states that the majority of plau-
sible patches found during an evolutionary search process
modify just a single statement or are equivalent to 1-edit
degree patches considering the applied test suite. However,
several patches found by evolutionary search process in e.g.
[11] are reported to have a larger edit degree than one. Since
we intend to execute a large-scale experiment that not only
modifies all suspicious lines, but also uses a quite substantial
number of (random) ingredient substitution, the number of the
bugs plausibly patched should be similar to that reported in
[11], [3] provided that 1-edit degree patches are equivalent
(considering the applied test suite) to multi-line patches found
by the state-of-the-art-tools. Notice, by performing so many
random ingredient substitutions, we aim to bridge the gap
between the genetic and random search process which was
reported in [11] (in contradiction to [5] which has shown the
lack of it).

III. EXPERIMENTAL DESIGN

To answer the research questions listed in the previous
section, a large-scale generation of 1-edit degree patches needs
to be performed. The patch generation has been carried out
using the ARJA framework [11] by focusing on a single
MP during the APR process. The repair algorithm evaluated
in this paper has been added as a new class extending
the AbstractRepairAlgorithm class in the ARJA framework.
Most of the original ARJA modules, especially related to the
fault localisation, coverage analysis, test filtering, ingredient
screening and fitness evaluation, have not been modified by
us.

The experiment has been conducted using a local high
performance computing cluster which includes 173 nodes with
a total 42TB of memory, connected by a high-speed 100Gb
Infiniband network, 7024 Intel Xeon Gold/Platinum cores and
2.5PB of high performance storage with 12GB/s data transfer
rate whose estimated performance is equal to 435.2 TFLOPS.
The cluster is governed by the Slurm Workload Manager.

Similarly to other papers related to APR of programs written
in Java, the Defects4J benchmark [12] has been used for exper-
iments. This set consists of 357 real bugs extracted from five
popular open source projects. The Closure Compiler project
from Defects4J does not use typical JUnit test cases and
hence it is usually excluded from experiments [11]. The names
of the remaining projects are: JFreeChart, JodaTime,
Commons Lang and Commons Math, abbreviated in this
paper to Chart, Time, Lang and Math. A typical naming
convention in the APR domain is to follow the project name
with a dash and a number of the bug index from a benchmark
set.

The four projects considered include 224 bugs in total.
However, two bugs (Chart-8 and Lang-26) have not been
detected by the ARJA framework in the version we used (i.e.,
ARJA found no failed tests). Similarly, the ARJA framework
found no modification points for 2 other bugs (Math-35 and
Math-45), despite the results related to these bugs have been
reported in the original ARJA paper. For the majority of bugs
in the Time project, the default version of GZoltar used in
ARJA (0.1.1) has identified significantly more failed tests than
reported in Defects4j documentation. Consequently, we used
a newer version instead (1.7.3) for that project. This decision
is similar to the one made in [11], where the authors used
GZoltar 1.6.2 to localise faults in several bugs (not providing
the detailed list).

The experiment has been performed in the way schemat-
ically depicted in Fig. 1. Firstly, the suspicious lines (MPs)
for a considered bug were identified. Since we aimed to
generate 1-edit degree patches, each from the identified MPs
was selected and attempted to be patched independently from
each other. Consequently, a separate APR job was executed
for each MP of each considered bug. For the selected MP, its
ingredients were found by screening all statements in the scope
of a given MP. Then, the tests unrelated to the considered
MP were filtered out. Finally, the bug was attempted to be
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Fig. 2. Number of modification points in Defects4J projects

fixed. During each patching process, up to 10,000 random
mutants of a selected MP were created, compiled and tested
against the filtered test suite using a delete, insert before or
replace operator, also selected randomly. These mutations have
been performed at the code line granularity level. The delete
operator removes a selected MP, whereas insert before and
replace use ingredients from the MP’s Java package, following
strategy used in GenProg, to replace a selected MP or to insert
them just before a selected MP, respectively.

During the experiment, 26,933 jobs have been executed in
total. Each of them has been configured to use only one core
and up to 4.8GB of memory. The timeout of each job has
been set to 4 hours, so the upper bound of the computational
time has been equal to 107,732 hours. Only 10.4 per cent of
the jobs have finished before the timeout; for the remaining
jobs, the number of generated patch candidates has equalled
99,305,101. From the generated patch candidates, 66% did
not compile successfully whereas testing of 11% of patch
candidates exceeded the timeout of test execution that was set
to 6s (ARJA default). Only 0.08% of patch candidates (not
necessarily different from each other) were plausible patches.

The experimental results are presented and discussed in the
following section.

IV. EXPERIMENTAL RESULTS

In this section, the answers to the research questions for-
mulated in Section II are given, based on the results of
the experiment created in the way described in the previous
section.

1) RQ1: The number of MPs in the considered projects is
shown in Fig. 2. It is rather diverse, ranging from 1 (Math-
26, Math-89, Math-94, Chart-10, Lang-25, Lang-27) to 2925
(Chart-26). The standard deviation of the number of MPs for
the bugs in each considered problem is also quite diverse and
equal to 24.5, 692.6, 178.6 and 172.8 for projects Lang, Chart,
Math and Time, respectively. It may be then concluded that
focusing on a constant number of MPs for each bug, which is
a usual procedure in APR, results in very different treatment
of each bug and in the extreme case of Chart-26, the default
settings of the state-of-the-art APR tools such as ARJA ignore
about 75% of MPs. In general, as many as 58% of bugs would
be trimmed with the default ARJA settings. It may be then
recommended to replace the constant number of analysed MPs
to a value depending on the total number of MPs for a certain
bug. But even for bugs with relatively low number of MPs
omitting the MPs with lower suspiciousness values is risky. In
the Math-85 case shown earlier in this paper, the total number
of MPs is equal to 65. Yet, the line with the real bug is omitted
by default as its suspiciousness value is not in the top 40. In
this case, the low position in the suspiciousness ranking is
caused by the lack of positive tests of this MP in the test
suite.

Knowing the number of ingredients that can be substituted
to each MP, shown in Fig. 3, it is possible to assess the search
space size for each bug in terms of the possible replacements.
These values for each bug are presented in Fig. 4. Again, the
diversity of the obtained values is significant for each analysed
project. For example, the number of possible mutations ranges
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Fig. 3. Number of ingredients for Defects4J bugs

from 1 to 408,741 for the bugs in the Chart project. Assuming
that 10,000 mutations can be performed and tested in a rea-
sonable time (as shown in this experiment), as many as 54%,
55%, 53% and 26% of bugs can be attempted to be repaired
exhaustively for the Chart, Lang, Math and Time project,
respectively. However, the search space sizes provided in this
section have been determined for the replacement operation
only, i.e., when one MP is substituted with a compatible
ingredient. If we allow the insert-before mutation operation,
where a compatible ingredient is inserted before an MP, the
search space size will double. The third popular mutation
operation, removing an MP, would result in the search size
increase by the number of MPs shown in Fig. 2.

The relatively large number of random mutations performed
in the experiment (10,000 for each MP if the 4h timeout has
not been reached) is likely to cover the vast portion of the
search space for the majority of considered MPs. On average,
the search space size decreased at least by 132, 73, 137 and
185 orders of magnitude for the Chart, Lang, Math and Time
projects, respectively, in comparison with the search spaces for
all MPs for a given bug (these figures are underestimated as for
several bugs the search space size for multi-edit degree patches
exceeded the range of the Double data type and hence the
maximum Double value has been used instead). The difference
between search space sizes exceeded 300 orders of magnitude
for 6, 25 and 10 bugs from projects Charts, Math and Time,
respectively. The largest search-space size reduction for the
Lang project was equal 135 orders of magnitude.

2) RQ2: The total number of tests for bugs varies signifi-
cantly in each considered project. In the extreme case of the
Math-1 bug, there are 5219 positive and 3 negative tests. By
allowing 1-degree edit patches only, significantly fewer tests
can be considered since the positive tests unrelated to the
considered MP can be safely filtered out [11]. For the Math-1
example, the average number of positive tests for all 24 MPs
is equal to 10.8, i.e., is reduced by more than 99%, and 18
MPs have fewer positive tests than 10. The number of positive
tests for all considered bugs is shown in Fig. 5. In this graph,
other bugs with a significant reduction of positive tests for
certain MPs can be identified in all the considered projects.
On average, the number of positive tests after filtering for
single MPs has been reduced by 97% (98%, 98%, 99% and
87% for Chart, Lang, Math and Time projects, respectively)
in comparison with the number of positive tests being filtered
for all MPs for a given bug. Similarly, it can be concluded
that a number of tests has no sufficient test coverage. The
case of zero positive tests has been noticed in almost 4% of
MPs in all the considered projects, as presented in Figure 6.
However, replacement of 1.6% of MPs with no positive tests
have resulted in obtaining plausible patches. The correctness
of these patches can be viewed as rather dubious.

3) RQ3: Overall, during the entire experiment, 47 bugs
in Defects4J have been plausibly patched with 1-edit degree
patches. Notice, in the current RQ only MPs belonging to
these 47 buggy code versions are considered. All of them are
listed in Fig. 7, where the left and right bar for each bug
shows the average value of suspiciousness of the MPs that
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Fig. 4. The total number of ingredients (i.e., the search space size) for Defects4J bugs

TABLE I
SUSPICIOUSNESS VALUES OF PLAUSIBLE PATCHED AND NON PATCHED

MPS

Suspiciousness Percentage of MPs
Range non-patched plausibly patched

[0.1, 0.2) 32.90% 23.26%
[0.2, 0.3) 25.04% 11.78%
[0.3, 0.4) 15.64% 16.62%
[0.4, 0.5) 7.03% 7.85%
[0.5, 0.6) 5.16% 18.73%
[0.6, 0.7) 8.12% 1.51%
[0.7, 0.8) 2.81% 7.25%
[0.8, 0.9) 0.45% 0.00%
[0.9, 1) 1.14% 0.00%

1 1.71% 12.99%

have not been and have been, respectively, plausibly patched.
As it is shown in the figure, for 32 bugs, plausibly patched
MPs have higher values of suspiciousness, but in 15 cases,
the opposite is true. In 16 cases, the most suspicious MP
has been plausibly patched (including the 11 cases when the
highest suspiciousness has been assigned ex aequo to MPs
that have not been plausibly patched). The suspiciousness
median of plausibly patched MPs equals 0.378, whereas the
suspiciousness median for the remaining considered MPs is
equal to 0.267. The distribution of the suspiciousness is shown
in Table I for both the plausible patched MPs and other MPs
considered in this RQ. In this table, it is clearly visible that
plausible patched MPs have typically higher suspiciousness
value range, yet more than 23% of such MPs have suspicious-
ness value below 0.2. Conversely, almost 3% of non-patched

MPs have supsiciousness value higher or equal than 0.9. It
can be than concluded that by focusing on the most suspicious
MPs, a number of plausibly patchable MPs can be omitted.
Finally, the suspiciousness values of both kinds of MPs (either
plausibly patched or not) have been statistically compared
using Mann–Whitney U test. U test is nonparametric and its
null hypothesis assumes that it is equally likely that a randomly
selected value from one population is lower or greater than
a randomly selected value from a second population. The
obtained p-value is lower than 0.00001, so the null hypothesis
can be rejected under significance level α = 0.05. Hence,
plausible patched MPs are likely to have higher suspiciousness
than other MPs for the same bugs.

4) RQ4: Most of the plausibly patched bugs have been
patched by several 1-edit degrees patches which modify dif-
ferent MPs. The extreme situation has occurred for the Chart-
25 bug that has been plausibly patched by modifying as many
as 48 MPs in 3 different classes in total by 509 1-edit degree
patches. These MPs constitute 2% of all suspicious MPs for
this bug (this bug has one of the largest number of suspicious
MPs, as shown in Fig. 2). As the human-written patch for this
bug adds 14 lines in a single class [16], it is rather unlikely
that any of the 1-edit degree patches is correct. Similarly,
the plausible patches found by APR tools (and, as shown
in Table II, this bug is plausibly patched by all considered
tools) should be treated with caution. The set of 1-edit degree
patches modifying more than one MP for the same bug are
rather rule than exception, as for all 47 plausibly patched bugs,
only in 14 cases all plausible patches found modify the same
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Fig. 5. Number of positive tests for Defects4J bugs

line. On average, the generated sets of 1-edit degree patches
modify more than 7 MPs for a single bug, which points out a
significant flaw of the considered benchmark at least in terms
of the test coverage.

5) RQ5: The list of plausible patches generated by various
state-of-the-art APR tools has been provided in Table II for
the bugs considered in this paper. Nopol [17] is the only
considered semantic-based repair method, the remaining ap-
proaches are syntax-based. The results obtained during the per-
formed experiment are given in column 1-edit degree.
Regardless of the large number of mutations that is likely
to balance the inferiority of random search in comparison
with evolutionary-based search, reported in [11], 1-edit degree
patches have not been found for several bugs plausibly patched
by other syntax-based APR tools. The difference is particularly
visible in the case of Math projects. It may be then concluded
that some multi-edit degree patches generated by syntax-based
APR tools are not equivalent to 1-edit degree patches, contrary
to the claims in [6] or [8]. It is worth noting, however, that
due to the large-scale search process, a few plausibly patched
bugs have not been patched by the considered tools according
to [9], [11]: Time-2, Time-9, Time-27, Lang-24, Lang-38,
Math-64. Four bugs plausibly patched with a 1-edit degree
patches have been patched only by Kali or Nopol (Chart-
26, Lang-27, Lang-44, Lang-58, Math-88) (Kali does not use
ingredients and hence by default 500 MPs with the highest
suspiciousness are considered; Nopol is a semanti-based tool
that fixes conditional statement bugs only). All these bugs are
written in bold in the table. Since 1-edit degree patches can

be generated quicker than longer patches (at least due to the
lower number of positive tests to be executed, as shown earlier
in this section), a larger number of MPs can be analysed and
hence some bugs can be patched that would be difficult to be
patched with other syntax-based APR approaches.

V. RELATED WORK

Since the earliest research in the APR domain, not much
attention has been paid to 1-edit degree patches. Hence, their
potential has not been well explored despite the radically
smaller search space that for numerous cases could even be
searched exhaustively (which has been shown in this paper)
or a lower number of tests required to evaluate a patch.
Kali [6] has modified only one functionality and it has been
demonstrated that the number plausible patches generated in
this way is quite similar to the number of patches found by
the tools generating multi-edit degree patches. AE [8] has
modified just a single MP in a patch and, similarly, generated
a comparable number of plausible patches. Those observations
have been made for C++ codes but have not been replicated
for Java. For example, jKali, a Kali variant for Java from [18],
has been reported significantly inferior with respect to the
number of plausibly fixed bugs in [13]. In [19], 6 real-world
Java programs have been transformed randomly by applying
a single mutation to identify the code regions which do not
alter functionality according to their test suites. The presence
of such plastic code regions is likely to increase the number
of the plausible patches found and this influence needs to be
determined in future. Several papers related to search space
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Fig. 6. Number of modification points with no positive test in Defects4J projects
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Fig. 7. The average suspiciousness for MPs with (right) and without (left) plausible patches for analysed bugs

analysis for functional improvement have been surveyed in
[20].

Although most of the syntax-based APR tools have the
capability of generating multi-line patches, most of such
patches have been reported to be semantically equivalent to
1-edit degree patches [6]. For example, GenProg [2] keeps
adding new modifications every generation during the genetic
evolution process and hence its patches are likely to modify
several lines even if they are correct but the modification is
not caught by any test in a test suite [11] (our experimental
analysis of jGenProg found that after 2000 generations of
patching bug Math-85, the number of edits in a certain patch

reached 1210, among which only ten modified different MPs;
for example as many as 668 edits modified line 201 in
UnivariateRealSolverUtil.java file, i.e., overrid-
den the previous modifications of the same patch). ARJA [11]
has also allowed multi-line patches but used the minimal size
of a patch as one of two criteria for optimisation (the second
one is, traditionally, minimisation of the number of failed tests
in a suite). Also, the chromosome encoding used in ARJA
guarantees that no two edits in a single patch modify the
same MP. One of the research questions considered in [11]
was related to multi-line patches explicitly. It has been shown
that fixing at least 11 bugs from Defects4J needed more than 2



TABLE II
PLAUSIBLE PATCHES FOUND FOR DEFECTS4J PROJECTS WITH VARIOUS APPROACHES

Project ARJA [11] GenProg [11] Kali [11] jGenProg [3] jKali [3] Nopol [3] 1-edit degree
Chart 1, 3, 5, 7, 12,

13, 15, 19, 25
1, 3, 7, 12, 13,
18, 25

1, 5, 12, 13,
15, 25, 26

1, 3, 5, 7, 13,
15, 25

1, 5, 13, 15,
25, 26

3, 5, 13, 21,
25, 26

1, 3, 5, 7, 12,
13, 15, 19, 25,
26

Time 4, 11, 14, 15 4, 11, 24 4, 11, 24 4, 11 4, 11 11 2, 4, 9, 11, 14,
24, 27

Lang 7, 16, 20, 22,
35, 39, 41, 43,
45, 46, 50, 51,
55, 59, 60, 61,
63

7, 22, 35, 39,
43, 51, 55, 59,
63

7, 22, 27, 39,
44, 51, 55, 58,
63

39, 44, 46, 51,
53, 55, 58

22, 24, 27, 38,
39, 43, 44, 45,
46, 51, 58, 59,
60, 63

Math 2, 5, 6, 8,
20, 22, 28, 31,
39, 49, 50, 53,
56, 58, 60, 68,
70, 71, 73, 74,
80, 81, 82, 84,
85, 86, 95, 98,
103

2, 6, 8, 20, 28,
31, 39, 40, 49,
50, 71, 73, 80,
81, 82, 85, 95

2, 8, 20, 28,
31, 32, 49, 50,
80, 81, 82, 84,
85, 95

2, 5, 8, 28, 40,
49, 50, 53, 70,
71, 73, 78, 80,
81, 82, 84, 85,
95

2, 8, 28, 32,
40, 49, 50, 78,
80, 81, 82, 84,
85, 95

32, 33, 40,
42, 49, 50,
57, 58, 69,
71, 73, 78,
80, 81, 82,
85, 87, 88,
97, 104, 105

60, 64, 68,
70, 71, 73,
74, 78, 80,
81, 82, 84,
85, 88, 95,
103

Total 59 36 33 27 22 35 47

modifications. Yet, it has not been excluded then that there are
no equivalent 1-edit degree plausible patches as a small part
of the search space has been considered, as discussed earlier
in this paper.

The patch search space size is hardly analysed in the
literature and hence it does not influence the APR tool
tuning. Typically, the computation is stopped after a predefined
timeout, selected arbitrarily, e.g. three hours per repair attempt
in [11]. As shown in this paper, the size of search space can
differ significantly and it may be valuable to tune an APR
tool respectively. Weimer et al. in [8] have presented the first
formal cost model for syntax-based APR. Their model has
accounted for the size of both the fault and the patch spaces.
Following that model, the authors of that paper have been
able to assess the search space reduction due to the applied
approximate program equivalence. Wen et al. in [14] have
performed correlation analysis between APR efficiency and
such factors as fault space accuracy or test coverage. Liu et
al. in [9] have also focused on the impact of various fault
localisation techniques on APR efficiency when applied to
the Defects4J benchmark. They have found that about one
third of Defects4J bugs cannot be localised by the commonly
used automated fault localisation techniques, such as GZoltar
employed in this paper. Haraldsson et al. performed empirical
analyses of the search landscape for mutated Python programs
in [21]. According to their findings, the fitness often does
not change after a single mutations of a considered software,
which may be caused by the insufficient test coverage, which
has been also demonstrated in this paper.

VI. CONCLUSION

In this paper, we conducted an experimental evaluation
of the 1-edit degree patches generated automatically using
a typical syntax-based APR technique. We investigated the

differences between these patches and the corresponding
patches generated by state-of-the-art syntax-based multi-edit
APR tools and concluded that 1-edit degree patches have
relatively small search space that in the majority of cases can
be browsed in an exhaustive manner. Similarly, the number of
tests needed to be executed for 1-edit patches is significantly
reduced. In many cases, enumerated in this paper, there are
no positive tests for certain MPs and hence the corresponding
plausible patches are unlikely to correct the bug and should be
treated with special care. We have also found that for many
bugs, the 1-edit degree patches plausibly patch different lines
in a project, sometimes even in different files. Again, this
behaviour signals that such patches are likely to be incorrect.
Although the number of bugs plausibly patched is lower for
some projects, 1-edit degree patches can be generated for a
larger number of MPs and hence it is possible to plausibly
patch some bugs usually omitted by other syntax-based APR
techniques (we have found 11 such cases).

From the results, it can be concluded that a certain number
of 2-edit degree patches can have a relatively small search
space that can be also browsed efficiently. Since, according to
[8], most plausible patches are either 1-edit or 2-edit degree,
this analysis would consist a practically-viable complement
of the results presented in this paper and hence we plan
to conduct it in future. Also, we plan to evaluate patches
generated for other benchmarks to avoid the overfitting to
Defects4J benchmark, as identified in [13].
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