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Abstract—Parallel island models are used to increase accuracy
and performance (speed-up) of metaheuristics. Such models
provide gains by the exchange of information between islands
through the migratory process. The key to obtaining gains
with parallel island models is the manipulation of migration
parameters, since depending on how these parameters are han-
dled the gains vary. Based on this assumption, this work uses
three metaheuristics: genetic algorithm, self-adjusting particle
swarm optimization and social spider algorithm. From each
metaheuristic, parallel island models were proposed, diversifying
the number of natives on the islands, and the behavior of these
models were studied. The assessment confirmed the impact of
variations migration parameters on accuracy and performance
as well as the importance on the number of natives located on the
islands. The best solutions were obtained with island models from
genetic algorithm and self-adjusting particle swarm optimization,
and the best speedups were achieved with island models from
social spider algorithm.

I. INTRODUCTION

Several NP problems cannot be satisfactorily solved in
polynomial time. Exploring the vast search space for instances
of such problems is still challenging, given that in terms
of memory and processing power, today’s computers lack
sufficient resources. If the resolution to these problems is still
not optimal, applying approximate methods remains a good
strategy. Metaheuristics are a well-known efficient method that
are applied in situations where the problems can be modeled as
optimization functions using a combination of random choices
and historical results to explore the problem search space.

Another way to explore vast search spaces in complex
problems is to use the parallel island model (PIM) paradigm
[1]. PIM is inspired by the theory of punctuated equilibrium
introduced in [2], working with a global population subdivided
into sub populations, called in the literature as islands, where
each island is mapped in a processor that occasionally com-
municates with other island through the so called migration
process. As an evolutionary engine, PIMs use metaheuristics
based on: populations, particle swarms and colony optimiza-
tion, allowing control for premature convergence, avoiding
optimal locations and exploring diversity in the search space
in order to increment performance and accuracy of results.
Research in this field generally analyzes the role of migration
rates, the number of islands and the nature of the communi-
cation network (connectivity and communication topology) in
the optimization process aiming at performance and accuracy.

This work proposes and analyzes the behavior of different
PIMs for three metaheuristics: Genetic algorithm (GA ), self-
adjusting Particle Swarm Optimization (PSO ) and Social Spi-
der Algoritm (SSA ). The GA is an evolutionary algorithm that
uses a probabilistic solution search engine based on biological
evolution, which combines aspects of genetic mechanics and
natural selection of individuals, but that involves a high
computational cost. On the other hand, we have self-adjusting
PSO a metaheuristic based on patterns of nature that presents
relatively less computational complexity w.r.t. GA . Regarding
accuracy, the PSO provides competitive optimization solu-
tions for many practical problems. SSA is a new metaheuristic
proposed for solving global optimization problems that is
based on the social spider foraging strategy, using spider web
vibrations to determine prey positions. Experiments comparing
SSA with meta-statistics known in the literature showed that
SSA provides competitive solutions for many benchmarks
[3]. From the proposed PIMs, the adequability of migration
policies is verified through the analysis of performance and
accuracy, such that the proposed algorithms are submitted
to resolution of the case-study of unsigned reversal distance
(URD) between genomes, which is a well-known NP-hard
problem [4], [5]. For this case-study, PIMs are proposed with
12 and 24 islands using different communication topologies.
The topologies are responsible for communication between
islands during the migratory process.

To exploit the potential of PIMs, parameters regarding
breeding cycle, collective behavior, and migration policy are
set through exhaustive tests. In the experiments phase, several
input sets are used for the case-study. The feedback obtained
from the experiments does not point to a generic model that
offers better performance and/or better accuracy; however, the
results show that besides the parameters mentioned above,
another important mechanism to be explored is the size of
the search space allocated on each island. Whereas, PIMs for
the same case-study using larger search space present superior
performance and accuracy [6], [7], [8].

Initially, Sec. II presents the case-study, and concepts about
PIM, GA , PSO and SSA ; Sec. III discusses related work.
Afterwards, Sec. IV introduces the proposed PIMs, Sec. V
presents experiments, and Section VI discusses them. Finally,
Sec. VII concludes and proposes future work. The source code
of the proposed PIMs and an extended version that includes
the statistical test are available at http://genoma.cic.unb.br.
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II. BACKGROUND

This section presents the case-study and theoretical con-
tent regarding metaheuristics GA , PSO , SSA and research
advances achieved from the parallel island models paradigm.

A. Case-study

Reversals are considered to calculate the evolutionary dis-
tance between organisms containing a single chromosome.
Computing the minimum number of reversals for transforming
one genome into another is known as the reversal distance
problem [9], [5].

The genes are represented in a genome as a permuta-
tion π = (π1, π2, ..., πn) into the set {1, ..., n}, with n
being the number of genes. A permutation of length n is
a bijection from {1, · · · , n} into itself. The reversal op-
eration denoted as ρj,k, for 1 ≤ j ≤ k ≤ n, inverts
contiguous elements between πj and πk transforming π
into π′ = (· · · , πj−1, πk, · · · , πj , πk+1, · · · ); for example:
for π = (1, 9, 4, 3, 5, 8, 2, 7, 6, 10), ρ2,9(π) gives π′ =
(1, 6, 7, 2, 8, 5, 3, 4, 9, 10). There are two different types of per-
mutations: signed and unsigned. When the orientation (positive
or negative) of the genes inside the genome is considered,
the genome is considered a signed permutation in which each
gene has a positive or negative sign according to its orientation
within the genome. Computing the minimum number of rever-
sal between two signed permutations is known in the literature
as the signed reversal distance problem and was proved to
belong to P [10]. On the other hand, if the genes in the genome
are abstracted without orientation, the representation of the
genome corresponds to an unsigned permutation in which each
symbol is associated with a gene. Calculating the minimum
reversal distance between two unsigned permutations is called
the unsigned reversal distance (URD) problem and is known
to be an NP-hard problem [4]. In genetic algorithms to deal
with URD, the fitness of a unsigned genome is computed as
the reversal distance of signed genomes obtained by orienting
the genes in the genome as given in [11], [12]. The URD
problem is the case-study considered in this work.

B. Parallel Island Model

PIM is an alternative to increase performance and accu-
racy of evolutionary and bioinspired algorithms in parallel
architectures. Islands maintain a partial possible solutions that
are enhanced by an algorithm in a parallel architecture such
as multi-core computers or clusters. In the breeding cycle,
islands can evolve their populations homogeneously using the
same algorithm keeping the same configurations. On the other
hand, if islands may execute different algorithms or change
parameter settings, the model is called heterogeneous.

The evolutionary cycle is important to improve the genetic
potential of island populations, but the differential of the
paradigm is the migration process. In migration, periodically,
individuals are exchanged between neighboring islands. These
movements can have positive or negative impacts at the end
of the evolutionary process, due to the variation of the genetic
data on each island. Migration implies a set of decisions that

need to be discussed and give rise to the choice of parameters
mentioned below, as argued in [13], [14].

• Number of Islands: establishes the number of islands. The
total natives in all the islands should be the same as the
number of individuals in the sequential model.

• Topology: defines the interactions between neighboring
islands. In static topologies island links remain unchanged
throughout the migratory cycle, while in dynamic ones, it
is possible to redefine island links during the migratory
process, such that island neighborhoods may change.

• Number of immigrants and emigrants: gives the number
of individuals that are sent and received between two
neighboring islands. The related parameter is NumMigIn-
dividuals that is the number of individuals for migration.

• Synchronization: evolutionary behavior can be synchronous
or asynchronous. In synchronous migration, migratory
events happen at the same time; in asynchronous migration,
each island has its own migratory period, which is the
behavior typically found in nature.

• Migration: moves or clones a native to a neighboring island.
The migrating individuals belong to one of three types: best,
worst or random and their fitness (regarding local islands) is
used as a classification attribute. If the individual is moved
to a neighboring island, there is free space to receive an
immigrant on the local island. On the other hand, cloning
requires a replacement method to decide which individual
will be eliminated on the neighboring island. For doing this,
neighboring islands classify individuals in the same types.
Three parameters are associated:
– EmPolicy defines the emigration policy: 1) clone native

individuals to be sent to the neighboring island; 2)
remove native individuals to be sent to the neighboring
island;

– TypeEmIndividual defines the type of individuals se-
lected for emigration among: 1) best, 2) worst, and 3)
random individuals;

– TypeImIndividual defines the immigration replacement
policy that establishes the individuals to be replaced
by immigrants on the neighboring island: 1) worst, 2)
random, and 3) similar individuals (individuals with the
same fitness rank).

• Migration interval: number of generations between one
migration and another. The associated parameter is Migra-
tionInterval that defines the migration interval given from
the percentage of breeding cycles (number of generations).

C. Genetic Algorithm

The algorithms are inspired by the Darwinian principle of
species evolution [15]. These are probabilistic algorithms that
evolve through reproduction with an adaptive search engine
based on the survival principle of the fittest. In this work, a
simple GA is used with breeding cycle composed by following
operators: selection, crossover, mutation and replace. The
selection and replacement policy is elitist, selecting the best
and replacing the worst individuals in the population. The



mutation process is conservative, a low mutation rate is used,
as found in nature, since exaggerated mutations corrupt the
genes inherited from parents.

The proposed GAwork as follows. Initially a population of
signed permutations is generated from a unsigned permutation
input. The breeding cycle is delimited by the input size. Then,
for each generation, a set of the best parent individuals in the
population is selected, such that each pair of parent individuals
gives rise to two new individuals, which undergo mutation, and
return to the current population replacing the worst individuals.
The pseudo-code of GA is shown in Algorithm 1.

Algorithm 1: GA for computing URD

1 Assign values to the parameters;
2 Generate the initial population;
3 Compute fitness of the initial population;
4 for i = 1 to Length(π) do
5 Perform selection and save the best solution;
6 Apply the crossover operator;
7 Apply the mutation operator;
8 Compute the fitness of the current population;
9 Perform replace operator in the worst individuals;

D. Self-adjusting Particle Swarm Optimization

PSOwas introduced in [16] to address continuous domain
problems, inspired by the behavior of social organisms in
groups, such as species of birds and schools of fish. In PSO
each particle represents a point in the search space and its
current position in an n-dimensional space is represented
as xi = (xi1, · · · , xin), j-th dimension. whose motion is
specified by the velocity vector vi = (vi1, · · · , vin) and each
particle remembers its best position found during the search as
pbesti. In addition, the algorithm maintains the best position
with respect to all particles denoted as gbest, which is used
to guide the particles in the search space. The velocity vector,
vk+1
i for the i-particle in the iteration k + 1 is given by the

expression:

vk+1
ij = wk

i · vkij + ck1i · rand1ij · (pbestkij − xkij)+
ck2i · rand2ij · (gbestkj − xkij)

(1)

In Eq. (1), w is the weight of inertia (momentum) that
introduces friction into the particles motion, reducing inertial
velocity; c1 and c2 are individual and global acceleration
coefficients that influence the maximum step size a particle can
take and, rand1i and rand2i are vectors containing random
numbers generated at each iteration k, (0 ≤ rand ≤ 1).
The next position of the particle xk+1

i is computed using the
following expression: xk+1

i = xki + vk+1
i .

To adjust PSO to URD, each particle xi in the swarm is
associated with a signed permutation constructed from the
unsigned genome π provided as input. The component xij ,
that is a real value in (0, 1), maps the gene πj to either −πj or
+πj , the former case xij < 0.5 and the latter case xij ≥ 0.5.

Adaptability in an optimization algorithm can be defined as
self-tuning according to rules that have variable parameters.

This work uses the self adaptive PSO proposed in [17],
where the parameters w, c1 and c2 and the update frequency
of each particle are used to perform the self-tuning in the
search process (see Algorithm 2). For instance, considering
the parameter w, equation wk+1

i = wk
i + αk

i · (wk
best − wk

i )
is applied, where αi is used to control the diversity of each
particle and can take values 0 or maxIteration, the maximum
number of iterations in PSO . Similarly, for c1 and c2

Algorithm 2: Self-adjusting PSO for computing URD

1 Generate the initial particle swarm;
2 Initialize Particles using Random Uniform;
3 for i = 1 to maxIteration do
4 Evaluate particles in swarm;
5 Update weight w;
6 Update gbest;
7 Update particles in swarm;
8 Update parameters c1 and c2;

E. Social Spider Algorithm

Spider locomotion is the subject of bionic engineering
research to design robots [18]. One possible reason for this is
that most of the observed spiders are solitary [19]. However,
some species of spiders are social. For example Mallos gre-
galis live in groups and interact with other spiders in the group.
Based on social spiders, a new global optimization method, the
Social Spider Algorithm (SSA ), was designed in [3].

In SSA , the optimization search space is formulated as a
hyper dimensional spider web. A position on the web repre-
sents an acceptable solution to the problem and all solutions
to the problem belong to that web. The web is also used
to transmit spider-generated vibrations. Each spider on the
web holds a position whose quality is based on the objective
function representing the potential to find a food source in the
position. When a spider moves to a new position a vibration is
generated which is propagated by the net. A vibration contains
information from the propagating spider that will eventually
be consulted by other spiders for food source information.

A set of information is required on each spider: 1) position
on the web; 2) fitness; 3) vibration of the spider in previous
iteration; 4) number of iterations since the spider changed
its vibration; 5) movement that the spider performed in the
previous iteration; 6) dimension mask represented by a binary
vector with size equal to the input that the spider employed to
guide movement in the previous iteration. SSA is described
below and its pseudo-code given in Algorithm 3.

a) Initialization: the objective function and the solution
space are defined. The value parameters: vibration rate (ra),
probability of changing mask (pc) and percentage to control
updates to mask positions (pm) are assigned. After setting
the values, an initial spider population is created that remains
unchanged during SSA simulation. Spider positions are ran-
domly generated in the search space; the initial target vibration
of each spider is set at its current position and the vibration
intensity is assigned to be zero.



b) Iteration: in each iteration, all spiders on the web
go through the following steps: fitness assessment, vibration
generation, mask change, and random walk. The fitness of
all spiders is calculated and the overall ideal value updated.
Then, spiders generate vibrations in their positions and
propagate such vibrations in the web. Each spider will receive
vibrations from other spiders according to ra that consist
of the information on source position of the vibration and
its attenuation intensity. After receiving the vibrations, the
current spider chooses the strongest vibration called vbests

and compares it to its current vibration denoted as vlocals ,
if vbests is higher, vlocals updates the value by the value in
vbests and updates the vibration change counter denoted cs to
zero, otherwise it increments cs by 1 and the value in vlocals

is kept. Subsequently, the current spider performs a random
walk toward vlocals using the mask dimension to guide the
movements. Each spider maintains its mask, where initially
all values are zero. In each iteration, the current spider has
probability 1 − pccs to change its mask with pc ∈ (0, 1). If
the mask changes, each bit of the mask has a pm probability
of being changed.

As applied to PSO , we adapted the case-study to SSA
where a spider’s position is associated with a signed per-
mutation constructed from the unsigned permutation π pro-
vided as input as following: given a spider s in the position
Ps = (Ps1 , . . . , Psn), the value of Psi belongs to the interval
(0, 1), 1 ≤ i ≤ n, and a gene πj is mapped into −πj case
Psi < 0.5 or +πj when Psi ≥ 0.5. The fitness is given by the
reversal distance of the signed permutation generated from the
position of the spider s.

III. RELATED WORK

Several papers showed the effectiveness of PIMs. For in-
stance, analyzing the number of immigrants and emigrants,
[20] worked with the hypothesis that a relatively small migra-
tion of individuals is sufficient to disperse genetic material.
The effects of migration policy in PIMs were investigated in
[21]. The authors proposed a model which adjusts automati-
cally the migration interval according to the development of
the local population. Also, a migration policy for PIMs with
target island defined by attractiveness was proposed in [22].
Subsequently, [23] presented a new evaluation strategy that
changes the way to define the attractiveness between islands,
in such a manner that islands become more or less attractive
according to the quality of their solutions.

Migration topology was the focus in [24], where a master-
slave scheme was proposed with slave islands running a
genetic algorithm and sending periodically their best partial
results to the master island. Also, [25] explored migration
topology, proposing a new PIM concept with a unidirectional
(asynchronous) ring communication topology based on proba-
bility models. [13] surveyed the design and analysis of parallel
evolutionary algorithms increasing the understanding on how
it is possible to obtain accelerations on sequential algorithms.

The influence of migration interval together with number
of immigrants and emigrants for PIMs was studied in [26]

Algorithm 3: SSA for Computing URD

1 Assign values to the parameters;
2 Generate the initial population Pop;
3 Initialize vlocal for each spider in Pop;
4 for i = 1 to maxIteration do
5 for j = 1 to size(Pop) do
6 s ∈ Pop;
7 Evaluate the fitness value of s;
8 Generate a vibration at the position of s;

9 for j = 1 to size(Pop) do
10 s ∈ Pop;
11 Calculate the intensity of the vibrations V

generated by all spiders;
12 Select the strongest vibration vbests from V ;
13 if Intensity(vbests ) > Intensity(vlocals ) then
14 Store vbests as vlocals ;

15 Update cs;
16 Generate a random number r between (0, 1);
17 if r > 1− pccs then
18 Update the mask dimension using the

parameter pm;

19 Perform random walk for s;
20 Update position for s using the mask

dimension;

observing from the experiments that the migration interval
seems to be a dominant factor, with number of immigrants
and emigrants generally being less relevant. Synchronization
policy in PIMs was studied in terms of the advantages and
disadvantages of synchronous and asynchronous migration in
[27] concluding that the latter provides better results.

The authors focused in [28] on PIMs with migration topol-
ogy using a sequential GA to solve the unsigned translocation
distance problem, anNP-hard problem related to evolutionary
distance. The proposed PIMs used ring and complete graph
communication topologies with a regular migration policy
repeated at each generation, and reused parameters calibrated
for the sequential GA. However, accuracy and performance
provided by these PIMs were not better than those of the se-
quential GA. Later, the parameters related to migration policy
and breeding cycle have gone through a setup phase to select
the best possible values within a range of possible values over
the PIMs considering static topologies: torus, complete graph,
tree, ring and net, and a migration dynamics which explores
the characteristics of individuals [14]. The results obtained
were satisfactory, with PIMs presenting good performances
and accuracy regarding the sequential GA. For URD, [7]
proposed PIMs that use static and dynamic topologies applied
in [14]. The proposed PIMs provided better accuracy and
performance than the sequential GA.

Important questions about PIMs have arisen, such as: there
are parameter settings that increase performance or accuracy?



does the number of islands impacts the final result? are
static better than dynamic topologies? and if PIMs submitted
to different problems present the same relative behavior?
These questions have been explored in [8] using four distant
NP-complete problems as case-studies. For each case-study,
models using 12 and 24 islands were implemented using
static and dynamic topologies. From results, experiments and
statistical tests, it was observed that there is no a generic set
of parameter values to be fixed into PIMs, in order to achieve
the best accuracy and performance. However, overall the best
performances were achieved by models with 12 islands, while
the best accuracies were obtained by models with 24 islands.
Regarding static and dynamic models, in general, dynamic
models presented better solutions.

IV. PROPOSED PARALLEL ISLAND MODELS

PIMs have been proposed for which GA , SSA and PSO
are homogeneously responsible for the evolution of the native
individuals on each island. For each algorithm, homogeneous
PIM versions using static topologies (tree, net, ring, full graph,
torus) and a dynamic topology based on the genotype of the
individuals were implemented. To build the dynamic links
between the islands a qualification method is used that consists
in: initially, computing the fitness average of the islands;
and then, measuring the diversity on each island using the
variance metric, where high variance means little similarity
between native individuals. From the average and variance a
key to rank and qualify the islands as good, bad and average,
is created. Since the objective of the case-study addressed
is minimization, islands with low fitness average and high
variance are considered good islands.

Prefixes G, P , S are used as nomenclature of PIMs from the
GA , PSO and SSA , respectively. Also, the nomenclature uses
suffixes identifying the used topology and number of islands.

a) Static Island Models: 30 static PIMs were proposed
considering topologies (TO) torus, (F) full graph, (N) net,
(R) ring and (TR) binary tree. Two possible scenarios are
observed: topologies TO and F have dense communication
with greater spread of genes through the neighborhood and, N,
R and TR a spread of slower genes, giving islands the oppor-
tunity to keep their native genes longer. Static PIM topologies
were proposed using 12 and 24 islands; for instance, GTO12 ,
SF24 , PN12 PR12 and PTR24 . Net topologies with 12 and 24
processors use 4×3-net and 6×4-net topology, respectively.

b) Dynamics Island Models: 18 dynamic PIMs with 12
and 24 islands are proposed discriminated according to com-
munication between islands with the same classification: good-
good, medium-medium, bad-bad (same), and good-bad and
medium-medium (gbmm), and random island communication
(Rand); for instance, Gsame24 , Sgbmm24 and PRand12 .

The extended version of this paper available at
http://genoma.cic.unb.br describes the PIMs.

V. EXPERIMENTS: PERFORMANCE AND ACCURACY

The algorithms were developed using the MPI library of
the C language and the experiments executed on a computer

TABLE I
ESTIMATED VALUES FOR THE MIGRATION PARAMETERS

Parameter estimated values
NumMigIndividuals 1,2,3,4,5,6,7,8,9,10,11,12,13,14
TypeEmIndividual 1=Best, 2=Worst, 3=Random

EmPolicy 1=Clone, 2=Remove
TypeImIndividual 1=Worst, 2=Random, 3=Similar
MigrationInterval 5%, 10%, · · · , 95%, 100%

with 256GB of RAM, and two processors Xeon E5-2620 with
hyper-threading, 6 cores and a CPU clock rate of 2.4Ghz.

The proposed PIMs and their sequential versions have
populations of the same size, always 24n, where n is the length
of the input. Thus 12- and 24-island models have respectively
island populations with 2n and n individuals. The total number
of cycles in the evolutionary process is fixed as n.

Estimated values for GA and SSA parameters Crossover,
Selection and Replacement and for ra, pc and pm are
2%, 4%, . . . , 98%, 100% and for GA parameter Mutation
1%, 2%, . . . , 5%, and for migration are given in Table I. For
each parameter, the models were submitted to evaluation by
testing each referenced value. In the end, the parameters that
provided the best solutions (Tables II, III, IV) were selected.
For the experiments groups of twenty permutations with n
genes for n ∈ {50, 60, . . . , 140, 150} were used.

The accuracy of the proposed PIMs is measured with sets of
one hundred unsigned gene permutations used in [6] for each
length n ∈ {100, 110, . . . , 140, 150}. For each permutation
in the six sets, all the proposed PIMs and the sequential
algorithms were executed ten times. Then, the average of
the ten results was calculated. These averages represent the
number of reversals for each permutation. The average results
and standard deviation for the six sets and each algorithm
are shown in Tables V,VI,VII, VIII, IX, X. Regarding perfor-
mance, Table XI shows the speed-up for each PIM taking as
input the set of one hundred permutations of length 150.

VI. DISCUSSION

The best overall parameter settings for the proposed PIMs
are discussed and then the results obtained are analyzed.
• NumMigIndividuals GA : the parameter sets with 5 and

4 individuals were used by 31.25% and 25% of all PIMs,
respectively. SSA : 75% of all PIMs use 3 individuals for
each migration process. Only one PIM, SR12 , utilizes many
individuals (10) in the migration. The remaining PIMs use 2
(SF12 ), 5 (SRand24 ) and 7 (STO12 ) individuals. PSO : there is
no complete domain, but the most prominent configuration
brings 31.25% from all PIMs using 5 individuals.

• TypeEmIndividual GA and SSA : the settings in which
the best and worst individuals migrate were dominant with
87.5% and 68.75%, respectively. PSO : the setting in which
the best individuals emigrate was dominant with 81.25%,
and no PIM uses the worst.

• EmPolicy GA : the strategy of removing individuals in
emigration is dominant with 81.25% of all PIMs. SSA :
the strategy of cloning individuals in emigration was unan-
imous. PSO : 56.25% of the proposed PIMs use the clone
and the remaining the removal strategy.



TABLE II
PARAMETER SETTINGS FOR GA AND PIMs FROM THE GA . 1=GR12 , 2=GR24 , 3= GF24 , 4=GF12 , 5=GTR12 , 6=GTR24 , 7=GTO12 , 8=GTO24 ,

9=GN12 , 10=GN24 , 11=GSAME12 , 12=GSAME24 , 13=GGBMM12 , 14=GGBMM24 , 15=GRAND12 , 16= GRAND24 .

Parameter GA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Crossover probability 88% 94% 82% 86% 90% 94% 92% 56% 92% 90% 90% 92% 92% 90% 92% 82% 82%
Mutation probability 1.2% 1% 1% 1% 1% 1% 1% 1% 1.4% 1% 1% 1% 1% 1% 1.4% 2% 1.1%

Pct. for selection 96% 92% 84% 88% 94% 96% 96% 84% 82% 88% 94% 90% 96% 97% 96% 96% 90%
Pct. for replacement 70% 70% 92% 30% 62% 30% 78% 60% 88% 30% 70% 72% 30% .62% 50% 50% 30%
NumMigIndividuals 12 7 5 11 8 5 4 2 4 5 7 5 13 11 5 13
TypeEmIndividual 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1

EmPolicy 2 2 1 1 2 2 2 2 1 2 2 2 2 2 2 2
TypeImIndividual 3 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1
MigrationInterval 30% 85% 30% 25% 30% 30% 95% 90% 10% 20% 10% 10% 30% 10% 10% 25%

TABLE III
PARAMETER SETTINGS FOR SSA AND PIMs FROM THE SSA . 1=SR12 , 2=SR24 , 3= SF12 , 4=SF24 , 5=STR12 , 6=STR24 , 7=STO12 , 8=STO24 ,

9=SN12 , 10=SN24 , 11=SSAME12 , 12=SSAME24 , 13=SGBMM12 , 14=SGBMM24 , 15=SRAND12 , 16= SRAND24 .

Parameter SSA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ra 12% 30% 30% 20% 34% 40% 48% 58% 62% 30% 28% 54% 07% 66% 76% 74% 54%
pc 20% 62% 40% 68% 40% 62% 54% 62% 78% 86% 86% 80% 40% 70% 40% 82% 64%
pm 75% 50% 96% 88% 66% 30% 84% 50% 86% 94% 96% 94% 64% 76% 96% 76% 84%

NumMigIndividuals 10 3 3 2 3 3 7 3 3 3 3 3 3 3 3 5
TypeEmIndividual 3 3 3 1 1 2 2 2 2 2 2 2 2 2 2 2

EmPolicy 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TypeImIndividual 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1
MigrationInterval 30% 30% 30% 30% 15% 20% 30% 30% 30% 60% 25% 10% 30% 25% 30% 20%

TABLE IV
PARAMETER SETTINGS FOR THE PIMs FROM THE PSO . 1=PR12 , 2=PR24 , 3= PF12 , 4=PF24 , 5=PTR12 , 6=PTR24 , 7=PTO12 , 8=PTO24 ,

9=PN12 , 10=PN24 , 11=PSAME12 , 12=PSAME24 , 13=PGBMM12 , 14=PGBMM24 , 15=PRAND12 , 16= PRAND24 .

Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NumMigIndividuals 12 3 5 6 13 4 9 5 10 5 6 8 5 4 7 2
TypeEmIndividual 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1

EmPolicy 2 1 1 1 2 1 2 2 2 2 1 2 1 2 1 2
TypeImIndividual 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1
MigrationInterval 20% 10% 25% 30% 15% 10% 30% 25% 30% 20% 10% 10% 10% 10% 30% 10%

TABLE V
INPUT LENGTH (L), AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) WITH SEQUENTIAL GA AND STATIC TOPOLOGIES: RING, FULL GRAPH,

TREE, TORUS AND NET. 1=GR12 , 2=GR24 , 3= GF24 , 4=GF12 , 5=GTR12 , 6=GTR24 , 7=GTO12 , 8=GTO24 , 9=GN12 , 10=GN24 .

GA 1 2 3 4 5 6 7 8 9 10
L A SD A SD A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 89.72 1.04 78.93 1.69 79.67 1.69 79.08 1.75 79.33 1.68 78.58 1.73 79.29 1.7 79.03 1.77 79.42 1.7 79.03 1.79 79.19 1.68
110 99.51 0.85 87.81 1.66 88.48 1.64 87.92 1.65 88.21 1.61 87.38 1.69 88.17 1.65 87.86 1.6 88.32 1.59 87.82 1.78 88.08 1.63
120 96.36 1.9 96.56 1.66 97.39 1.62 96.7 1.61 97.02 1.63 96.07 1.67 97.0 1.64 96.67 1.73 97.05 1.6 96.74 1.73 96.88 1.65
130 105.11 2.14 105.53 1.84 106.36 1.75 105.67 1.79 106.05 1.7 104.95 1.7 106.03 1.67 105.5 1.74 106.03 1.68 105.63 1.77 105.82 1.82
140 113.69 2.41 114.16 2.02 115.01 2.02 114.32 2.06 114.7 1.99 113.57 2.09 114.62 2.0 114.17 2.05 114.75 2.04 114.23 2.21 114.43 2.07
150 122.7 1.81 123.11 1.53 123.99 1.45 123.32 1.58 123.63 1.49 122.45 1.55 123.6 1.49 123.05 1.45 123.57 1.5 123.14 1.57 123.43 1.42

TABLE VI
INPUT LENGTH (L), AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) FOR THE EXPERIMENT WITH SEQUENTIAL GA AND DYNAMIC TOPOLOGY.

11=GSAME12 12=GSAME24 , 13=GGBMM12 , 14=GGBMM24 , 15=GRAND12 , 16= GRAND24 .

GA 11 12 13 14 15 16
L A SD A SD A SD A SD A SD A SD A SD

100 89.72 1.04 78.93 1.77 79.15 1.69 78.9 1.64 79.1 1.8 78.9 1.79 79.41 1.79
110 99.51 0.85 87.68 1.69 87.96 1.58 87.73 1.67 87.89 1.71 87.66 1.73 88.23 1.63
120 96.36 1.9 96.49 1.73 96.8 1.68 96.54 1.62 96.68 1.63 96.48 1.7 97.1 1.67
130 105.11 2.14 105.34 1.79 105.8 1.77 105.45 1.76 105.63 1.74 105.39 1.84 106.06 1.69
140 113.69 2.41 113.96 2.12 114.43 1.98 114.05 2.07 114.21 2.09 114.04 2.12 114.84 2.01
150 122.7 1.81 122.97 1.54 123.3 1.49 123.02 1.48 123.26 1.6 123.04 1.51 123.69 1.45

TABLE VII
INPUT LENGTH (L), AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) WITH SEQUENTIAL SSA AND STATIC TOPOLOGIES: RING, FULL GRAPH,

TREE, TORUS AND NET. 1=SR12 , 2=SR24 , 3= SF12 , 4=SF24 , 5=STR12 , 6=STR24 , 7=STO12 , 8=STO24 , 9=SN12 , 10=SN24 .

SSA 1 2 3 4 5 6 7 8 9 10
L A SD A SD A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 89.72 1.04 90.79 0.86 91.11 0.9 90.85 0.88 91.14 0.81 90.76 0.86 91.19 0.83 90.84 0.86 91.18 0.89 90.85 0.81 91.16 0.87
110 99.51 0.85 100.72 0.81 101.01 0.76 100.68 0.73 101.03 0.83 100.73 0.8 101.03 0.8 100.7 0.82 101.13 0.78 100.71 0.75 101.05 0.88
120 109.31 0.81 110.5 0.77 110.83 0.75 110.54 0.79 110.89 0.8 110.45 0.79 110.88 0.79 110.48 0.76 110.82 0.77 110.5 0.73 110.88 0.75
130 119.2 0.91 120.37 0.82 120.72 0.77 120.38 0.79 120.67 0.8 120.3 0.83 120.78 0.79 120.37 0.83 120.71 0.79 120.4 0.85 120.72 0.81
140 129.0 0.89 130.19 0.85 130.52 0.83 130.16 0.81 130.48 0.82 130.09 0.89 130.47 0.78 130.12 0.86 130.51 0.84 130.2 0.84 130.5 0.87
150 138.75 0.7 139.97 0.67 140.26 0.71 139.94 0.72 140.25 0.72 139.92 0.77 140.33 0.64 139.92 0.74 140.25 0.66 139.95 0.72 140.32 0.72



TABLE VIII
INPUT LENGTH (L), AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) WITH SEQUENTIAL SSA AND DYNAMIC TOPOLOGY.

11=SSAME12 12=SSAME24 , 13=SGBMM12 , 14=SGBMM24 , 15=SRAND12 , 16= SRAND24 .

SSA 11 12 13 14 15 16
L A SD A SD A SD A SD A SD A SD A SD

100 89.72 1.04 90.88 0.86 91.25 0.84 90.83 0.87 91.21 0.83 90.91 0.85 91.17 0.86
110 99.51 0.85 100.69 0.78 101.04 0.78 100.67 0.8 101.0 0.83 100.72 0.73 101.06 0.75
120 109.31 0.81 110.48 0.8 110.89 0.74 110.52 0.84 110.86 0.76 110.54 0.79 110.88 0.74
130 119.2 0.91 120.42 0.78 120.74 0.81 120.45 0.8 120.76 0.81 120.36 0.83 120.73 0.82
140 129.0 0.89 130.17 0.89 130.48 0.9 130.16 0.83 130.52 0.83 130.19 0.84 130.55 0.8
150 138.75 0.7 139.94 0.7 140.3 0.71 139.92 0.71 140.28 0.71 139.96 0.73 140.28 0.72

TABLE IX
INPUT LENGTH (L), AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) WITH SEQUENTIAL PSO AND STATIC TOPOLOGIES: RING, FULL GRAPH,

TREE, TORUS AND NET. 1=PR12 , 2=PR24 , 3= PF12 , 4=PF24 , 5=PTR12 , 6=PTR24 , 7=PTO12 , 8=PTO24 , 9=PN12 , 10=PN24 .

PSO 1 2 3 4 5 6 7 8 9 10
L A SD A SD A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 83.11 1.49 81.68 1.59 81.49 1.51 81.97 1.5 81.99 1.48 81.4 1.53 81.43 1.55 81.83 1.64 81.4 1.63 81.66 1.62 81.4 1.63
110 92.37 1.44 90.88 1.36 90.82 1.37 91.27 1.33 91.24 1.31 90.6 1.4 90.70 1.52 90.9 1.45 90.6 1.43 90.8 1.38 90.6 1.43
120 101.71 1.52 100.18 1.49 100.04 1.49 100.47 1.41 100.58 1.34 99.68 1.44 99.87 1.51 100.05 1.55 99.86 1.5 100.08 1.45 99.86 1.5
130 111.02 1.53 109.58 1.47 109.32 1.49 109.84 1.28 109.94 1.45 109.04 1.53 109.17 1.48 109.34 1.51 109.17 1.51 109.39 1.45 109.17 1.51
140 120.3 1.7 118.6 1.7 118.3 1.7 118.97 1.59 119.05 1.56 118.02 1.68 118.16 1.83 118.39 1.75 118.11 1.84 118.49 1.73 118.09 1.84
150 129.41 1.26 127.87 1.34 127.69 1.29 128.35 1.27 128.32 1.28 127.36 1.24 127.45 1.37 127.71 1.58 127.48 1.38 127.75 1.33 127.48 1.38

TABLE X
INPUT LENGTH (L), AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) WITH SEQUENTIAL PSO AND DYNAMIC TOPOLOGY. 11=PSAME12 ,

12=PSAME24 , 13=PGBMM12 , 14=PGBMM24 , 15=PRAND12 , 16= PRAND24 .

PSO 11 12 13 14 15 16
L A SD A SD A SD A SD A SD A SD A SD

100 83.11 1.49 81.71 1.58 81.66 1.45 81.57 1.61 81.57 1.62 81.74 1.42 81.4 1.62
110 92.37 1.44 90.95 1.43 90.93 1.47 90.81 1.42 90.8 1.38 90.99 1.36 90.71 1.53
120 101.71 1.52 100.22 1.47 100.14 1.43 100.05 1.47 100.08 1.49 100.22 1.4 99.98 1.46
130 111.02 1.53 109.44 1.47 109.53 1.47 109.25 1.42 109.32 1.56 109.56 1.39 109.18 1.54
140 120.3 1.7 118.56 1.75 118.5 1.78 118.37 1.8 118.5 1.76 118.73 1.68 118.20 1.82
150 129.41 1.26 127.88 1.29 128.03 1.24 127.66 1.28 127.68 1.33 128.06 1.22 127.61 1.39

TABLE XI
SPEED-UP COMPUTED FOR EACH PROPOSED PIM.

GR12 GR24 GF12 GF24 GTR12 GTR24 GTO12 GTO24 GN12 GN24 Gsame12 Gsame24 Ggbmm12 Ggbmm24 GRand12 GRand24
6.11 7.96 7.51 7.62 6.47 7.22 7.38 7.28 7.24 7.26 7.27 7.83 6.74 7.20 6.42 7.85
SR12 SR24 SF12 SF24 STR12 STR24 STO12 STO24 SN12 SN24 Ssame12 Ssame24 Sgbmm12 Sgbmm24 SRand12 SRand24
82.39 114.12 79.04 116.71 82.71 114.35 78.97 110.66 81.64 116.02 81.66 110.18 78.77 106.79 78.44 113.84
PR12 PR24 PF12 PF24 PTR12 PTR24 PTO12 PTO24 PN12 PN24 Psame12 Psame24 Pgbmm12 Pgbmm24 PRand12 PRand24
11.14 9.49 11.16 9.32 11.39 9.30 10.93 9.41 11.02 9.21 10.97 9.28 10.92 9.31 10.81 9.40

• TypeImIndividual GA : removing the worst individuals on
target island was the strategy in 81.25% of PIMs. SSA :
87.25% of all PIMs remove the worst individuals on target
island and the remaining remove similar individuals. PSO :
75% of all PIMs remove the worst individuals on target
island, and the remaining remove random individuals.

• MigrationInterval GA : the migration interval with 10%
and 30% of the breeding cycle was the most popular
configuration used by 62.50% of all PIMs. SSA : 56.25%
of the PIMs use the configuration with 30% of maximum
generation. SN24 is the only PIM that starts the migratory
process late, only after reaching 60% of generation. PSO :
10% and 30% settings of the maximum generation were
used by 43.75% and 25% of the PIMs, respectively.
Since URD is a minimization problem, the smaller the

output the higher the accuracy. Analyzing the accuracy of
the results, the PIMs proposed from the SSA provided lower
quality solutions than SSA . However, the quality of these
solutions are inferior to those given by PSO and GA and
their respective parallel versions.

From the results of PSO and its parallel versions, we

have the following scenarios: all proposed PIMs provided
better solutions than PSO . Comparing the static and dynamic
models, as shown in Tables IX, X, the best solutions were
provided by the static PIM (PTR12 ). In addition, analyzing the
best dynamic PIM (PRand24 ), there are 4 static PIMs (PTR12 ,
PTR24 , PTO24 , PN24 ) with superior solutions that PRand24 .

For PIMs proposed from GA , the best solutions were
computed by GTR12 that provided the best solutions for the
case-study in general, surpassing all other algorithms.

An interesting observation is the impact caused by the
variation in the size of island populations. For this work,
islands with n individuals were chosen, motivated by the time
taken by SSA when running with n log n spiders. Looking
at Table VI, and comparing with results in [14], [7], [6],
where PIMs from GA with island populations of size n log n
presented better results than GA , it is observed that decreasing
the island populations was not beneficial since here some PIMs
are overcome by their sequential version.

The best speed-ups were provided by PIMs from SSA ,
however, it does not generate any enthusiasm to improve
speed-ups, since solutions are much worse than the provided



by SSA . For PIMs from GA , speed-ups are smaller than for
PIMs from SSA . The best performance is provided by GR24 ,
but the solutions are no better than those given by GTR12 ,
which presented the best solutions with speed-up of 6.47.
On the other hand, the PIM PTR12 from PSO that provided
the best results also presented the best speed-up (11.39)
regarding PIMs from PSO . In works [14], [7], [6] PIMs with a
smaller number of islands had better performances than those
with a larger number of islands, but in this work, the best
performances analyzing PIMs from GA and SSA were given
using 24 islands and for PIMs from PSO using 12 islands.

A statistical analysis was performed over the results of ex-
periments for all PIMs. First the Friedman test was performed
an then the Holm test (Post-hoc test). This procedure is taken
from [29] (see also [30] and [31]), and was extensively applied
in previous related works. The extended version of the paper
at http://genoma.cic.unb.br contains the statistical analysis.

VII. CONCLUSIONS AND FUTURE WORK

Previous works (e.g., [28], [6], [7], [14]) showed that
dynamic PIMs offer better solutions than static ones, and
better speedups using smaller number of islands. In this work,
PIMs were proposed using static and dynamic topologies to
analyze island migration. A sample of the problem search
space was used on each island, either n or 2n, where 24n is the
total population size. With this change previous observations
were refuted, since dynamic PIMs presented much lower
accuracy than static PIMs and all proposed PIMs from GA
and SSA with 24 islands presented better speedups than with
12, but vice-versa for PIMs from PSO . From these facts,
on concludes that, in addition to an adequate setting of the
parameters involved in the migratory process, the number of
natives on the islands need to be taken into account to improve
the gains in performance and accuracy.

As future work, we intend to continue studying variations in
the size of island population and propose heterogeneous PIMs,
in which different algorithms are performed on each island.
Initially, using PSO , SSA , GA and later on a variety of other
bioinspired algorithms. Such research will require the initial
development of specialized sequential versions for these al-
gorithms and the subsequently development of heterogeneous
PIMs for which migration policies, and then performance and
accuracy will be investigated. Besides, of course, making a
comparison between heterogeneous and homogeneous PIMs.
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