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Abstract—Efficient identification of people and objects, seg-
mentation of regions of interest and extraction of relevant data
in images, texts, audios and videos are evolving considerably in
these past years, which deep learning methods, combined with
recent improvements in computational resources, contributed
greatly for this achievement. Although its outstanding potential,
development of efficient architectures and modules requires
expert knowledge and amount of resource time available. In
this paper, we propose an evolutionary-based neural architecture
search approach for efficient discovery of convolutional models
in a dynamic search space, within only 24 GPU hours. With its
efficient search environment and phenotype representation, Gene
Expression Programming is adapted for network’s cell genera-
tion. Despite having limited GPU resource time and broad search
space, our proposal achieved similar state-of-the-art to manually-
designed convolutional networks and also NAS-generated ones,
even beating similar constrained evolutionary-based NAS works.
The best cells in different runs achieved stable results, with
a mean error of 2.82% in CIFAR-10 dataset (which the best
model achieved an error of 2.67%) and 18.83% for CIFAR-100
(best model with 18.16%). For ImageNet in the mobile setting,
our best model achieved top-1 and top-5 errors of 29.51% and
10.37%, respectively. Although evolutionary-based NAS works
were reported to require a considerable amount of GPU time
for architecture search, our approach obtained promising results
in little time, encouraging further experiments in evolutionary-
based NAS, for search and network representation improvements.

Index Terms—neural architecture search, automl, cnn, deep
learning, gene expression programming

I. INTRODUCTION

In conventional machine learning, feature engineering is
employed with an intent to develop feature descriptors for a
specific problem – feature which would represent not only a set
of samples, but its overall population. Although this proposal
is interesting, it is difficult and exhaustive to develop feature
descriptors to solve a specific problem. Thus, deep learning
would come to remove the need for feature engineering –
the weights of a network would be optimized to a dataset
for accurate representation. Following the idea of automatic
feature engineering, automation of network design would be a
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next step in deep learning – the arduous job of optimizing
the structure of a deep network would fall to a computer
method, reducing human workload. Not only that, but it may
provide efficient networks not followed by human thinking
(structures with unconventional patterns). This would drive
research to a new area: Neural Architecture Search (NAS),
a sub-field of AutoML (Automated Machine Learning). The
main idea of NAS is to obtain optimum deep learning models
(convnets, recurrent nets and so on) using another method,
rather than a human manually designing the model. Thus, this
method would search for an architecture that better suits a
specific problem. This outstanding idea would be applied for
a variety of deep networks to solve computer vision, machine
translation, speech recognition problems and so on [1].

In this paper, we employ a methodology based on GEP,
entitled as Neural Architecture Search using Gene Expression
Programming (NASGEP)1, to assess the likelihood of fast and
efficient architecture search with this evolutionary approach.
More specifically, we address specific points which can be
considered as features for why use this NAS approach:

• Dynamic search space using the GEP representation,
which will increase its space considerably but may pro-
vide innovative cells if compared with other search spaces
(e.g. NAS, DARTS, etc);

• Reusable modules – being treated as GEP genes, tracking
which combination of convolutional blocks improves
individuals’ fitness;

• Weights from the fittest modules, not only from convo-
lutional blocks, are passed on to further generations for
cutting search time;

• Evolutionary search strategy within 24 GPU hours, aim-
ing to obtain efficient models without excessive resource
consumption.

II. RELATED WORK

Development of architecture search approaches can be cat-
egorized in three dimensions:

1Code for architecture search and training available at http://github.com/
jeohalves/nasgep.
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• How to represent candidate networks (search space);
• How to find out better candidates (search strategy);
• How to evaluate each candidate (parameter estimation

strategy).
To develop a NAS approach, these dimensions need to be

fully determined.

A. Search Space

For the first dimension – search space, the possible structure
of each candidate network needs to be defined. Two principal
points need to be carefully address: a limited search space size,
since extensive number of candidates would hinder optimum
size in small search time; but also networks would be different
between each other as much as possible, since structure
variance would introduce the possibility to find out which
structure patterns produce fitter results [1].

Currently, there are three categories of search spaces: chain-
structure, multi-branch and cell-based ones. Chain-based NAS
works focus on developing optimum sequential models, al-
though with possible presence of skip-connections. Gener-
ally, these models are simpler and do not present significant
differences between manually-designed models like ResNet,
WideResNet and so on.

Unlike them, multi-branch NAS approaches (like [2], [3])
focus on complex optimizations on the entire architecture. It is
like a big Inception [4] block as the entire network. Being ex-
tremely different from chain-based models, this type of model
introduces too much complexity, increasing exponentially the
search space to be traveled.

As for cell-based ones, they produce superior results in
lesser time than the others, as it limits the search space to a part
of the network (cells are repeated along the entire network)
without reducing considerably the variance between models
(a cell has similar structure than multi-branched, although not
in size). Cell-based search spaces split between normal and
reduction cells: the former aims feature representation, being
replicated many times through the network; then the latter aims
reduction of feature map size (with poolings or convolutions
with stride = 2). Thus, the best model always has two different
cells (in some cases, the reduction cell is already fixed or it
has a similar structure than the normal cell).

Two common cell-based subgroups are used: the NAS-
based [2] and the Differentiable Architecture Search (DARTS)-
based cells [5], which is basically a directed acyclic graph
(DAG). Cells based on the NAS work (also NASNet [6]
and AmoebaNet [7]) are composed of N blocks (generally,
N = 4), in which each block is composed of an addition
of two operations (e.g. convolution and/or poolings). Each
block’s output can be used as an input of another block or
concatenated with other blocks to generate the cell’s output.

In the case of DARTS-based cells, operations are com-
bined based on edges and their combinations (like a di-
rected acyclic graph). Assuming there are M sequential edges
(E0, ..., EM−1), each edge is combined with previous edges
by some operation. Then, the edge EM−1 combines with all
previous edges (E0, ..., EM−2) to produce the cell’s output.

Architecture search for the former aims to select which inputs
and operations each block will have; and for the latter,
which operations will have between edges. Several works
based on these two cell representations, such as [2], [5]–
[7], surpassed even human-designed models in CIFAR and
ImageNet datasets.

Although this encourages further usage of them, it also
presents a problem regarding human bias. These cells present
a fixed structure regarding how operations are combined: in
the first, always two operations (even if one operation is an
identity) are added to generate a block and then these blocks
are concatenated to generate the cell’s output; in the second,
outputs of prior edges are combined in the same way to
generate the current edge. It reduces drastically what types
of structures can be found, also limiting to structures close to
models already experimented (introducing human bias). Thus,
for searching for more different patterns, it is crucial to relax
how the cells are generated, however not to a point in which
search space becomes too big (e.g. multi-branch).

B. Search Strategy and Parameter Estimation Strategy
Search strategies in NAS works are mainly in the areas

of reinforcement learning (RL), evolutionary computation [3],
[8]–[13] and gradient-based techniques. RL-based NAS would
employ different methods such as REINFORCE policy, prox-
imal policy optimization (PPO) and Q-learning (like [6], [8],
[14]). The first NAS approaches that achieved state-of-the-art
results were based on this type.

Genetic algorithms and other evolutionary methods would
also be used as NAS search strategies, which generates a
population of models and evolves them with mutation and
other reproduction techniques. Evolutionary-based methods
would produce promising results, although generally using
too much GPU computation time (dozens to hundred GPU
days), which would encourage research in other types of search
strategies.

Gradient-based (e.g. [5], [15]–[19]) NAS approaches aim a
more continuous optimization, unlike the discrete and con-
ditional from other types. A common idea is to present
many possible operations (e.g. convolutions, poolings, skip-
connections, etc) to be applied between one edge and another
from a DAG representation and optimize weights representing
what operation is better in that connection. This would rep-
resent not only a more flexible and fluid optimization, since
it is more visible on how each operation contributes to the
candidate score, but also works based on this approach that
presents efficient results in less time.

As for parameter estimation strategies, it mainly concerns
evaluating validation error and training loss. Also, strategies
to reduce candidate training time such as fewer epochs,
reduced size, weight sharing and cosine annealing learning
rate scheduler are employed. Thus, evaluation of candidates
can be realized in less computing time [1].

C. Evolutionary-based NAS
Evolutionary-based NAS approaches generally consume a

considerable amount of time, being infeasible to be employed



in small research labs and companies, since it would cost a
massive amount of GPU processing. Approaches which con-
sume little GPU resources would be plausible to be employed
in small companies and research labs, not only to popularize
NAS application, but also to provide better models to specific-
group problems. Although other techniques may be applied,
some would be limited to a fixed search space. Not only that,
but the already proposed evolutionary-based approaches may
have focused too much in search with unlimited resource time,
that other alternatives to employ a low cost evolutionary-based
NAS may not be extensively studied.

In virtue of these points, we propose an evolutionary-based
NAS approach which focuses on obtaining efficient models
with limited GPU time (24 hours in a NVIDIA GTX Titan Xp,
a common card used in NAS benchmark) in a dynamic search
space represented by GEP phenotype (tree-like structure). A
NAS approach using only one GPU day may be used in groups
with less resources. While this approach can be used with
different types of deep networks, we focus this time only in
convolutional networks (also called convnets), due to the broad
range of experiments to be carried out.

III. METHODOLOGY

In this section, we defined the methodology and properties
of our approach.

A. Workflow

Before entering in details of why and how each piece of
NASGEP is used, we present its entire workflow below (being
depicted in Figure 1):

1) Genes for normal and reductions cells are generated
(separately) for their initial population (size of Pg);

2) An initial population of Pr reduction cells is created;
3) The first generation of Pi models is generated and

trained:
a) A random genotype (head and tail) is generated, to

transform into the normal cell’s phenotype;
b) A random reduction cell is picked from the initial

Pr individuals;
c) Then, each model is trained (only one epoch) to

generated their fitness;
4) Before reproduction of individuals, genes are killed and

remaining are reproduced:
a) Genes not being used with a fitness below Tg are

discarded (to remove bad genes from population);
b) Tournament selection is used to select two parents;
c) At least Cg

min children are created per generation;
d) Children are generated until their size reaches

Cg
max in the generation or if the gene pool size

reaches P (max)g;
5) The children generation is generated with tournament

selection:
a) First, the new generation of reduction cells is

created with reproduction of two parents (chosen
by tournament selection, for each child);

b) Then, for each individual in the normal population,
reproduction is employed to generate their normal
cell’s genotype;

c) For the individual’s reduction cell generation, a
tournament selection is applied to the population
of reduction cells to select one of the alive cells;

6) Children are trained:
a) Each child is trained for one epoch;
b) If the fitness of a child reached a threshold Tc,

the model is trained for another epoch (this is
employed to reward better individuals in the search
process);

c) If a child reached the maximum number of epochs
configured Emax, training is finished for this child
and it is marked to be killed;

d) In our specific approach, if a individual is marked
to be killed after reaching the maximum number
of epochs Emax, its current reduction cell is also
marked to be killed (or not used for reproduction);

7) After training of children population, NASGEP needs
to reduce population size (from individuals and also
reduction cells) – thus applying survivor selection:

a) First, the best individual is always preserved –
elitism;

b) Then, the oldest individual is killed;
c) If any, dead individuals (which have already trained

for Emax epochs) are discarded;
d) Finally, individuals in excess for both reduction

and normal populations are removed based on their
fitness (Pi individuals including the best one are
preserved);

e) Reduction cells that are being used will survive to
the next generation;

f) Thus, after survivor selection, more than Pi indi-
viduals can be found in the reduction population;

g) Then, generation is finished;
8) For the next generation, each model is trained like step

6;
9) Workflow goes back to step 4 and moves on, until the

time-limit of 1 GPU day.

B. Why Gene Expression Programming?

The phenotype representation of genetic programming (and
its variations, like gene expression programming [20]) consists
of a binary tree with many leaves, which can represent the
inputs of a convolutional cell and the root as its output (with
intermediary nodes being convolutions and binary operations
to join their output, like concatenation and addition). Thus, this
phenotype provides a representation with little modifications
to adapt for convolutional cells.

Not only that, but this representation provides flexibility in
searching different models. For example: one branch is more
deeper and the other more shallower (Figure 2a); other with
additions and concatenations alternating with each other, even
simulating a NAS-cell based representation (Figure 2b).
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Fig. 1: Overall representation of the NASGEP workflow.
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Fig. 2: Some examples of how a GEP phenotype can represent
a convolutional cell. Leaves of this tree, i.e. outputs of previous
cells (h0, ..., hi−2, hi−1), are used as inputs of many operations
(like convolutions, additions and concatenations). They are
combined to produce the current cell’s output hi. This entire
representation is repeated many times to generate the full
convolutional network.

Another point to be highlighted is the simple genotype
representation in GEP. Similar to genetic algorithm, genotype
in GEP is a sequence of elements (e.g. string of characters and
numbers). Not only modifications in this sequence can be eas-
ily done (like mutation and other reproduction methods), but
the search space can be transferred to another search strategy.
This simple sequence of head and tail may be changed with
other techniques, like a Long Short-Term Memory (LSTM)
architecture. Although the search strategy is modified, the
dynamic search space representation remains intact.

Also, using Automatically Defined Functions (ADFs, i.e.
genes) encourages the optimization of small modules and
combinations between them. Rather than optimize a bigger
cell, optimizations on smaller modules would facilitate fitness
convergence. If one part of a bigger cell interferes negatively
on its fitness, the entire cell structure is discarded. But, if many
of these small modules are found in different cells, through one

cell may have lower fitness because of a bad gene, other good
genes will obtain good fitness of other cells. Then, through
generations, bad genes will be discarded and good ones will
be combined in newer individuals.

C. Network Blocks: Functions and Terminals

In GEP, an individual is composed of both head and tail
sequences. Both are combined to generate the individual’s
phenotype. For the head, functions and terminals (elements
of a GEP sequence) are used. As for the tail, only terminals
can be employed. The question is: what are functions and
terminals in our NAS approach?

For normal and reduction cells, the following elements are
used as functions: addition and concatenation. For terminals,
only ADFs (i.e. genes) are used. As for genes, addition and
many types of convolutions (with different kernel sizes) are
used as functions. For terminals, convolutions and previous
cells’ outputs. For the latter, only normal cells have these
outputs as terminals. This was chosen since, in the reduction
cell, additions with them would not be possible as they would
have different feature map sizes. These elements are used
to compose the cells in our network. Convolution blocks in
this case are defined as the sequence of ReLU activation -
> Convolution -> Batch Normalization, according [21] (also
followed in [6]).

As for the types of convolutions, we used the following:
• Point-wise convolution (1x1 kernel);
• Depth-wise convolution with kernels 3x3, 5x5, 3x5, 5x3,

1x7 or 7x1;
• Separable depth-wise convolution (a point-wise convolu-

tion followed by a depth-wise) or in the inverse other,
with kernel sizes of 3x3, 5x5, 3x5, 5x3, 1x7 and 7x1.

D. Convolutional Network Peculiarities

With a diversified environment of convolutions, we can find
useful combinations to represent a specific dataset. Also, as we
are working with concatenations, the number of channels may
increase on different occasions. Thus, a point-wise convolution
is applied when a input encounter with another feature map
with lower channel size (e.g. these two are inputs of an



addition), or when the output of a cell is greater than the
current size (only outputs of reduction cells change the number
of channels, but also only double it). To reduce training time,
whenever a convolution block or gene has validation accuracy
greater than before, its current weights are saved to the disk.
Then, whenever a new individual is created, these weights are
loaded to the model, rather than being randomly initialized
with, in our case, Kaiming initialization [22].

E. Reproduction

Generation of new individuals is executed in the reproduc-
tion step. The default techniques of GEP are used to generate
them, being applied to a pair of parents the following (in
order): mutation, transposition, root transposition, one-point
and then two-point recombination. Default parameters from
the original paper were employed. Also, this reproduction is
also applied to genes, to generate and improve these modules
for next generations. One different thing in our approach is
that, to encourage combination of addition and concatenation
in different ways, elements in an individual’s head only change
to a function.

IV. EXPERIMENTS

Experiments were conducted in a NVIDIA GTX Titan Xp
with 12 GB VRAM, a common card for GPU time evaluation.
To assess the capability of our proposed work, experiments
on common benchmark datasets were executed. For their
popularity in similar experiments, the CIFAR-10, CIFAR-100
and ImageNet datasets were used in this step. Each dataset
is composed of common objects and living beings found in
images. Also, different numbers of classes, samples per class
and resolutions are employed in them. Before entering in more
details regarding the experiments executed, hyper-parameters
and other details about our architecture search are discussed
in the next subsection.

A. Search and full training phases’ details

For the search phase, some parameters need to be defined
differently from the full model training phase, since we want to
evaluate as many models as possible. Thus, reduction of model
size is applied for network candidates. The initial feature map
size for the first convolution (before normal and reduction
cells) is set to 16. Candidates are evaluated by their fitness. In
our experiments the validation accuracy was employed as the
fitness score.

Initial population size Pi for each generation is fixed to
10. For normal and reduction cells, the genotype’s head size
is equal to 4 (thus tail size to 5). For their genes, head size
was set to 1 (and tail size to 2). These values were chosen
to enable a more flexible combination (e.g. vast combination
of different small modules). The initial size of the gene pool
is set to Pg = 50 and its maximum size P (max)g is set to
100. For each generation, at least Cg

min = 2 genes are created
and at most Cg

max = 10. Tg is updated at the end of each
generation to the Pith best individual’s fitness (for removal of
bad genes). The threshold Tc is updated to 75% of this fitness.

Number of parameters of network candidates was limited to
300 thousand to avoid generating models bigger than memory
available.

Training for each candidate can reach Emax = 10 epochs,
using Stochastic Gradient Descent (SGD) with cosine anneal-
ing learning rate scheduler for optimization [23]. Also, batch
size is set to 512 to focus on rapidly training. The initial
learning rate value is set to 0.1 for the search phase, to obtain
quickly the validation error of each candidate that is close to
the error after full training. In the full training phase, batch
size is reduced to 128 and learning rate to 0.025, which focus
on over-fitting reduction, besides its slow convergence.

Number of repetitions for the normal cell (see Figure 3
for reference) in each stage is set to N = 3. In the full
training phase, the initial feature map size is set to 64. The
ImageNet’s stem has three sequential 3x3 convolution blocks
(where the first do not have ReLU activation) with stride = 2.
The first convolution block increases the number of channels
to half the initial feature map size (size of 32) and the second
convolution block to the initial size chosen (in this case, 64).
Also, the number of epochs goes from 10 to 300 (for CIFAR
datasets). The number of epochs of 90 is used in the ImageNet
full training phase (no search phase is employed here). After
the last normal cell, batch normalization followed by a ReLU
activation is applied. Then, global average pooling is employed
to reduce the feature map size of each channel to 1x1. Finally,
a fully connected layer reduces the output size to the number
of classes, to be inputted in the softmax.

For data augmentation, mean and standard deviation cor-
rection was applied, after application of random crop and
horizontal flip, CutOut [24] (length = 16) and AutoAugment
(AA) [25]. For regularization, we also employed drop-path
[26] with rate = 0.1. Weight decay of 0.0005 and momentum
of 0.9 were also chosen values for regularization.

B. Experiments with CIFAR datasets

A popular benchmark dataset for image classification is the
CIFAR project [27], divided into two datasets: CIFAR-10 and
CIFAR-100 (where the number is the amount of classes in the
dataset). For both datasets, an amount of 50000 images for
training is found. Testing subsets contain 10000 images each.
Classes for both datasets have the same number of samples
(6000 each class for CIFAR-10 and 600 for CIFAR-100).

Search and training is employed in the CIFAR datasets
separately. Not only that, but to assess the reliability of
NASGEP, a total of five runs are done for both datasets (higher
values would be infeasible, since searching and training deep
learning models consume an excessive amount of resources).
In the search phase (and also tuning of our method), the testing
subset was not touched. Thus, we extract 5000 samples from
the training subset to be the validation subset, where we would
find which combination of normal and reduction cells achieved
superior fitness.

1) Ablation Study: In this study, we aim to analyze specific
components (data augmentation and regularization) used to
train our model. Besides, evaluation of the weight sharing
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Fig. 3: Overall network representation of CIFAR and ImageNet networks, respectively.

approach and training with random sampling is also exposed.
The objective is not only to determine which strategies have
superior fitness, but also if our search proposal is really
obtaining better models in the search space. Table I shows
the experiments employed in this study.

The first four experiments aim to analyze data augmentation
and regularization in the same searched models. The last one
focuses on the search analysis using the best data augmenta-
tion configuration. All experiments used CutOut. In general,
combinations of these strategies improve accuracy satisfactory.
Drop-path together with AA was an exception that, although
had lower error than using only drop-path, it was worse than
using only AA. This was probably caused by the inclusion
of noise in the application of drop-path, which would limit
the learning of some data variations generated by the data
augmentation approach.

To evaluate the different between random sampling and the
searched models, we use the relative improvement (RI) metric
in [28], RI = 100× (Accm −Accr)/Accr, with Accm being
the mean of the five runs of our proposal and Accr the mean of
five random samplings. We obtained a RI = 0.3098, similar
to DARTS (RI = 0.32). Since the combination of CutOut and
AutoAugment achieved the best results, they will be used in
remaining experiments.

TABLE I: Ablation study in the CIFAR-10 dataset with
different data augmentation methods, regularization and search
strategies.

Test error (in %) Params

CutOut only 3.54± 0.15 3.62M±0.18
CutOut + AA 2.82 ± 0.13 3.62M±0.18
CutOut + Drop-Path 3.24± 0.10 3.62M±0.18
CutOut + Drop-Path + AA 2.99± 0.07 3.62M±0.18

CutOut + AA + No Weight Sharing 2.92± 0.19 3.48M±0.34
CutOut + AA + Random Sampling 3.12± 0.28 2.54M±0.55

2) Evaluation on the Best Strategy: In Table II, state-of-
the-art manually designed and NAS approaches are compared
if our own in CIFAR-10 and CIFAR-100 datasets.

After five runs, we achieved a test error of 2.82 ± 0.13
in CIFAR-10, and 18.83 ± 0.39 in CIFAR-100, with our
best models in each dataset obtaining an error of 2.67% and
18.16%, respectively. Normal and reduction cells from the
best candidate in CIFAR-10 can be seen in Figures 4 and
5, respectively. The structure of both cells are very different,
also in the number of convolutional operations. Normal had a

quantity similar to AmoebaNet cells. On the other hand, the
reduction cell had a greater number of convolutions, mainly
inverse separable convolutions. Not only were they different
between them, but also different between other approaches,
which had more fixed structures, mainly in not combining
addition and concatenation dynamically. Even with a flexible
search space, our method obtained satisfactory cells for the
final convnet.
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Fig. 4: Normal cell from the best model found in CIFAR-10,
also transferred to ImageNet mobile setting training.

Number of parameters from candidates chosen were around
three million, similar to other recent NAS approaches which
focused on this reduction without losing their performance.
Compared with the best NAS approaches like AmoebaNet and
DARTS, NASGEP had only little worse results, showing the
capability of the approach even with a diverse search space.
Furthermore, NASGEP obtained significant results using only
one GPU day (in contrast with the three thousand from Amoe-
baNet), and outperformed substantially other evolutionary-
based approaches, seeing in Table II.

C. Experiments with ImageNet on Mobile Setting

Another popular dataset used for image classification (and
other problems such as localization and detection) is the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)



TABLE II: Results from CIFAR datasets.

NAS Search Space Search Strategy GPU Days CIFAR-10 CIFAR-100
Test error (in %) Params Test error (in %) Params

WideResNet [29] Chain Manual N/A 3.08± 0.16 36.5M 18.41± 0.27 36.5M
ResNeXt [30] Multi-branch Manual N/A 3.58 34.4M 17.31 34.4M
DenseNet-BC [31] Chain Manual N/A 3.46 25.6M 17.18 25.6M

NAS [14] Chain RNN and RL 2000 4.47 7.1M - -
NASNet [6] NAS-cell RL 2000 2.65 3.3M - -
AmoebaNet [7] NAS-cell Evolution 3150 2.55 2.8M - -
EANN-Net [32] Chain Evolution - 7.05± 0.02 - - -
CoDeepNEAT [11] Multi-branch Evolution > 1 7.3 - - -
Genetic CNN [33] Multi-branch Evolution 20 7.10 - 29.03 -
Hill-climbing [2] Multi-branch Hill-climbing 1 5.2 19.7M 23.4 22.3M
DARTS [5] DAG-cell Gradient 4 2.76± 0.09 3.3M - -

NASGEP GEP-based cell Evolution 1 2.82± 0.13 3.62M±0.18 18.83± 0.39 3.59M±0.30
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Fig. 5: Reduction cell from CIFAR-10’s best model, which the
convolutions following an input (hi−1 or hi−2) have stride = 2
for feature map size reduction.

dataset [34]. This specific dataset contains more than one
million training images from 1000 classes. Its validation and
testing subsets contain 50000 images each. Since the ImageNet
dataset contains a massive amount of images, only one run
was executed for it. Similar to other NAS works (e.g. DARTS
and AmoebaNet), we transferred the learned CIFAR cell for
evaluation of the ImageNet case. Table III shows results
in both manually-designed models and NAS-generated ones.
Also, the result obtained with NASGEP is presented.

In this case, NASGEP had a top-1 error of 29.51% and top-5
of 10.37%, significantly greater than other approaches shown
in Table III. Besides the fact that lower GPU resource time was
used, it is crucial to further investigate alternatives to address
this, even if the approaches compared already had slightly
better results in CIFAR experiments (although we did achieve
satisfactory results compared to AlexNet and SqueezeNet).

V. CONCLUSION

In this paper, an evolutionary-based neural architecture
search, NASGEP, for limited GPU usage was developed. It
mainly consisted of using GEP as its search space and strategy.
Not only evaluation of limited GPU usage was in mind,
but also to adapt the phenotype representation of GEP to a
convolutional cell. Choosing this phenotype was mainly for
the introduction of a more dynamic search space in NAS,
but also to assess the reliability of employing evolutionary-
based approaches in time-limited resources. Although our
approach did not surpass state-of-the-art methods in CIFAR
and ImageNet mobile settings, promising results were found,
besting state-of-the-art manually-designed and NAS models
in CIFAR-10 dataset (and similar to them in CIFAR-100 and
ImageNet). With this in regard, studies in evolutionary-based
approaches with cell-based dynamic search spaces may be
further pursued in time-limited GPU execution.

Further research in how to take advantage of the GEP
phenotype and variants may be pursued, aiming for more
optimized search spaces. In this study, ADFs were only treated
as terminals. Although this stabilizes the fitness for a specific
gene (as limited the gene to be only added or concatenated in
a cell), it reduces the ways a gene can be treated, such as being
the input or output of another gene. Treating genes as functions
may present a new environment for study and optimization:
the way a gene is treated in a cell can somehow improve the
performance of a model? Also, further experiments in different
datasets but with the same classes would assess the capability
of the best cells found to generalize to similar datasets.
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