
An evolutionary algorithm for selection of test cases
Miguel Benito-Parejo

Dept. of Sistemas Informáticos y Computación
Universidad Complutense de Madrid

Madrid, Spain
mibeni01@ucm.es

Mercedes G. Merayo
Dept. of Sistemas Informáticos y Computación

Universidad Complutense de Madrid
Madrid, Spain

mgmerayo@ucm.es

Abstract—Applying tests to an implementation to check its
correctness is often expensive and may require an excessive
amount of time. Hence, it is necessary to find a relatively small
subset of tests able to detect as many errors as possible. In this
paper, we study several approaches to choose such subsets of tests
based on their capacity to detect faults. These faults are defined
as mutation operators that are applied to the specification of the
systems with the goal of simulating faulty versions called mutants.
The different methods are evaluated to determine the ones that
provide the best test suite according to the relevance of the tests,
their capacity to detect fault and the number of inputs involved.
All the algorithms proposed have been implemented in a tool
freely available.

Index Terms—Genetic algorithms, Testing from FSMs, Muta-
tion testing, Selection of test cases

I. INTRODUCTION

Testing is one of the main techniques to validate the
correctness of software systems [1]. Usually, the expected
behaviour of the systems is given in the form of tests, that are
used to determine if the System Under Test (SUT) fulfills the
specification. However, the number of tests required to encode
all the behaviours of a system may be astronomical. It makes
exhaustive testing unfeasible. Therefore, we need to establish a
bound on the number of tests that we will apply on the basis of
some criteria (e.g. the budget or the available amount of time).
Then, we need to select a subset of test cases to detect most
faults. The methodology to filter these tests should rely on a
measure of how good a test is. In this line, mutation testing [7],
[12], [15] is a useful tool. The idea behind mutation testing is
that if a test suite distinguishes the SUT from other similar,
but faulty, systems, then it might be good at discovering faults.
Mutation testing introduces small changes in the SUT, one at
a time, by applying mutation operators, to generate a set of
mutants. Intuitively, good test suites are the ones killing most
of the mutants.

In this paper we propose and evaluate different algorithms
to select good sets of tests. We assume that we have a formal
representation of the SUT (its specification) and that we are
provided with a set of mutants and a set of tests (usually
huge) that we might apply to the SUT. Our goal is to select
a subset of tests up to a certain number of inputs included
in it that kills as many mutants as possible. Given a set of

Research partially supported by the Spanish MINECO-FEDER (grant num-
ber FAME RTI2018-093608-B-C31) and the Comunidad de Madrid project
FORTE-CM (S2018/TCS-4314).

tests and a maximum number of inputs to be applied, then the
simplest way to obtain the best subset of test cases consists in
computing all the possible subsets with up to the established
maximum number of inputs, apply them to the set of mutants
and choose the subset killing more mutants. Unfortunately, it
leads to a combinatorial explosion that disallows us to use
this approach. A second option, based on previous work [2],
considers a greedy algorithm where we select the best tests
until we reach the limit of inputs previously established. We
determine how good is a test on the basis of a value that
represent the relevance of the test, the number of mutants it
is able to kill and the number of inputs required to kill the
mutants. This technique will generally provide good results,
both in cost and in faults detection, but it may not always yield
the best result. For instance, there could be a combination of
individually worse elements that are able to cover more faults.
In order to solve this problem, and this is the main contribution
of this paper, we have developed a genetic algorithm to find
better solutions than the greedy algorithm. The algorithm
allows testers to exercise different variants. We have developed
a tool that fully implements all the algorithms presented in this
paper and their variants. In addition, we also report on the
results of the experiments performed to compare the different
proposals.

The rest of the paper is structured as follows. In Sec-
tion II we introduce the main concepts used in the paper.
In Section III we enumerate the proposed methods to select
the subset of test cases. In Section IV we report on our
experiments. In Section V we evaluate the main validity
threats. Finally, in Section VI we present our conclusions and
some lines for future work.

II. PRELIMINARIES

In this section, we present the basic concepts used in this
paper. First, we introduce the formalism we will consider
as specification in our framework. Then, we define mutants
and tests and, finally, we present the genetic algorithms we
propose.

Definition 1: A Finite State Machine, in the following FSM,
is a tuple M = (S, I,O, Tr, sin) where S is a finite set of
states, I is the set of input actions, O is the set of output
actions, Tr is the set of transitions and sin ∈ S is the initial
state. A transition belonging to Tr is a tuple (s, s′, i, o) where
s, s′ ∈ S are the initial and final states of the transition, i ∈ I

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Fig. 1: FSMs with different properties

Fig. 2: FSMs with different properties

is the input action and o ∈ O is the output action. We say
that M is input-enabled if for each s ∈ S and input i ∈ I ,
there exist s′ ∈ S and o ∈ O such that (s, s′, i, o) ∈ Tr. We
say that M is deterministic if for each s ∈ S and i ∈ I , there
exists at most one transition (s, s′, i, o) belonging to Tr.

Throughout this work, we will only consider input-enabled
deterministic FSMs, that is, from each state of the machine,
all the inputs are accepted and there will be only one possible
evolution. This restriction represents the usual behaviour of
programs: they are (usually) deterministic and react to any
input.

Example 1: Let us consider Figure 1a. The FSM is both
input-enabled and deterministic. However, Figure 1b is not
deterministic due to the fact that there are two outgoing
transitions labelled with the input i from state s0. The machine
depicted in Figure 1c is not input-enabled since s2 does not
have any outgoing transition labelled by the input i2.

We will use FSMs to represent both specifications and
mutants. Despite the simplicity of the FSM formalism, it has
a common base with more complex structures to represent
black-box systems. Therefore, the framework presented in
this paper can be extended whenever we consider systems
that receive a sequence of inputs and we can determine the
expected output sequence. Next, we introduce the notions of
mutant and test.

Definition 2: Let M = (S, I,O, Tr, sin) be a FSM. We
say that a FSM M ′ = (S, I,O, Tr′, sin) is a mutant of M if
Tr′ differs from Tr in only one transition. This mutation can
be produced by choosing one transition (s, s′, i, o) ∈ Tr and
replacing it by either (s, s′, i, o′) ∈ Tr′, where o′ ∈ O and
o 6= o′, or (s, s′′, i, o) ∈ Tr′, where s′′ ∈ S and s′ 6= s′′. A
mutant is called equivalent when it is semantically identical

to the specification. Duplicated mutants are a special form of
equivalent mutants. They are equivalent to each other, but not
to the specification.

Note that mutants are still deterministic and input-enabled.
Example 2: Consider the FSM given in Figure 2a, being s0

the initial state. Two possible mutants are shown in Figures 2b
and 2c: the first one represents the change of the final state
of a transition while the second one represents a change of an
output.

Following, we introduce the notion of test.
Definition 3: Let M = (S, I,O, Tr, sin) be a FSM. A test

for M is a tuple σ = (σin, σout, w) where σin ∈ I∗ is a
sequence of inputs, σout ∈ O∗ is the sequence of outputs that
M produces when applying σin and w ∈ Z is the weight
associated to the test.

Let t = (σin, σout, w) be a test for M and M ′ be a mutant
of M . We say that M ′ passes t if the application of σin to
M ′ produces σout; otherwise, we say that the M ′ fails t.

The weight associated with a test represents the relevance
of such test. In that sense, a higher weight indicates a higher
relevance of such test.

Example 3: Let us consider again the mutants depicted in
Figures 2 and 2c and the tests t1 = (i, o1, 1), t2 = (ii, o1o2, 2)
and t3 = (iii, o1o2o3, 4) for M . We have that M1 passes t1
and t2 and fails t3 while M2 passes t1 and fails t2 and t3. The
weights of t1, t2 and t3 are 1, 2 and 4, respectively. Intuitively,
the test t3 is 4 times more relevant than the test t1, and the
test t2 is twice as relevant as t1.

The main goal of our proposal is to design different
techniques to select a good subset of test cases from a test
suite. Therefore, we need to establish a criterion to determine
how much good a specific set of tests is. With this aim we
will represent, by means of numerical values, information
about each of the tests and their capacity to detect faulty
behaviors when they are applied to the mutants. These values
will be stored in either a multiplicative results table, or an
additive results table. The rows represent tests and the columns
represent mutants. Each element of the table store a value for
each test and each mutant whenever the mutant is killed by the
test. These values are based on both the number of inputs of
the tests that are required to be applied for killing the mutants
and the weight associated to the tests. Despite the similarities,
both tables are considered in the selection methods that we
propose, showing significant differences in the results of the
experiments.

Definition 4: Let M = (S, I,O, Tr, sin) be a FSM,
T = {ti|1 ≤ i ≤ n} be a set of tests for M and
M = {Mj |1 ≤ j ≤ m} be a set of mutants of M . We
define a multiplicative results table for T and M as a matrix
A ∈ Rnxm. Given ti = (σin, σout, w) ∈ T and Mj ∈ M, if
Mj fails ti then Aij is the length of the shortest prefix of σin
that kills Mj multiplied by 1

w . In the case that Mj passes ti,
Aij is infinity.

Definition 5: Let M = (S, I,O, Tr, sin) be a FSM,
T = {ti|1 ≤ i ≤ n} be a set of tests for M and
M = {Mj |1 ≤ j ≤ m} be a set of mutants of M . We define

Fig. 3: GA flowchart

an additive results table for T andM as a matrix A ∈ Rnxm.
Given ti = (σin, σout, w) ∈ T and Mj ∈ M, if Mj fails ti
then Aij is the length of the shortest prefix of σin that kills
Mj minus w. In the case that Mj passes ti, Aij is infinity.

The information stored in the result tables is used in two
different fitness functions based on a multiplicative heuristic
and an additive heuristic, respectively. In addition to the results
tables, the number of mutants killed by the set of tests is also
taking into account, penalizing those ones that kill less mutants
overall.

Definition 6: Let M be a FSM, T = {ti|1 ≤ i ≤ n} be a
set of tests for M , S = {t′i|1 ≤ i ≤ n′} be a subset of T ,
M = {Mi|1 ≤ i ≤ m} be a set of mutants of M , A be the
multiplicative (respectively additive) results table for T and
M, and B be the multiplicative (respectively additive) results
table for S and M. We define the multiplicative (respectively
additive) fitness function of S for M as:

f(S,M) =

m∑
k=1

min (α(Mk,S), P)

where α(Mk,S) = min(Bik : 1 ≤ i ≤ n′), r is the penalty
ratio and P = r ∗max(Aij : 1 ≤ i ≤ n, 1 ≤ j ≤ m ∧ Aij 6=
∞) is the penalty value.

The fitness function does punish the sets of tests that do
not kill all the mutants, as a penalty is added for each alive
mutant. Therefore, the more mutants a subset kills, the lower
the score will be. Moreover, a lesser number of inputs required
to kill the mutants will also reduce this value, leading us to
a minimization problem (a lower value of fitness denotes a
better set of tests).

In our framework we consider Genetic Algorithms (GA)
[10], [21], a heuristic optimization technique, which it is
based on evolutionary processes in nature. GAs and other
optimization algorithms have been used in software testing
[9], [11], [16], [17], where finding the optimal solution is,
in practice, unfeasible. Nevertheless, good enough approxi-
mations with low complexity are usually accepted by users
for such problems. Generally, a GA consists of a group
of individuals (population of genomes), each representing a
potential solution to the problem in hand. An initial population
with such individuals is usually selected at random. Then,
a parent selection process is used to pick a few of these

individuals. New offspring individuals are produced using
crossover, keeping some of the characteristics of their parents,
and mutation, which introduces some new genetic material.
The quality of each individual is measured by a fitness
function, defined for the particular search problem. Crossover
exchanges information between two or more individuals. The
mutation process randomly modifies offspring individuals. The
population is iteratively recombined and mutated to evolve
successive populations, known as generations. When the termi-
nation criterion specified is satisfied, the algorithm terminates.
A flowchart for a simple GA is presented in Fig. 3.

III. THE PROPOSAL: SELECTION METHODS

In this section we propose different methods to address the
problem of obtaining a good subset of tests. All the approaches
use the fitness functions previously introduce to determine the
quality of a subset of tests.

A. Global search

The global search approach looks through all the possible
combinations of the initial set of tests having less inputs
than a given bound. This approach always provides the best
solution because it explores all the possible subsets. Therefore,
we consider it to compare the results with the forthcoming
algorithms. Despite obtaining the best result, the main reason
this technique is not usually applied to a general problem is
the combinatorial explosion it suffers from non-trivial systems.
Since so many possibilities arise from the combinations, only
really small systems are subject to this technique. In fact,
we were able to compute it only for the smallest of our
experiments.

B. Greedy algorithms

We have designed two different greedy methods to show
that some intuitive approaches are not always as good as they
seem.

Our first greedy algorithm builds a set of selected tests by
choosing the test case with the highest weight from the original
test suite. If several test cases have the same weight, the test
that kills more mutants is selected. In the case that many tests
kill the same number of mutants the test that requires the
lowest number of inputs to kill them is selected. We iterate
this process avoiding to exceed the bound of inputs established
initially. Since this method does not need the fitness function
to generate the subset of tests, the approach will be used
as a control method to be compared with other approaches.
However, the mere weight information does not represent how
good a test is, and the experiments do not show any remarkable
result. Such fact moves the attention towards other methods
that require the fitness functions to operate.

The second greedy algorithm that we propose is based on
the results tables. It is worth pointing out that the solution
depends on the kind of results table we consider. For the same
set of tests and mutants, the multiplicative results table and the
additive results table are different. For example, let us consider
the test ti whose associated weight is 3. If the number of inputs

5 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ 9 ∞ 8 ∞ ∞
13 ∞ ∞ 6 1 ∞
4 7 5 ∞ 12 ∞
∞ ∞ ∞ ∞ ∞ 7

(a) Original matrix

4 7 5 ∞ 12 ∞
13 ∞ ∞ 6 1 ∞
∞ 9 ∞ 8 ∞ ∞
5 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 7
∞ ∞ ∞ ∞ ∞ ∞

(b) Ordered matrix

6 ∞
8 ∞
∞ ∞
∞ 7
∞ ∞

(c) Reduced matrix

6 ∞
∞ 7
8 ∞
∞ ∞
∞ ∞

(d) Ordered matrix

7
∞
∞
∞

(e) Reduced
matrix

Fig. 4: Matrix simplification

of t required to kill the mutant Mj is 9, then the value that will
be stored in the position Aij of the multiplicative (respectively
additive) results table will be 3 (respectively 6). Essentially,
the algorithm sorts the matrix in a way such that the first test
is the best, the second is the second best and so on. The test
corresponding to the first row of the matrix is included into
the set that we are generating. Then, the row corresponding to
that test and all the columns of the mutants that it is able to
kill are removed from the matrix. After the reduction of the
matrix, the process is iterated until either all the mutants are
killed by the set of selected tests or the maximum number of
inputs established is reached.

Example 4: Figure 4a depicts a matrix that represents a
results table. In this case, 6 tests cases and 6 mutants are
considered. Once the matrix is ordered, see Figure 4b, the
first row corresponds to the best test, which is selected to be
included in the new test suite. Following, the first row and the
columns corresponding to the mutants killed by the test case
selected (1, 2, 3 and 5) are removed, resulting in the reduced
matrix depicted in Figure 4c. This process is iterated until all
the columns are removed, that is, the set of selected tests are
able to kill all the mutants.

A good property of this algorithm is that its space com-
plexity is in low polynomial order over the size of the table,
that reduces its size after each iteration. In terms of time, this
algorithm offers the best solution for computing the solution.
This greedy method shows great results and will help to bound
the number of generations and the global cost of our next
algorithm.

C. Genetic algorithm

As we know, GAs excel when we seek for a good enough
approximation of the solution of problems whose optimal
solution needs a combinatorial approach to compute all the
potential candidates. This is the case of our problem and its
solution, as discussed in Section III-A. Therefore, a genetic
algorithm is a sensible approach to compete with our greedy
algorithms, in particular, taking into account that our second
greedy algorithm computes relatively good solutions spending
a small amount of time. Next, we explain the specifics of our
GA from our previous work [3].

The population: In our implementation, an individual only
has one chromosome. Our GA has a population of initial test
subsets that will evolve to generate better subsets until either

we reach the optimum solution or an established maximum
number of iterations.

The user must provide some parameters associated to the
different phases of the GAs execution. Next, we briefly de-
scribe them.

Initialization method: We have designed an incremental
initialization. It provides a variety of chromosomes, each
of them with a different amount of tests and inputs, which
generates a high level of diversity. Such initialization follows
the idea of minimizing the number of inputs to apply. As some
chromosomes may have too few inputs and others too many,
the execution of the algorithm will mix them at some point
and improve the general result.

Selection of population methods: The transition from a
generation to the next one has to ensure that the representatives
of the foremost individuals have to be selected. The idea is to
reward the best ones with more appearances and penalise the
worst ones even with no appearances at all. Our tool allows
the user to choose alternative selection models: Linear rank,
remains, roulette wheel, tournament, truncation and stochastic
universal. Since these selection models are quite common [10],
[18], we do not explain the details about how each of them is
applied to the population.

Crossover methods: Concerning crossover we have de-
signed two methods. The first one is the standard crossover
(Fig. 5) that takes two chromosomes of the population and
chooses a random point at each of their respective list of tests.
Then, the left part of both lists are preserved and the right parts
are exchanged. If such modification generates a test suite with
more inputs than the established bound, then the last tests
are discarded to fulfill this limitation. The second one is the
continuous crossover (Fig. 6) that takes two chromosomes and
exchanges tests of both lists at randomly positions.

Fig. 5: Standard Crossover

Mutation of population methods: As the initial seeds for
the population might not be complete, it is sensible to refresh

Fig. 6: Continuous Crossover

the population with some slight changes that could renew
some stale state. In our case, we have designed two different
techniques. The first one considers adding mutation (Fig. 7)
that is oriented to not-complete subsets. In these cases, it is
possible to introduce an extra test to an individual without
exceeding the bound of inputs. As a consequence of the
crossover step, it is possible that some of them have to be
discarded. This mutation method complements the possible
loss of tests. The second method bases on replacing mutation
(Fig. 8). This method changes one test of an individual by
another one coming from the original test suite. This technique
will include some slight changes to specific individuals that
might either increase or decrease the relevance of a subset of
tests into the population.

Fig. 7: Adding Mutation

Fig. 8: Replacing Mutation

Replacement of population methods: The last step of the
genetic algorithm consists in replacing the population by the
new one. Again, we have two possibilities. On one hand, we
have the trivial option, that substitutes the last population by
the new one, even if it is worse. In this way, less operations
are performed at this stage and, as a result, the execution will
be faster. On the other hand, a high percentage of the new
generation can replace the previous one. This approach called
elitist replacement (Fig. 9) will allow the population to keep
the best partial solution. As a counterpart, more calculations
have to be made and that cost might decelerate the program.

In Figure 10, we show the graphs of an experiment con-
cerning how fitness varies along generations. The results
are as expected. In short, there is a relatively big variance
related to the worse individual of each generation, that is, the
highest value of fitness. This variance is smaller for average
fitness, generational best stabilizes (although there are small
variations), while absolute best quickly converges.

Fig. 9: Elitist Replacement

D. Random selection

Our last approach is used as a control method to determine
the improvement obtained from the application of the proposed
approaches over a random selection of the tests. The idea is
that if we perform a random selection of tests several times, the
mean result will represent the average values expected from
the whole test suite. As such, this method relies on a number of
random choices of tests until we reach the bound on the inputs
we can apply. This method also takes information of both
results tables so that each heuristic has its own comparison
criterion.

IV. EXPERIMENTS

In this section we report on the experiments that we have
performed and the results obtained. First, we analyze the
closeness of the solutions provided by the proposed algorithms
to the best solution given by the full search algorithm. This
analysis aims to answer the following research question:

RQ1: How good are the solutions produced by the different
proposed algorithms?

Second, we evaluate the time that the different approaches
need to compute the solutions. The goal of this analysis is to
answer the following research question:

RQ2: What is the relative impact of the size of the specifica-
tions, sets of tests and number of inputs allowed on algorithms
scalability?

A. Description of the experiments

We divided our experiments in two phases in order to solve
the research questions. Nevertheless, the experiments were
held over the same specifications and sets of mutants. We
worked with 50 specifications comprised between 10 and 50
states and between 3 and 10 different inputs and outputs.
Concerning the mutants, for each specification we have a set
of mutants according to the size of the specification. For the
smallest specification, with 10 states, 3 inputs and 4 outputs,
we had 63 mutants, whereas for the biggest one, with 50 states,
10 inputs and 8 outputs we had 2514 mutants. Before the
experiments, we removed both the duplicate and the equivalent
mutants.

We have applied all the proposed algorithms, considering
three categories. The first category includes the full search
algorithm, providing the best subset of tests, the first greedy
algorithm, focusing on the weights of the tests, and the random
selection, representing the average values of a subset of tests.

TABLE I: Comparison of fitness values

Fitness funtion Best GA Avg GA Worst GA Greedy Weights Greedy Table Random

A 0.3% 3.2% 4.8% 25.5% 9.6% 28%

M 3.1% 6.7% 10.4% 24.8% 9.8% 31.6%

The second category considers the second greedy algorithm
proposed. This approach is an alternative to the GAs, so it
will be used to compare the execution times. Finally, the
third category deals with all the versions (48) of the genetic
algorithm proposed, that is, considering the different heuris-
tics, selection, crossover, mutation and replacement methods.
In these experiments, we used the default values for the
parameters, that is, a population of 100 individuals, 3 players
with a ratio of 0.8 for the tournament selection, 0.125 ratio for
the truncation selection, a probability of 0.6 for the crossover
methods, a probability of 0.08 for the mutation methods and
a ratio of 0.02 for the elitist replacement. Finally, it is worth
adding that the execution of the algorithms that include a
random component were repeated. Then, we calculated the
average of both the time execution and the fitness values
obtained.

The goal of the first group of experiments was to compare
the results produced by the proposed algorithms with the ”best
solution” provided by the full search approach and the random
selection. In this case, we used small sets of test cases and
low upper bounds for the number of inputs accepted in the
solution. The reason for establishing these limits is that with
greater values we were not able to complete the execution of
the full search algorithm due to its exponential growth. The
initial sets of tests have between 10 and 50 test cases, having
each test case between 10 and 80 inputs. For each test suite,
the bound on the number of inputs allowed in the solution
ranges from 40 to 150.

In the second group of experiments we increased the size of
the initial sets of test cases as well as the bound on the inputs
of the sets of tests generated by the algorithms. Specifically,
the initial sets of tests were comprising between 100 to 250
test cases with a number of inputs varying from 80 to 150. We
established the upper bound of the number of inputs that sum
all the tests included in a solution between 150 to 1000. The
goal of these experiments was to evaluate the scalability, in
terms of execution time, of each of the proposed algorithms.
Therefore, due to the fact that the execution time of the
full search algorithm for these sets of tests is unavoidably
unpractical, we did not consider it in this phase. We only
analyse the performance of the greedy algorithm, the random
search and the GAs.

The workbench that we have used for performing the
experiments has an Intel i5-8250U processor of 3.4 GHz and
8GB of RAM. Let us note that the implementation of the
approach and some additional examples are freely available at

https://github.com/miguelbpsg/WCCI20.

B. Evaluation

The first group of experiments allowed us to obtain the best
solution provided by the full search algorithm in order to be
used for determining properly how good other algorithms are
producing solutions.

Table I shows the deviation of the fitness of the solutions
provided by each of the proposed algorithms from the best
solution (full search algorithm). The information of the first
and second row (A and M), corresponds to the use of the
additive and multiplicative fitness functions, respectively. The
columns correspond to the different algorithms that have been
analyzed, that is, the random search, the greedy algorithms
and the GAs. In the case of the GAs, we have only include
the values associated to the algorithms that present the best,
average and worst results with respect to the full search
approach.

The first greedy algorithm (greedy weights) presents a scat-
ter behavior. This is due to the fact that it bases on the weights
associated to the tests, which do not ensure their effectiveness.
However, it is worth noting that it often beats the random
solution, but not consistently neither in terms of frequency nor
in terms of improvement. The solution provided by the second
greedy algorithm (greedy table) is substantially better than
the one obtained from random selection, and the set of tests
selected is close to the solution produced by the full search
approach w 9%. This suggests that the greedy algorithm is
worth to being applied, since it produces a good approximation
to the best solution to the problem. Mostly, considering the
improvement with respect to the random algorithm. All the GA
algorithms yielded closest solutions to the best one. Table I
shows that all the versions of the GAs find the closest solutions
to the best one. It is worth noting that the results corresponding
to the additive an multiplicative heuristics, in the case of the
GAs, present solutions of different quality due to the fact
that the multiplicative fitness applies a product which may
highly enlarger the distances, and also the penalties. Then,
we can conclude from the experiments, that the use of the
additive version of the GAs provides better solutions. Overall,
the experiments show that the GAs can adequately compete
with the rest of the algorithms considered, providing a better
solution with the proper choice of parameters. There is not
a best combination of parameters in terms of obtaining the
best solution. Only the combination of Tournament selection,
Standard crossover, Adding mutation and Elitist replacement

Fig. 10: GUI of our tool

provided the best solution in the 5% of the experiments, barely
making a difference from a uniform distribution. However, we
cannot assure such configuration will always yield the best
solution among all possible GAs.

In general terms, the GAs got to beat the rest of algorithms
with a substantial margin. Nevertheless, the greedy algorithm
also performs an acceptable approximation.

Altogether, we can answer RQ1 positively: The algorithms
proposed, in particular the GAs, are very close to the best
solution.

The goal of the second group of experiments is to determine
the scalability in terms of time of our approaches. Since we
cannot perform the full search with big sets of tests, we will
consider the random search algorithm, to determine how much
extra time is required for generating the solutions.

Table II shows the results of the experiments. In this case
we focus on the second greedy algorithm and the GAs. The
greedy algorithm and the random selection were the fastest
methods. Nevertheless, the greedy algorithm requires about
60% more time than the random algorithm to yield a solution.

Regarding the GAs, there is a great difference between
the fastest and the slowest, due to the number of sorting
operations required in some of the versions of this proposal.
In particular, the GAs that use the elitist replacement and
truncation selection operators show the worst execution time,
because these parameters slow the execution at the cost of
partially better results, although the required time grows up to
more than 300% extra time.

In this case, the results obtained from both heuristics (ad-
ditive and multiplicative) are very similar, since the execution
time of the algorithms is not affected by the information of

each results table.
Overall, we can only answer RQ2 negatively. In terms of

time, the GAs are slower than all the other approaches with
the exception of the full search algorithm.

V. THREATS TO VALIDITY

In this section we briefly discuss the main possible threats
to the validity of our experiments and its results.

First, the main threats to internal validity, which considers
uncontrolled factors that could alter the obtained results, are
the faults introduced in the development of the experiments,
since the results could be compromised. To prevent the impact
of the internal validity threat, we performed several tests on
our implementation. We focused in unit testing to check that
the individual methods worked as expected, and integration
testing to check that the whole system is adequately connected.
We also repeated the experiments of the genetic algorithms to
reduce the impact that their random behavior could generate.

Regarding the external validity threats, which include con-
ditions that allow us to extend our experiments to other
scenarios, the most important one corresponds to the selected
specifications, mutants and tests we used. Their structure
and size are unknown and cannot be generalized. Thus, we
developed several methods trying to widen the choices a
specification may have to solve the problem, and we compared
the features of each of the methods.

Finally, the threats to construct validity, which concern the
reality of our experiments, that is, whether our experiments are
representative enough for real machines, would arise when a
large specification with a large amount of tests and mutants
would have to be checked. Despite being an important threat,

TABLE II: Comparison time executions

Fitness function Fastest GA Average GA Slowest GA Greedy Table

A 90% 135% 300% 60%

M 85% 135% 335% 55%

our implementation is able to support considerably large cases
with an acceptable workbench. As such, we consider that the
threat is not as disturbing as long as the experiments are
performed on an adequate system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a solution to the problem of
obtaining good subsets of tests out of an initial test suite.
Usually, time and budget subject to testing is usually limited,
and only few test cases might end up being applied. In our
framework, the tester can order the tests in terms of relevance,
and control the bound of tests to apply taking into account a
maximum number of inputs. We provide a framework con-
sisting of different algorithms (greedy and GAs) to generate
good subsets of tests. The results showed that our GAs find a
much better solution than both random selection and greedy
algorithms. Also, it reveals that the difference between the
GAs and the full search algorithms was rather small. However,
in terms of time, the GAs are slower than all the other
approaches with the exception of the full search.

As future work, we aim at dealing with different formalisms
in the proposed framework, such as fuzzy systems [4], [5].
Another line of work is to support a distributed architec-
ture [13], [14] considering the Petri Nets formalism. Such
distributed architecture allows different users to interact with
the same system without being connected among them. Other
line of work will consider the use of our approach with other
metaheuristics [19], [20]. In addition, we would like to use
current approaches to mutation testing [6], [8] to efficiently
generate and process big amount of mutants representing
different faults.

From another perspective, we are willing to consider differ-
ent approaches to deal with budget and time limitations, such
as the number of tests applied, or a combination of the number
of tests and the number of inputs. Another interesting option
could be to add weight to mutants, indicating the relevance of
the errors they represent.

Finally, we would like to improve the usability of the
tool to allow the user to provide the parameters in a more
user friendly interface. Furthermore, we will improve the
information provided by the tool about the results of the
application of the different algorithms, including graphs that
help to understand them.

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2017.

[2] C. Andrés, M. G. Merayo, and M. Núñez. Formal passive testing of
timed systems: Theory and tools. Software Testing, Verification and
Reliability, 22(6):365–405, 2012.

[3] M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Núñez. Using
genetic algorithms to generate test suites for FSMs. In 15th Int. Work-
Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506, pages
741–752. Springer, 2019.

[4] I. Calvo, M. G. Merayo, and M. Núñez. A methodology to analyze
heart data using fuzzy automata. Journal of Intelligent & Fuzzy Systems
(to appear), 2019.

[5] I. Calvo, M. G. Merayo, M. Núñez, and F. Palomo-Lozano. Confor-
mance relations for fuzzy automata. In 15th Int. Work-Conf. on Artificial
Neural Networks, IWANN’19, LNCS 11506, pages 753–765. Springer,
2019.

[6] P. C. Cañizares, A. Núñez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187–207, 2018.

[7] P. Delgado-Pérez, I. Medina-Bulo, and J. J. Domı́nguez-Jiménez. Mu-
tation testing. In Encyclopedia of Information Science and Technology,
pages 7212–7221. IGI Global, 3rd edition, 2014.

[8] P. Delgado-Pérez, Louis M. Rose, and I. Medina-Bulo. Coverage-based
quality metric of mutation operators for test suite improvement. Software
Quality Journal, 27(2):823–859, 2019.

[9] K. Derderian, M. G. Merayo, R. M. Hierons, and M. Núñez. A case
study on the use of genetic algorithms to generate test cases for temporal
systems. In 11th Int. Conf. on Artificial Neural Networks, IWANN’11,
LNCS 6692, pages 396–403. Springer, 2011.

[10] D.E. Goldberg. Genetic Algorithms in Search, Optimisation and Ma-
chine Learning. Addison-Wesley, 1989.

[11] M. Harman and P. McMinn. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering, 36(2):226–247, 2010.

[12] R. M. Hierons, M. G. Merayo, and M. Núñez. Mutation testing. In
Phillip A. Laplante, editor, Encyclopedia of Software Engineering, pages
594–602. Taylor & Francis, 2010.

[13] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering
in the distributed test architecture. IEEE Transactions on Reliability,
67(2):522–537, 2018.

[14] R. M. Hierons and M. Núñez. Implementation relations and probabilistic
schedulers in the distributed test architecture. Journal of Systems and
Software, 132:319–335, 2017.

[15] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[16] B. F. Jones, D. E. Eyres, and H.-H. Sthamer. A strategy for using genetic
algorithms to automate branch and fault-based testing. The Computer
Journal, 41(2):98–107, 1998.

[17] C. C. Michael, G. McGraw, and M. A. Schatz. Generating software
test data by evolution. IEEE Transactions on Software Engineering,
27(12):1085–1110, 2001.

[18] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer, 3rd, revised and extended edition, 1996.

[19] V. D. Nguyen, H. B. Truong, M. G. Merayo, and N. T. Nguyen. Toward
evaluating the level of crowd wisdom using interval estimates. Journal
of Intelligent and Fuzzy Systems, 37(6):7279–7289, 2019.

[20] Van Du Nguyen, Hai Bang Truong, Mercedes G. Merayo, and
Ngoc Thanh Nguyen. An overview on consensus-based approaches to
processing collective inconsistency and knowledge integration. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., 9(4), 2019.

[21] M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE
Computer, 27:17–27, 1994.

