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Abstract—This paper looks at the stochastic Team Orienteering
Problem with Time Windows, a well-known problem that models
the Personalised Tourist Trip Design Probelm. Due to the nature
of randomness such as real-time delays, the traditional optimisa-
tion approaches are not effective in solving the stochastic prob-
lem variant. In this case, genetic programming hyper-heuristics
(GPHH) are promising techniques for automatically learning
heuristics to make real-time decisions to effectively handle the
stochastic environment, however, they still have limitations as
the decision making policies use short-sighted information. In
this paper, we propose to incorporate global information into
the GPHH solution, with a constructed terminal feature based
on cluster information to be used by the GPHH, as well as a
clustering-aware solution generation process. The experimental
studies showed that the newly designed cluster-based feature gave
an improvement over the standard GPHH solution. This suggests
that incorporating cluster information can be beneficial. Although
the clustering-aware solution generation process did not achieve
satisfactory performance, the further analysis showed that it
could lead to improved performance under certain condition.
Overall we demonstrate the effectiveness of using clustering as
a global information to enhance the performance of GPHH.

I. INTRODUCTION

The stochastic Team Orienteering Problem with Time Win-

dows (TOPTW) [1] is a difficult optimisation problem that

can model many real-world scenarios. One such scenario, the

tourist trip design problem [2], asks for a set of itineraries

of Places-of-Interest (POIs) for a tourist to visit on their trip

that maximises the tourist’s satisfaction, under various time,

travel and budget constraints. The stochastic TOPTW provides

a comprehensive model of the tourist trip design. First, it

allows for multiple itineraries to be produced on a problem

instance to represent a tourist’s multi-day trip to a city. Second,

it considers the time of visits to POIs to allow for their

opening and closing times to be factored into the itinerary

generation. Last, it allows for stochastic visit durations, which

represents that tourists can stay longer or shorter at a POI than

anticipated.

A solution to the stochastic TOPTW that can efficiently find

a near-optimal set of routes would represent significant value

to trip planning services, as well as many services in other

contexts that the stochastic TOPTW can be applied to.

The TOPTW and related problems have been studied exten-

sively in the past, such as in [1], [3], [4], [5], [6], [7], [8], [9],

[10]. Many techniques used in these studies do not apply well

to the stochastic TOPTW variant as they develop solutions

that can be inflexible to variance in the stochastic variables

of the problem [1]. Genetic Programming Hyper-Heuristic

(GPHH) evolves a decision making policy that can react to

real-time events to produce effective solutions to the stochastic

TOPTW. Genetic Programming Hyper-Heuristic (GPHH) has

been successfully applied to the stochastic TOPTW [1], as well

as in other dynamic scheduling and routing problems [11],

[12], [13], [14]. Previous GPHH approaches to the stochastic

TOPTW are limited due to the lack of considering the global

POI clustering information, which can lead to policies being

developed that favour a single high scoring POI over a lower

scoring POI that is surrounded by other POIs which can

subsequently be visited for minimal travel cost.

In this paper, we propose a solution to the stochastic

TOPTW using a combination of GPHH, that has previously

been used [1], with global information on POI clustering. To

the best of our knowledge, this paper is the first to use a

GPHH solution for the stochastic TOPTW that incorporates

clustering techniques. This paper proposes a GPHH algorithm

involving cluster aware heuristics that produces effective real-

time decision making policies for the stochastic TOPTW. This

is composed of the following specific objectives.

• Design a new terminal feature that includes clustering

information to be used by the GPHH to evolve a policy.

This will include constructing features that represent the

static or dynamic value of the neighbourhood that a POI

is in using clustering algorithms.

• Design the schedule creation procedure, i.e. the algorithm

that generates a set of routes, given a stochastic TOPTW

instance and a policy. We incorporate the POI clustering

information into the schedule creation procedure to gen-

erate routes that can recognise the value of dense clusters

of POIs in relation to isolated high-value POIs.

• Analyse the effectiveness of GPHH with clustering tech-

niques. The policy and schedule creation procedure will
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be evaluated through comparison with a benchmark

schedule creation procedure and policy generated by

GPHH with no cluster-based features.

The remainder of this paper is structured as follows. Section

II gives the problem description and literature review. Section

III will outline the proposed GPHH solution and clustering

algorithms. Section IV includes the experimental results and

analysis. Section V contains the conclusions and future work.

II. BACKGROUND

A. Problem description

In TOPTW, a set of n POIs P = {1, . . . , n} exist. Each POI

p ∈ P has a score obtained when it is visited s(p), a duration

of visit d(p) and an availability time window [o(p), c(p)]. The

starting point ps ∈ P and ending point pe ∈ P are also given.

For any pair of POIs (pi, pj), the travel time from pi to pj
is t(pi, pj). A trip is comprised of m days (tours). Each day

has a starting time Ts and an ending time Te. The problem

requires a set of sequences of POIs to be designed so that the

total score of the visited POIs is maximised, and the following

constraints are met.

1) There are m sequences of POIs, one for each day.

2) Each sequence departs from the starting point ps at time

Ts, and end at pe no later than Te.

3) Each POI is visited once at most.

4) A visit at pi can not start earlier than oi or later than ci.
If the tourist arrives at pi earlier than oi, they have to

wait until oi to begin the visit.

A more detailed mathematical formulation can be seen in [1].

In the stochastic TOPTW, the visit duration d(p) is a random

variable rather than a deterministic value. Consequently, the

objective becomes maximising the expected total score of

visited POIs upon all possible environments.

B. Related Work

The TOPTW and its related variants have been the focus

of extensive research in the past. Variations of the TOPTW

have been approached using a variety of solutions, including

tabu search [3], [15], GPHH [1], simulated annealing [16],

iterated local search [4], multitasking GPHH [5], particle

swarm optimisation [6], cutting planes [7], artificial bee colony

[8], [17], ant colony optimisation [18], [19] and cluster-based

heuristics [10].

The iterated local search algorithm [4], [9] is one of

the best-known solutions to the TOPTW. It uses manually

designed heuristics to construct an initial set of routes and then

iteratively improve them by exploring the local search space

with partial adjustments to the routes. Whilst this approach has

been shown to efficiently generate near-optimal routes for the

TOPTW, it is not directly applicable to the stochastic TOPTW,

as the algorithm needs to generate a full set of routes with

known POI visit times before it can begin its iterative local

search. Many studies examining deterministic orienteering

problems present the same issue of having solutions that are

not directly applicable to stochastic problems. The stochastic

TOPTW requires a solution that can be robust to changes in the

stochastic environment. Stochastic orienteering problems have

been examined in [1], [20], [21], [22], [23]. With the exception

of [1], these studies focused on finding robust solutions to

the possible situations that could manifest in a stochastic

environment, rather than generating solutions in reaction to

real-time environment changes.

Dispatching rules have been demonstrated to be effective

real-time decision makers for dynamic scheduling and routing

problems [24], [25], so long as an effective heuristic is

used. Manually designing optimal heuristics to be used as

dispatching rules can be difficult, non-intuitive and/or require

knowledge of a specific context. As a response to this, GPHH

has been applied to evolve effective heuristics that can be

used as dispatching rules for these problems [1], [5]. In the

Stochastic TOPTW, a dispatching rule evolved by GPHH will

evaluate each feasible POI to be visited next and add the POI

with the highest priority to the route.

GPHH has previously been successfully applied to the

stochastic TOPTW [1], where the terminals used by the

GPHH were mostly features representing local information

on a candidate POI, such as the time to travel to the POI

or expected visit duration at the POI. It investigated the use

of two look-ahead features to consider the next POI to be

visited, and concluded that including the look-ahead features

could improve the effectiveness of the policy developed by

GPHH, however there is further potential to incorporate look-

ahead information in more effective ways. One reason that

the policy produced in [1] may not produce the optimal set

of routes is that it mostly considers POIs in isolation. This

means that the policy could choose to visit two isolated POIs

a certain distance north of the start point with high satisfaction

scores, whilst ignoring a larger group a similar distance to the

south with slightly lower scores. This could not be optimal,

as routes to the larger group could allow more nodes to be

visited, giving a greater total satisfaction score. Situations such

as this represent the limitations of previous GPHH solutions

to orienteering problems and show potential for developing

solutions that can incorporate some awareness of the groupings

of POIs into its decision making.

The two algorithms presented in [10] are solutions to the

TOPTW that incorporate knowledge of clusters of POIs into

solution generation. These algorithms first cluster the POIs

in a city into groups based on topological distance, and

then favour producing routes that visit all POIs in a cluster

before moving to the next. One of the algorithms presented in

the paper achieved higher quality solutions than an iterative

local search algorithm (one of the best-known solutions). This

demonstrates the potential of TOPTW solutions including

information of the clustering of POIs into schedule creation

process. A limitation of this solution is that the cluster-based

heuristics used to generate routes were manually designed, and

may not be optimal, despite being effective. This highlights

a potential for GPHH to evolve a heuristic that includes

knowledge of clusters in some way to produce an improved

solution to the TOPTW.



III. PROPOSED GPHH WITH CLUSTER AWARENESS

This section covers the proposed GPHH and clustering

framework for the stochastic TOPTW. We propose to develop

a cluster-related feature to be included in the terminal set of

GPHH, and implement a clustering algorithm in the schedule

creation procedure that divides the POIs into clusters and make

decisions at the level of clusters rather than individual POIs.

A. Neighbourhood Score Feature

The neighbourhood score (NS) feature is an addition to

the terminal features used in [1], and is a constructed feature

intended to represent the value a POI has based on its location

in relation to other POIs. The intention is that a POI within a

cluster of other POIs will have a higher NS than a POI that

is, by comparison, isolated. Algorithm 1 shows how the NS

of a POI is calculated.

Algorithm 1: Calculation of Neighbourhood Score

Input: A TOPTW instance I , a POI p to be evaluated.
Output: A NS value ns for p.

1 ns ← 0;
2 feasiblePOIs ← getFeasiblePOI(p);
3 for p′ ∈ feasiblePOIs do
4 ns ← ns+ s(p′)/t(p, p′);
5 end

To calculate the NS of a POI p, all the feasible POIs

that could be immediately visited following p are considered.

Each of these contributes to the NS with the satisfaction

score gained from a visit to this POI, divided by the time

it would take to travel from p to the neighbour. The closer a

neighbour is to p and the greater the satisfaction from visiting

the neighbour, the higher it will raise the NS of p. This means

that any POI closely surrounded by other POIs with high

satisfaction scores will have a large NS, and the inclusion

of this feature in the terminal set of the GPHH could allow

for policies to be developed that schedule tours to high value

groups of POIs in favour of isolated high value POIs.

In line 2, a feasible POI p′ can be visited following POI p
if the following constraints are met:

• p′ is unvisited and p′ �= p.

• After visiting p, p′ can be arrived at before its closing

time, i.e. currTime + TFV(p) + t(p, p′) ≤ c(p′).
• After visiting p and p′, the trip can return to the end point

by Te, i.e. max{currTime + TFV(p) + t(p, p′), o(p′)} +
d(p′) + t(p′, pe) ≤ Te.

B. Cluster Aware Solution Generation

The schedule creation procedure is described in Algorithm

2. It uses the policy to iteratively add POIs to the schedule,

ending each day when no more can be visited. The step of

using the clustering information is in line 5.

The new step is used at the beginning of each day. A

clustering algorithm is used to group the POIs into clusters.

Then the cluster with the highest total score is identified, and

the POI with the highest score within that cluster is added as

the first visit of the tour. The intention of this is to encourage

the schedule creation procedure to start tours with visits to

profitable of clusters, as it will allow the full time budget to

be spent visiting them with minimal travel time between them.

This could be superior to solely using the generated policy to

create the schedule as it does not consider the clustering of

POIs and could lead to visits to isolated POIs that cause the

time budget to be spent on travel time.

The clustering algorithm in the schedule creation procedure

will not be used in conjunction with the NS feature, it is simply

an alternative method of incorporating POI cluster information

as a heuristic. When the schedule creation procedure using

the clustering algorithm is experimented on, the NS feature

will not be used, and inversely, when the NS feature is

experimented on, the schedule creation procedure will not have

the clustering step included.

Algorithm 2: Schedule Creation Procedure

Input: A TOPTW instance I , a policy pol.
Output: A feasible solution X = {X1, X2, . . . , Xm}.

1 day ← 0, t ← Ts, pc ← ps, Xday ← (ps);
2 Ω ← P \ {ps, pe}, queue ← {(ps, t)};
3 while queue �= ∅ do
4 if t = Ts then
5 Obtain the next poi using Algorithm 3;
6 Xday ← poi, t ← tstart + dsample(poi);
7 else

// trigger the next event
8 (p∗, t∗) ← poll(queue);
9 Update the feasible unvisited POIs Ω′ ⊆ Ω;

10 if Ω′ = ∅ then
11 Xday ← (Xday, pe); // return to pe
12 day ← day + 1; // go to the next day
13 if day = m then Return X;
14 Xday ← (ps); // open a new tour
15 queue ← queue ∪ (pe, Ts);
16 end
17 Calculate the priority value pol(p) of each p ∈ Ω′;
18 pnext ← argmaxp∈Ω′ pol(p);
19 Ω ← Ω \ pnext;
20 tarr ← t+ t(p∗, pnext); // arrival time
21 tstart ← max{tarr, o(pnext)}; // visit start time
22 if tstart > c(pnext) then
23 queue ← queue ∪ (pnext, tstart);
24 else
25 sample the actual duration dsample(pnext);
26 t ← tstart + dsample(pnext);
27 Xday ← (Xday, pnext);
28 queue ← queue ∪ (pnext, t);
29 end
30 end
31 end

In this paper we implemeted the well-known DBSCAN

algorithm [26] to perform the clustering step in the schedule

creation procedure.

The DBSCAN algorithm, described in Algorithm 3, creates

clusters by iteratively selecting a POI out of the set of unvisited

POIs, adding it to a cluster, and expanding the cluster by

adding neighbour POIs that are within ε distance from the

cluster, until it cannot be expanded further. This algorithm



was implemented as it can cluster the POIs in the instance

without needing to know how many clusters it should find,

unlike other algorithms such as K-means clustering. This is

important as different TOPTW problem instances could have

a range in the number of sensible clusters present, and the

DBSCAN algorithm suits this as it builds a cluster from a

single POI based on the proximity of other POIs and repeats

until no more clusters are found.

The DBSCAN algorithm allows a maximum seperation ε
between neighbour POIs in the same cluster to be specified,

meaning the clusters it finds will be continuous shapes. The

weakness of DBSCAN is that it will continue to expand a

cluster until it finds no more POIs within ε distance to add,

meaning the clusters can grow larger than necessary for the

TOPTW problem, as only a certain number of POIs can be

visited. If the size is limited, it is still vulnerable to finding

nonoptimal cluster shapes, for example, a long line of POIs

could be identified as a cluster as long as each is within ε
distance of the next.

The DBSCAN algorithms performance is dependent on the

parameter ε, which is used to evaluate whether two POIs are

close enough to be within the same cluster. In this paper, ε was

assigned the value of the average travel time between any two

POIs in the problem, divided by 50. This value means that two

POIs should generally be much closer than any random two

POIs if they are to be included in the same cluster, and some

manual testing showed that using a value of 50 found clusters

of appropriate size. Ideally, the ε value would be extracted

from the features of a problem instance in an intelligent way,

but this is a problem that would need research of its own, if

the DBSCAN algorithm proves valuable.

Algorithm 3: DBSCAN Algorithm

Input: A TOPTW instance I
1 Output: A POI poi to be added to schedule, ε
2 clusters ← {}, list ← P \ {ps, pe};
3 while list �= {} do
4 startPoint ← list(0);
5 Remove startPoint from list;
6 fringe ← {startPoint};
7 cluster ← {startPoint};
8 while fringe �= {} do
9 p ← poll(fringe);

10 for p′ ∈ list do
11 if t(p, p′) < ε then
12 Add p′ into fringe and cluster;
13 Remove p′ from list;
14 end
15 end
16 end
17 Add cluster into clusters;
18 end
19 bestCluster ← the cluster with highest total score;
20 p∗ ← the POI with the highest score in bestCluster;
21 Return p∗;

C. Overall Framework

The overall GPHH evolutionary algorithm used in this paper

is the same as in [1], and is shown in Algorithm 4. For

each generation, the offspring population is generated using

three genetic operators: crossover, mutation and reproduction.

Additionally, some elites are inherited from the previous

generation’s population to improve convergence.

The fitness function is defined as the average total score

of the solutions produced by the evaluated individual using

Algorithm 2. It is calculated as:

fit(pol) =
1

|Itrain|
∑

I∈Itrain

score(solution(I, pol)). (1)

Algorithm 4: Pseudo code of GPHH for stochastic TOPTW

1 Initialise a population pop of policies by ramp-half-and-half;
2 while stopping criteria is not met do
3 Sample an instance by sampling a value for all the random

variables;
4 Evaluate individuals in pop;
5 Breed a new population pop′ by elitism and genetic

operators;
6 pop ← pop′;
7 end
8 Return best individual in pop;

IV. EXPERIMENTAL STUDIES

A. Experiment Settings

The commonly used c* 100, r* 100 and rc* 100 [1], [27],

c* 200, r* 200 and rc* 200 [1], [28] and pr* [1], [27], [28]

are used in our experimental studies. The number of POIs

ranges from about 50 to almost 300. We selected 5 instances

from each dataset (e.g. c101∼c105) for the experiments. We

use the same uncertainty level of 20% as in [1].

The population size is set to 1024, and the maximal number

of generations is 51. The maximal tree depth is 8. The

crossover/mutation/reproduction rates are 0.8/0.15/0.05. The

best 10 individuals are selected for elitism. The algorithm was

implemented in Java with the ECJ library [29].Each algorithm

was run 30 times independently.

TABLE I
THE FEATURES TO BE USED IN THE TERMINAL SET OF GPHH.

Notation Description Calculation

SCORE score of the POI s(p)
DUR duration of the visit E(d(p))
TO time to the opening time o(p)− currTime
TC time to the closing time c(p)− currTime
TA time to arrive the POI t(currPlace, p)
TR time to return to the end point t(p, pe)

TSV time to start the visit max{TO,TA}
TFV time to finish the visit TSV + E(d(p))
SL slack TC − TA

RemT remaining time budget
remainDays · (Te − Ts)

+(Te − currTime)
NS neighbourhood score of POI see Algorithm 1



For each Stochastic TOPTW instance, all the algorithms

will be evaluated on a test set with 500 randomly sampled

instances. The test performance of an algorithm is calculated

as the average total score of the solutions generated for test

instances, where |Itest| = 500.

The features in the terminal set of GPHH are shown in Table

I. The function set is comprised of {+,−,×, /,min,max}.

Each function takes two arguments. The “/” operator is

protected, and returns 1 if the divisor is 0.

B. Results and Discussions

TABLE II
THE TEST PERFORMANCE OF THE COMPARED ALGORITHMS ON THE

INSTANCES WITH m = 3.

Inst BasicGP NS-GP DBSCAN

c101 759.6(9.6) 760.7(7.5) 623.9(44.6)(-)
c102 854.9(8.6) 857.7(8.7) 778.7(20.5)(-)
c103 908.8(6.7) 912.3(2.0)(+) 810.3(40.7)(-)
c104 954.2(13.5) 957.9(10.2) 932.8(7.0)(-)
c105 805.4(9.5) 812.6(2.7)(+) 639.6(57.3)(-)
r101 434.5(11.8) 432.3(14.2) 325.4(8.9)(-)
r102 603.1(15.5) 608.3(11.4) 495.2(12.7)(-)
r103 656.2(11.4) 655.8(12.2) 544.4(20.9)(-)
r104 711.4(15.7) 713.2(7.8) 613.5(20.3)(-)
r105 546.6(16.8) 547.7(16.6) 445.8(10.4)(-)
rc101 562.8(12.5) 562.2(14.3) 430.6(26.8)(-)
rc102 620.7(13.5) 621.5(12.7) 501.9(26.0)(-)
rc103 667.1(20.1) 669.0(14.2) 550.3(29.5)(-)
rc104 721.0(14.3) 723.2(15.0) 725.9(14.4)(+)
rc105 611.3(13.2) 616.3(11.5) 471.1(38.1)(-)
c201 1765.9(5.0) 1770.0(3.1)(+) 1584.8(18.2)(-)
c202 1774.2(5.7) 1772.9(7.6) 1741.0(33.3)(-)
c203 1767.3(5.8) 1767.1(13.1) 1737.3(21.8)(-)
c204 1779.5(7.5) 1779.6(5.2) 1756.1(47.5)(-)
c205 1783.0(3.3) 1784.0(4.0)(+) 1682.3(50.2)(-)
r201 1357.8(21.0) 1352.6(18.8) 1129.0(16.3)(-)
r202 1415.5(8.6) 1414.4(8.0) 1202.1(82.2)(-)
r203 1438.3(1.8) 1438.2(3.0) 1405.6(20.3)(-)
r204 1440.2(3.6) 1440.7(1.1) 1430.8(7.4)(-)
r205 1437.1(4.5) 1438.6(2.9) 1297.6(77.6)(-)
rc201 1597.3(17.2) 1596.7(16.6) 1361.4(70.6)(-)
rc202 1656.7(20.0) 1653.6(19.7) 1392.1(117.9)(-)
rc203 1712.1(4.9) 1711.7(NA) 1635.7(67.9)(-)
rc204 1720.2(2.5) 1720.9(0.3) 1682.9(206.4)(-)
rc205 1624.2(22.9) 1629.2(24.5) 1387.5(84.7)(-)
pr01 559.8(12.3) 563.6(13.8) 478.8(17.5)(-)
pr02 864.1(11.0) 860.9(8.8) 729.3(41.1)(-)
pr03 770.3(19.9) 772.8(14.9) 605.2(44.4)(-)
pr04 855.0(4.8) 851.9(11.0) 614.5(50.0)(-)
pr05 908.2(21.4) 915.4(15.5) 560.3(27.4)(-)
pr11 621.1(8.7) 619.3(11.7) 560.0(14.8)(-)
pr12 914.3(10.3) 913.7(11.1) 717.2(32.4)(-)
pr13 889.1(17.0) 885.7(15.9) 681.9(17.7)(-)
pr14 920.7(21.2) 916.2(26.6) 805.8(12.3)(-)
pr15 970.1(23.6) 974.7(17.3) 865.8(84.4)(-)

Table II shows the test fitness of the basic GPHH (BasicGP),

GPHH using NS (NS-GP), and GPHH using DBSCAN clus-

tering (DBSCAN) on the instances with m = 3. The proposed

algorithms are compared with BasicGP using Wilcoxon rank

sum test with significance level α = 0.05. If a proposed

algorithm (NS-GP or DBSCAN) is significantly better, then

the corresponding entry is marked with “(+)”. If a proposed

algorithm is significantly worse, it is marked with “(-)”.

From Table II, it can be seen that NS-GP performs similarly

to the BasicGP on most instances, and statistically significantly

better on 4 instances. This demonstrates there can be an advan-

tage gained by including some type of clustering information

into a GPHH framework for the stochastic TOPTW. This

result was expected as it provides additional information not

provided by BasicGP that can be used by the evolved policy,

allowing it to make favourable decisions between a high score

isolated POI and a cluster of lower score POIs.

The DBSCAN showed significantly worse results than Ba-

sicGP across all test instances, with the exception of rc104

which it is significantly better. The DBSCAN algorithm finds

the highest value cluster of POIs in the problem and then

schedules a visit to a POI within this cluster as the first

visit of a tour. The expectation was that this would allow the

schedule to begin in the most valuable geographical region

and visit a group of surrounding POIs with minimal travel

time between them. The results suggest that there are some

factors not accounted for with this logic. It could be the case

that in a number of instances, the highest value cluster was

quite distant from the starting point, and that it would be better

to either visit a closer cluster, or to visit POIs that are between

the starting point and the cluster before reaching it. Another

scenario could be that the highest value cluster is formed of a

large number of low or medium satisfaction score POIs, which

cannot all be visited in the time budget, meaning the value of

the cluster isn’t attainable and it would be better to visit a

lower value cluster with higher satisfaction score POIs.

Figure 1 shows the convergence curves of BasicGP, NS-

GP and DBSCAN on 8 representative instances (c104, c105,

rc105, c203, c204, r202, pr03 and pr14). The plots show little

difference in the test fitness convergence of BasicGP and NS-

GP, and both appear to converge after around 30 generations,

with no overfitting evident. The DBSCAN algorithm has much

more variability in test performance that BasicGP and NS-GP,

but also appears to converge after about 30 generations.

C. Further Analysis

Figure 2 shows the terminal frequencies of the final policies

obtained by 30 runs of NS-GP for c103, c105 and c201,

where NS-GP outperformed BasicGP. The figure shows that

the NS feature is not one of the features that dominates the

policy, however it shows up with a reasonable frequency in

comparison to most other terminals. This is expected, as the

policy should generally value terminals such as SCORE, DUR

and TFV to evaluate the priority of a POI as these immediately

affect the solution score and remaining time budget following

a decision. The NS feature should provide an incentive to visit

a POI with better options for subsequent visits, and act in a

way similar to a tie breaker for POIs that have similar values

for the dominant terminals. To examine the way the NS feature

is being used in evolved policies, we analyse a simplified final

policy on instance c205, where NS-GP outperformed BasicGP.

max{TC ∗min{TA,RemT} ∗max{NS,TC,TFV},
SCORE,TSV, {TC − {TSV + NS}}
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Fig. 1. The convergence curves of test performance of BasicGP, NS-GP and DBSCAN on c104, c105, rc105, c203, c204, r202, pr03 and pr 14, with m = 3
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Fig. 2. The terminal frequencies of the final policies obtained by 30 runs of GPHH using the NS feature on c103, c105 and c201, with m = 3.

The policy shows that the NS feature is operated on with

the TC, TFV and TSV features in a couple of different ways.

It is combined with them numerically using addition and

subtraction, as well as compared using the max operator. TC,

TFV and TSV are all features that give a time corresponding

to a visit (closing time, finishing time and starting time). This

pattern could suggest that the NS feature is being used to

prioritise visits to POIs that might end later, if they have

a greater NS value. This indicates the feature is acting as

intended as in some cases it is smarter to take longer to visit

a POI with a greater NS than quickly finish a visit to another

POI with fewer subsequent visit options.

To better understand the reason for the underperformance

of DBSCAN, we examine the DBSCAN output on pr04 and

rc105. The size of a POI in the figure corresponds to its score,

where a larger circle indicates a larger score. As seen in Figure

3, the clusters found seem to be the most dense concentration

of POIs available. On instance rc105, the cluster is distant

from the starting point, meaning that the tour must begin with

a long journey to a POI in this cluster which consumes a large

amount of the time budget. The cluster found on instance pr04

is relatively close to the start point, but contains many lower-

score POIs grouped together, many of which might not be

able to be visited in one tour. For this reason, this cluster

could be overvalued by the DBSCAN algorithm, as it could

be more valuable to visit the group of fewer higher value POIs

in the opposite direction. These two instances show the areas

which the clustering could be improved, specifically, cluster

size should be capped in some way to stop a cluster being

overvalued, the duration of a visit should also be considered

to avoid situations where a few low score POIs represent a

more valuable cluster than a higher score POI despite taking

much longer to visit in total, and lastly, the distance of a cluster

from the start point should be considered, and ideally POIs on



Fig. 3. DBSCAN cluster output on instances pr04 and rc105 (Red - POI, Yellow - Cluster POI, Green - Start point).

the route to the cluster could be visited if they don’t require

large detours.

There is potential to develop a refined clustering algorithm

that does not rely on manually configured parameters, and

analyses the information of a problem instance so that clusters

of near-optimal size and shape can be found. The schedule

creation procedure should also be updated to take possibly

advantage of POI visits on route to the best cluster found,

rather than ignoring these to visit the cluster first.

DBSCAN outperformed BasicGP and NS-GP on instance

rc104. We investigate the solutions generated on this instance

by one of the best evolved policies of each of the three

algorithms, with m = 3. Figure 4 shows that the first cluster

found by DBSCAN (yellow) is adjacent to the starting point.

This is the ideal scenario for this implementation of DBSCAN

to work in, as the dense region of POIs can be reached

with very little initial time budget expenditure. The DBSCAN

solution visits a number of the medium or high score POIs

in this cluster, until these options are exhausted and it then

visits medium and high score POIs surrounding the cluster

to finish the tour. The second cluster visited (blue) shows

fewer POIs. By day three, there are no clusters as valuable

as those of day one and two remaining, so the third cluster

found (grey) contains only low value POIs and the schedule

leaves this cluster immediately after the first visit. This shows

the weakness of the DBSCAN implementation, as when no

strong cluster exists, it would be better to use the policy than

to force a visit to the cluster, as this would avoid the long

travel times seen in day three of the DBSCAN solution. The

BasicGP and NS-GP solutions appear similar, and both involve

visits in the DBSCAN cluster. These solutions both show a

slight preference of making a longer trip to visit a slightly

higher score POI when given the option, which is shown by

them visiting fewer nodes in the prominent cluster than the

DBSCAN solution. This could be a result of the evolutionary

process, which would require policies favouring SCORE in

order for the solutions to schedule in the direction of the main

cluster and visit the group of high score POIs which appears to

be central to any near-optimal route on this instance. As these

algorithms policies must potentially favour SCORE in order to

generate solutions that reach the cluster, it is possible that once

the schedule reaches the cluster, score is favoured too much by

the policy, causing some of the lower score POIs in the cluster

to be ignored. The policies evolved in the DBSCAN algorithm

are only used for decisions where the current visit is already

in the cluster. This could allow for an evolutionary process

that develops a rule that prioritises POIs more efficiently and

isn’t swayed by SCORE as much. This example highlights the

possibility for a GPHH framework that evolves multiple rules

that are employ by the schedule creation procedure based on an

analysis of the real-time context. For example, if the schedule

creation procedure was aware the current visit was in a cluster,

it could employ a rule that might evolve to value short trips to

neighbours, and otherwise, a rule that could evolve to prioritise

high scoring POIs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, two method were proposed for incorporating

cluster information into the GPHH solution for the Stochastic

TOPTW presented in [1]. Specifically, one constructed feature

to assign a score to POIs based on the value of their geograph-

ical location, and the DBSCAN clustering algorithm imple-

mented into the schedule creation procedure, to direct the tour

to high value clusters. The results showed that there is promise

in incorporating cluster information into a GPHH solution, as

the constructed feature showed marginally improved results

over the standard GPHH solution. The DBSCAN clustering

algorithm implemented showed worse results than the standard

GPHH solution, showing that manually overriding the evolved

policy to direct a tour to a specific cluster isn’t effective, at

least in the way that it was implemented.

In future work, the idea of implementing a clustering algo-

rithm into the schedule creation procedure could be improved

on by refining the algorithm. Additionally, new cluster based

constructed features for GPHH could be researched.
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