
 

A Differential Evolution Algorithm with Q-Learning 

for Solving Engineering Design Problems  

Damla Kizilay  
Industrial Engineering 

Department, Izmir 

Democracy University  

Izmir, Turkey 

damla.kizilay@idu.edu.tr 

M. Fatih Tasgetiren 
International Logistics 

Management Department, 

 Yasar University 

Izmir, Turkey 

fatih.tasgetiren@yasar.edu.tr 

Hande Oztop 
Industrial Engineering 

Department 

Yasar University 

Izmir, Turkey 

hande.oztop@yasar.edu.tr 

Levent Kandiller 
Industrial Engineering 

Department 

Yasar University 

Izmir, Turkey 

levent.kandiller@yasar.edu.tr 
 

P. N. Suganthan 
School of Electrical and 

Electronic Engineering                               

Nanyang Technological 

University, Singapore 

epnsugan@ntu.edu.sg 

Abstract— In this paper, a differential evolution algorithm with 

Q-Learning (DE-QL) for solving engineering Design Problems 

(EDPs) is presented.  As well known, the performance of a DE 

algorithm depends on the mutation strategy and its control 

parameters, namely, crossover and mutation rates. For this reason, 

the proposed DE-QL generates the trial population by using the QL 

method in such a way that the QL guides the selection of the 

mutation strategy amongst four distinct strategies as well as 

crossover and mutation rates from the Q table. The DE-QL 

algorithm is well equipped with the epsilon constraint handling 

method to balance the search between feasible regions and 

infeasible regions during the evolutionary process. Furthermore, a 

new mutation operator, namely DE/Best to current/1, is proposed 

in the DE-QL algorithm. In this paper, 57 EDPs provided in 

“Problem Definitions and Evaluation Criteria for the CEC 2020 

Competition and Special Session on A Test-suite of Non-Convex 

Constrained Optimization Problems from the Real-World and 

Some Baseline Results” are tested by the DE-QL. We provide our 

results in Appendixes and will be evaluated with other competitors 

in the competition.  

Keywords— differential evolution, engineering design problems, 

reinforcement learning, epsilon constraint handling method 

I. INTRODUCTION  

Constrained optimization is a highly important field of 
research as most of the real-world optimization problems are 
related to at least one constraint. It is difficult to solve 
constrained optimization problems because the solution space is 
divided into feasible and infeasible by constrained conditions. 
We consider the constrained optimization problem as follow [1]: 

min 𝑓(𝑥) = (𝑥1, 𝑥2, . . , 𝑥𝐷)   (1) 

𝑆𝑡:  

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, . . , 𝑝    (2) 

ℎ𝑗(𝑥) = 0, 𝑗 = 𝑝 + 1, . . , 𝑚   (3) 

where 𝐷  is the dimension of the problem. A solution is 

regarded as feasible if 𝑔𝑖(𝑥) ≤ 0, for 𝑖 = 1, … , 𝑝, and |ℎ𝑗(𝑥)| −
𝜀 ≤ 0,  for 𝑗 = 𝑝 + 1, … , 𝑚.  The total violation �̅�  of decision 
vector, x is defined as 

 𝜗(𝑥) = ∑ 𝐺𝑖(𝑥) + ∑ 𝐻𝑗(𝑥),𝑚
𝑗=𝑝+1

𝑝
𝑖=1   (4) 

where  

𝐺𝑖(𝑥) = {
𝑔𝑖(𝑥)     𝑖𝑓 𝑔𝑖(𝑥) > 0 

0             𝑖𝑓 𝑔𝑖(𝑥) ≤ 0
             (5)  

𝐻𝑗(𝑥) = {
|ℎ𝑗(𝑥)|  𝑖𝑓 |ℎ𝑗(𝑥)| − 𝜀 > 0 

0           𝑖𝑓 |ℎ𝑗(𝑥)| − 𝜀 ≤ 0
           (6) 

     Differential evolution (DE) was proposed by Storn and 
Price [2]. It is a global optimizer for continuous optimization 
problems with a real value objective function. Due to its 
simplicity and efficiency, DE has been successfully applied in 
many fields. Excellent review of DE on state-of-the-art research 
can be found in the survey [3], [4]. 

    For the last two decades, DE has been applied to several 
real-world problems and classical benchmark problems due to 
its simplicity and robustness [5]–[11]. Several DE variants have 
been proposed for solving constrained real-parameter 
optimization problems. In [12], the author proposed a success-
history based adaptive differential evolution algorithm, so-
called SHADE, which is a novel, adaptive DE algorithm, and an 
improvement over JADE [13]. SHADE maintains a diverse set 
of parameters to guide control parameter adaptation as the 
search progresses for a more robust search [12]. L-SHADE [14] 
extends SHADE with linear population size reduction, which 
continually decreases the population size according to a linear 
function. One of the first modifications of DE for constrained 
problems was proposed by Lampinen [15]. Wu et al. [9] also 
proposed a promising approach with a variable reduction 
strategy handling the equality constraints. These adaptive 
variants have generated much better results than the traditional 
DEs in the literature. Recently, three sophisticated DE variants 
based on the epsilon constraint method are presented in [16]–
[18]. In this paper, we present a differential evolution algorithm 
with Q-Learning (DE-QL) for solving engineering design 
problems (EDPs). In this paper, 57 EDPs provided in “Problem 
Definitions and Evaluation Criteria for the CEC 2020 
Competition on EDPs” are presented for the CEC2020 
competition. The results are evaluated with other algorithms in 
the competition.  

     The remaining part of the paper is organized as follows. 
Section Ⅱ explains the basic differential evolution. Section III 
gives details of the DE-QL algorithm. Computational results of 
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benchmark instances are shown in Section IV, whereas Section 
V summarizes the concluding remarks. 

II. DE ALGORITHM  

The traditional DE algorithm begins with a population of NP 
individuals. Each individual in NP has a D-dimensional vector 
with parameter values. Each vector is obtained randomly and 

uniformly within the search ranges [𝑥𝑖𝑗
𝑚𝑖𝑛 , 𝑥𝑖𝑗

𝑚𝑎𝑥] as follows: 

 𝑥𝑖𝑗
0 = 𝑥𝑖𝑗

𝑚𝑖𝑛 + (𝑥𝑖𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑚𝑖𝑛) × 𝑟           (7) 

where 𝑥𝑖𝑗
𝑔

 is the 𝑖𝑡ℎ  target individual with respect to 𝑗𝑡ℎ 

dimension at generation 𝑔; and 𝑟 is a uniform random number 
in [0,1]. Note that for each individual in the population, we keep 
the following information: 𝑓(𝑥) is the objective function value; 
total violation 𝑣(𝑥) ; then, 𝑝𝑓(𝑥) = 𝑓(𝑥) + 𝑣(𝑥) is the 
penalized fitness value and; 𝑓𝐹(𝑥)  is a feasibility flag of a 
solution, where it is 0 if the solution is feasible, and 1 otherwise. 

In each generation, mutation and crossover operators with 
parameters 𝐹  and 𝐶𝑟  are applied to each individual 𝑥𝑖  ( 𝑖 =
1, . . , 𝑁𝑃 ). First a mutant individual 𝑣𝑖  and then, a trial 
individual 𝑢𝑖 is generated. If 𝑓(𝑢𝑖) is better than 𝑓(𝑥𝑖), 𝑥𝑖 will 
be replaced by 𝑢𝑖. The algorithm evolves the population until 
the termination criterion (TC) is achieved, and then the best 
solution of the population is reported. The pseudo-code of DE is 
shown in Fig. 1.  

Step 1. Determine parameters: 𝑁𝑃, 𝐹, 𝐶𝑟 and 𝑇𝐶  

Step 2. Initialization: Randomly generate a population  𝑁𝑃 =
{𝑥1, . . , 𝑥𝑛} and evaluate each solution in 𝑁𝑃.  

Step 3. Population update: For each individual  

a. Perform a mutation operator on 𝑥𝑖 to generate 𝑣𝑖.  
b. Perform a crossover operator on 𝑣𝑖 and 𝑥𝑖 to generate a 

trial vector 𝑢𝑖.  
c. Update target individual  replace 𝑥𝑖 with 𝑢𝑖 if 𝑓(𝑢𝑖) ≤

𝑓(𝑥𝑖) 
Step 4: Termination: If stopping criterion is satisfied, report the 
best solution 𝑥𝑏𝑒𝑠𝑡  in 𝑁𝑃. Otherwise, go to Step 3. 

Fig. 1. Differential evolution Algorithm 

Some traditional mutation strategies are presented in the 
literature as follows: 

S1. DE/rand/1: 

𝑣𝑖
𝑔

= 𝑥𝑎
𝑔−1

+ 𝐹 × (𝑥𝑏
𝑔−1

− 𝑥𝑐
𝑔−1

)            (8)                       

S2. DE/current to best/1: 

𝑣𝑖
𝑔

= 𝑥𝑖
𝑔−1

+ 𝐹(𝑥𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

) + 𝐹(𝑥𝑎
𝑔−1

− 𝐴𝑏
𝑔−1

)           (9) 
S3. DE/Current to pbest/1: 

𝑣𝑖
𝑔

= 𝑥𝑖
𝑔−1

+ 𝐹(𝑥𝑝𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

) + 𝐹(𝑥𝑎
𝑔−1

− 𝐴𝑏
𝑔−1

)        (10) 

S4. DE/Best from Best to current/1: 

𝑣𝑖
𝑔

= 𝑥𝑏𝑒𝑠𝑡
𝑔−1

+ 𝑈(−1,1) × (𝑥𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

),         (11) 

where 𝑎, 𝑏, 𝑐 are three randomly chosen individuals from the 
target population such that (𝑎 ≠ 𝑏 ≠ 𝑐 ∈ (1, . . , 𝑁𝑃)) and 𝑗 =
1, . . , 𝐷 . 𝐹 ∈ (0,2)  is a mutation scale factor affecting the 
differential variation between the two individuals from the 

population. Note that 𝑥𝑝𝑏𝑒𝑠𝑡
𝑔−1

 is selected by tournament selection 

with size 2 and 𝑈(−1,1) is a uniform random number between 
-1 and 1. Note that DE/Best to current/1 is presented for the first 

time in this paper. In addition to the above, note that these 
mutation strategies are used in the DE-QL algorithm. 

During the generation of mutant individuals, they might be 
outside the search ranges. For this reason, parameter values 
violating the search range are restricted to below in this paper: 

𝑣𝑖
𝑔

= {
𝑥𝑖

𝑚𝑖𝑛 𝑖𝑓 𝑣𝑖
𝑔

< 𝑥𝑖
𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 𝑖𝑓 𝑣𝑖

𝑔
> 𝑥𝑖

𝑚𝑖𝑛
          (12)  

 Trial individuals are obtained by recombining mutant 
individuals with their corresponding target individuals as 
follows: 

𝑢𝑖
𝑔

= {
𝑣𝑖

𝑔
            𝑖𝑓 𝑟𝑖

𝑔
≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝐷𝑗

𝑥𝑖
𝑔−1

               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
         (13) 

where the index 𝐷𝑗  is a randomly chosen dimension (𝑗 =
1, . . , 𝐷). It makes sure that at least one parameter of the trial 

individual 𝑢𝑖
𝑔

 will be different from the target individual 𝑥𝑖
𝑔−1

. 

𝐶𝑟 is a user-defined crossover constant in the range [0,1], and 

𝑟𝑖
𝑔

 is a uniform random number in [0,1]... 

III. DE_QL ALGORITHM 

A. Q-Learning Procedure 

In the DE-QL algorithm, the mutation strategy, as well as 
mutation and crossover rates, are all determined by the Q-
Learning algorithm. The Q-learning (QL) is one of the widely 
used reinforcement learning algorithms [26]. The QL aims to 
choose an appropriate action based on experience by interacting 
with the environment. Once the agent (learner) performs a 
chosen action, it obtains a reward or penalty.  Then, it learns to 
choose the best action to perform by assessing the action 
alternatives using the cumulative rewards (Q-values).  

The Q-value can be calculated for each state-action pair by a 
Q-learning function given in Eq. (5). Then, Q-values are kept for 
all state-action pairs in a Q-value table. Let 𝑆 = [𝑠1, 𝑠2, … 𝑠𝑝] be 

the set of states, 𝐴 = [𝑎1, 𝑎2, … 𝑎𝑝] be the set of actions, 𝑟𝑡+1 be 

the reward, 𝑙𝑓 ∈ [0,1] be the learning factor, 𝑑𝑓 ∈ [0,1] be the 
discount factor and 𝑄(𝑠𝑡 , 𝑎𝑡)  be the Q-value at time t. The 
learner aims to maximize its total reward. 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 

𝑙𝑓[𝑟𝑡+1 + 𝑑𝑓 ∗ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]        (14) 

In the DE-QL algorithm, we assume that there is only one 
state for each parameter, where the reward value of 1 is given to 
an action that improves the current solution. We determine the 
mutation strategy (𝑆), crossover rate (𝐶𝑟), and mutation rate (𝐹) 
from the Q-Table. Briefly, at each function evaluation, we 
update the Q-values of the chosen actions for all parameters 
through the Q-learning function. In other words, if a target 
individual is improved by a chosen action list, a reward 1 is 
assigned to each of the chosen action lists, and Q-Table is 
updated.   Then, in the next function evaluation, the algorithm 
chooses the best action (value/strategy) for each parameter with 
the maximum Q-value. Note that, in the DE-QL algorithm, we 
also choose the actions of the parameters randomly with a small 
jumping probability (𝑗𝑃 ) to escape from local minima. The 
action list of each parameter is given in Table I.  



TABLE I.  ACTION LIST OF THE PARAMETERS 

Parameter Action List 

𝑆 {S1, S2, S3, S4} 

𝐹 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

𝐶𝑟 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

B. Constraint Handling 

For the next generation, we employ the superiority of 
feasible solutions (SF) and the 𝜖-constraint handling method. As 
well-known, evolutionary operators can generate infeasible 
solutions. In this case, care must be taken with them violating 
the constraints. There exist different approaches to handle the 
constraints [4].  

Deb [24] was the first to propose the superiority of feasible 
solutions (SF) for constrained optimization based on 
lexicographic ordering where constraint violation and objective 
function value are distinguished. The aim is to optimize both 
constraint violation and objective function by a lexicographic 
order where constraint violation precedes objective function 
value. In SF, when two solutions 𝑥𝑎 and 𝑥𝑏 are evaluated, 𝑎𝑎 is 
deemed to be superior to  𝑥𝑏 under the following conditions for 
a minimization problem: 

▪ 𝑥𝑎  is feasible and  𝑥𝑏 is not. 
▪ 𝑥𝑎   and  𝑥𝑏  are both feasible and 𝑥𝑎   has a smaller 

objective function value than  𝑥𝑏. 
▪ 𝑥𝑎   and  𝑥𝑏 are both infeasible, but 𝑥𝑎   has a smaller 

overall constraint violation 𝑣𝑖𝑜𝑙(𝑥)  as computed by 
using Eq. (2). 

     Takahama and Sakai [25] developed the ε-constrained 
method, where the relaxation of the constraints is controlled by 
using the 𝜖  parameter. The 𝜖  level is updated until the 
generation counter 𝑔 reaches the control generation 𝑔𝐶 . After 
the generation counter exceeds 𝑔𝐶 , the 𝜖 level is set to zero to 
obtain solutions with no constraint violation. The idea behind 
the EC method is that solutions with the total violation less that 
𝜖(𝑔)  are treated as feasible solutions when comparing two 
solutions. The 𝜖-constraint handling method can be summarized 
as follows:   

𝜖(0) = 𝜗(𝑥𝜃)             (15) 

𝜖(𝑔) = {
𝜖(0) (1 −

𝑔

𝑔𝐶
)

𝑐𝑝
0 < 𝑔 < 𝑔𝐶

0 𝑔 > 𝑔𝐶

          (16) 

     where 𝑥𝜃  is the top 𝜃𝑡ℎ individual. 

     Briefly, when we compare target individual with a trial 
individual by SF method, however, first, we assume that any 
individual having lower constraint violation than 𝜖(𝑔) level, we 
treat them as a feasible solution. Then, the SF method makes a 
selection between 𝑥𝑖 and 𝑢𝑖. 

C. Generalized Opposition-Based Learning 

Opposition-based learning (𝑂𝐵𝐿) is proposed by [27], which 

is a new method in computational intelligence and has been 

applied successfully to further improve various heuristic 

optimization algorithms [28-30]. 𝑂𝐵𝐿 is based on the idea that 

when evaluating a solution to a given problem, its opposite 

solution gives a chance to find a candidate solution closer to the 

global optimal. Inspired from 𝑂𝐵𝐿, a generalized 𝑂𝐵𝐿 (𝐺𝑂𝐵𝐿) 

is introduced in [31-33]. Suppose that 𝑥 is the current solution 

with 𝑥 ∈ [𝑎, 𝑏]. Then its opposite solution is given by: 

𝑥∗ = 𝑘(𝑎 + 𝑏) − 𝑥                            (17) 

In GOBL, opposite solutions are gathered by dynamically 

updated interval boundaries in the population as follows: 

𝑥𝑖𝑗
∗ = 𝑘[𝑎𝑗

𝑔
+ 𝑏𝑗

𝑔
] − 𝑥𝑖𝑗

𝑔
            (18) 

𝑎𝑗
𝑔

= 𝑚𝑖𝑛(𝑥𝑖𝑗
𝑔

),    𝑏𝑗
𝑔

= 𝑚𝑎𝑥(𝑥𝑖𝑗
𝑔

)          (19) 

𝑥𝑖𝑗
∗ = 𝑟𝑎𝑛𝑑(𝑎𝑗

𝑔
, 𝑏𝑗

𝑔
)    𝑖𝑓 𝑥𝑖𝑗

∗ < 𝑥𝑚𝑖𝑛  𝑜𝑟 𝑥𝑖𝑗
∗ > 𝑥𝑚𝑎𝑥  

𝑖 = 1, . . , 𝑁𝑃, 𝑗 = 1, . . , 𝐷, 𝑘 = 𝑟𝑎𝑛𝑑[0,1]          (20) 

We employ the GOBL algorithm to further improve each trial 

individual 𝑢𝑖
𝑔

obtained by the DE_QL algorithm. 

D. VNS Local Search 

To develop a VNS local search, we employ the idea of using 
multiple neighborhood structures from the variable 
neighborhood search algorithm from [34]. We use two different 
mutation strategies in a VNS loop as well as the crossover 
operator to further improve trial individuals. We choose the S1 
and S4 and mutation strategies as well as a uniform crossover to 
be employed in the VNS loop as follows: Note that 𝑡𝑉, 𝑡𝑈 are 
temporary individuals. 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆(𝑢𝑖
𝑔

)  
𝑘𝑚𝑎𝑥 = 2  
𝑘 = 1  

𝑡𝑋 = 𝑢𝑖
𝑔

  

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐶𝑟 𝑎𝑛𝑑 𝐹 𝑓𝑟𝑜𝑚 𝑄𝑡+1
(𝑠1, 𝑎𝑡)𝑄  

𝑑𝑜{  
 𝑖𝑓 (𝑘 == 1){  

  𝑡𝑉 = 𝑥𝑎
𝑔−1 + 𝐹 × (𝑥𝑏

𝑔−1 − 𝑥𝑐
𝑔−1)  

  𝑡𝑈 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑡𝑉 𝑤𝑖𝑡ℎ 𝑡𝑋  
 }𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑘 == 2){    

  𝑡𝑉 = 𝑥𝑏𝑒𝑠𝑡
𝑔−1 + 𝑈(−1,1) × (𝑥𝑏𝑒𝑠𝑡

𝑔−1 − 𝑥𝑖
𝑔−1)  

  𝑡𝑈 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑡𝑉 𝑤𝑖𝑡ℎ 𝑡𝑋   
       𝑒𝑛𝑑𝑖𝑓  

 𝑖𝑓  (𝑝𝑓(𝑡𝑈) < 𝑝𝑓(𝑡𝑋)) 𝑡ℎ𝑒𝑛{  

  𝑡𝑋 = 𝑡𝑈  
  𝑘 = 0  
  𝑅 = 1 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑄 − 𝑇𝑎𝑏𝑙𝑒  
 }𝑒𝑙𝑠𝑒{  
  𝑘 = 𝑘 + 1  
 𝑒𝑛𝑑𝑖𝑓 

} 𝑤ℎ𝑖𝑙𝑒 (𝑘 ≤ 𝑘𝑚𝑎𝑥)  

𝑢𝑖 = 𝑡𝑋  

𝑈𝑝𝑑𝑎𝑡𝑒 𝑥𝑏𝑒𝑠𝑡
𝑔−1

 𝑤𝑖𝑡ℎ 𝑢𝑖
𝑔

  

𝑟𝑒𝑡𝑢𝑟𝑛 𝑢𝑖   
𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Fig. 2. Outline of VNS Local Search 

We employ the VNS local search to further improve each 

trial individual 𝑢𝑖
𝑔

obtained by GOBL algorithm.  

E. Linear Population Reduction Strategy 

In order to improve the performance of DE-QL, a population 
size reduction strategy is used as in the original LSHADE. The 
population size 𝑁𝑃 dynamically decreases with the increasing 
of 𝐹𝐸𝑠 according to Eq (X) 



𝑁𝑃 = 𝑅𝑜𝑢𝑛𝑑 (𝑁𝑃𝑚𝑎𝑥 −
𝐹𝐸𝑠

𝑀𝑎𝑥𝐹𝐸𝑠
(𝑁𝑃𝑚𝑎𝑥 − 𝑁𝑃𝑚𝑖𝑛))        (21) 

F. Strategy and Parameter Selection    

As mentioned before, mutation strategy, crossover and 
mutation rates are selected from the action lists maximizing the 
QT, but the random selection is also carried out to escape from 
local minima.  

G. Selection for Next Generation 

As mentioned before, when we compare target individual 
with a trial individual by SF method, however, first, we assume 
that any individual having lower constraint violation than 𝜖(𝑔) 
level, we treat them as a feasible solution. Then, the SF method 
makes a selection between 𝑥𝑖 and 𝑢𝑖. Ultimately, the outline of 
the DE-QL algorithm is given in Fig. 3. 

Step 1. Determine parameters 
Step 2. Initialize population 
Step 3. Evaluate initial population 

a. 𝑓(𝑥1
0), . . , 𝑓(𝑥𝑁𝑃

0 ) 
b. Determine 𝑥𝑏𝑒𝑠𝑡 , 𝜗(𝑥𝑖

0), 𝑝𝑓(𝑥𝑖
0), 𝐹(𝑥𝑖

0); 𝑖 = 1, . . , 𝑁𝑃) 

Step 4. Population update:  For each 𝑥𝑖
𝑔−1

 

a. Choose a mutation strategy from Q-Table with 𝑗𝑃 
b. Choose the mutation rate from Q-Table with 𝑗𝑃 
c. Choose the crossover rate from Q-Table with 𝑗𝑃 

d. Generate trial individual 𝑢𝑖
𝑔

 

e. Apply GOBL to 𝑢𝑖
𝑔

 

f. Apply VNS to 𝑢𝑖
𝑔

 

g. Update feasibility flag of 𝑢𝑖
𝑔

 

 If ( 𝜗(𝑢𝑖
𝑔

) ≤ 𝜖(𝑔)), then 𝑓𝐹(𝑢𝑖
𝑔

) = 0; Else 𝑓𝐹(𝑢𝑖
𝑔

) = 1 

h. Make a selection 

If (𝑓𝐹(𝑢𝑖
𝑔

) = 0 ⋀ 𝑓𝐹(𝑥𝑖
𝑔−1

) = 1) 

             Then      𝑥𝑖
𝑔

= 𝑢𝑖
𝑔

 𝑎𝑛𝑑 𝑅 = 1 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑄 − 𝑇𝑎𝑏𝑙𝑒   

Else If (𝑓𝐹(𝑢𝑖
𝑔

) = 0 ⋀ 𝑓𝐹(𝑥𝑖
𝑔−1

) = 0) 

            Then      𝑥𝑖
𝑔

= 𝑚𝑖𝑛{𝑓(𝑢𝑖
𝑔

), 𝑓(𝑥𝑖
𝑔−1

)} 𝑎𝑛𝑑  
                             𝑅 = 1 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑄 − 𝑇𝑎𝑏𝑙𝑒   

Else If (𝑓𝐹(𝑢𝑖
𝑔

) = 1 ⋀ 𝑓𝐹(𝑥𝑖
𝑔−1

) = 1) 

Then     𝑥𝑖
𝑔

= 𝑚𝑖𝑛{𝜗(𝑢𝑖
𝑔

), 𝜗(𝑥𝑖
𝑔−1

)} 

i. Update 𝑥𝑏𝑒𝑠𝑡 as in selection 

Step 4. Update Q-Table 

Step 5. Update population size NP 
Step 6. Update epsilon level 𝝐(𝒈) 

Step 7. Termination: If the termination criterion is 
satisfied, report 𝑥𝑏𝑒𝑠𝑡 . Otherwise, go to step 4. 

Fig. 3. Outline of DE-QL algorithm 

IV. COMPUTATIONAL RESULTS 

The algorithms proposed are coded in Visual C++ and run 
on an Intel Core 2 Quad 2.66 GHz PC with 3.5GB memory. 
Population size is taken as 90. Jumping probability is taken as 
𝑗𝑃=0.1. The algorithm was tested using benchmark instances in 
“Problem Definitions, and Evaluation Criteria for the CEC 2020 
Competition and Special Session on A Test-suite of Non-
Convex Constrained Optimization Problems from the Real-
World and Some Baseline Results"[1] and compared to those 
algorithms in [16]–[18]. In line with guidelines in [1], we carried 
out all 25 runs. Note that we tried to convert the Matlab Codes 

into C codes. We could be able to convert most of the problems 
except for RC34-RC44 as well as RC27, RC33. 

V. CONCLUSION 

Computational results are given in Table II to V. DE-QL 
algorithm seems to be quite competitive to those three best-
performing algorithms from the literature. During the 
competition, DE-QL algorithms can be further improved by 
improving the Q-Table. In the current one, the state is taken as 
1, and the same crossover and mutation rate, as well as mutation 
strategy, are applied to all individuals in the population. We can 
define the states as population size and draw all parameters 
(actions) from a complete Qij Table. During the competition, we 
will try to convert the Matlab codes into C codes. 
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Table II. Results of Industrial Chemical Processes problems (RC01 -RC07) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table III. Results of Process Synthesis and Design Problems (RC08 -RC14) 

     RC08 RC09 RC10 RC11 RC12 RC13 RC14 

Best 
f  2.000000E+00 2.557655E+00 1.076543E+00 9.923846E+01 2.924831E+00 2.688742E+04 5.363894E+04 

v  0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Median 
f  2.000000E+00 2.557655E+00 1.076543E+00 9.924496E+01 2.924831E+00 2.688742E+04 5.363896E+04 

v  0.000000E+00 0.000000E+00 0.000000E+00 6.033899E-26 0.000000E+00 0.000000E+00 0.000000E+00 

Mean 
f  2.000000E+00 2.557655E+00 1.076543E+00 1.015512E+02 2.935533E+00 2.688742E+04 5.386137E+04 

v  0.000000E+00 0.000000E+00 0.000000E+00 2.414409E-27 0.000000E+00 0.000000E+00 0.000000E+00 

Worst 
f  2.000000E+00 2.557655E+00 1.076543E+00 1.078925E+02 3.081732E+00 2.688742E+04 5.919122E+04 

v  0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Std 
f  0.000000E+00 1.359740E-15 4.532467E-16 3.755235E+00 3.175656E-02 1.113899E-11 1.110386E+03 

v  0.000000E+00 0.000000E+00 0.000000E+00 1.206762E-26 0.000000E+00 0.000000E+00 0.000000E+00 

FR  1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 

c  0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 0 

 

 

 

 

 

 

 

    RC01 RC02 RC03 RC04 RC05 RC06 RC07 

Best 
f 1.893116E+02 7.049037E+03 -4.529120E+03 -3.882604E-01 -4.000026E+02 1.133967E+00 1.634482E+00 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 6.727716E-02 8.747879E-02 

Median 
f 1.893116E+02 7.049037E+03 -4.529120E+03 -3.745107E-01 0.000000E+00 1.084778E+00 1.329929E+00 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.343533E-01 6.879491E-01 

Mean 
f 1.893413E+02 7.049037E+03 -4.524889E+03 -2.892402E-01 -8.000528E+00 1.110147E+00 1.248564E+00 

v 0.000000E+00 0.000000E+00 2.506583E-03 0.000000E+00 0.000000E+00 2.131301E-01 8.380490E-01 

Worst 
f 1.896505E+02 7.049037E+03 -4.494899E+03 -9.999996E-05 1.000000E+02 1.093033E+00 9.978200E-01 

v 0.000000E+00 0.000000E+00 2.088819E-02 0.000000E+00 0.000000E+00 7.361013E-01 2.394716E+00 

Std 
f 8.718300E-02 1.087359E-08 1.075976E+01 1.492452E-01 8.621718E+01 4.298594E-02 3.398562E-01 

v 0.000000E+00 0.000000E+00 6.927829E-03 0.000000E+00 0.000000E+00 2.115046E-01 8.362716E-01 

FR 1.000000E+00 1.000000E+00 8.800000E-01 1.000000E+00 1.000000E+00 0.000000E+00 0.000000E+00 

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1, 4, 5 5, 7, 0 



 

Table IV. Results of Mechanical Engineering Problems (RC15 -RC23)  

    RC15 RC16 RC17 RC18 RC19 RC20 RC21 RC22 RC23 

Best 
f 2.994424E+03 3.221300E-02 1.266523E-02 8.077438E+03 1.670218E+00 2.638958E+02 2.352425E-01 -4.740975E-02 1.606987E+01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Median 
f 2.994424E+03 3.221300E-02 1.266524E-02 1.093501E+04 1.670218E+00 2.638958E+02 2.352425E-01 -4.740975E-02 1.606987E+01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Mean 
f 2.994424E+03 3.221788E-02 1.266581E-02 1.085138E+04 1.670218E+00 2.638958E+02 2.352425E-01 -4.504460E-02 1.606987E+01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Worst 
f 2.994424E+03 3.233488E-02 1.267668E-02 1.355810E+04 1.670218E+00 2.638958E+02 2.352425E-01 -3.307692E-02 1.606987E+01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Std 
f 4.641246E-13 2.437644E-05 2.275941E-06 1.459232E+03 1.868784E-16 1.640928E-14 1.133117E-16 4.862111E-03 2.346719E-08 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

FR 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 

 

Table V. Results of Mechanical Engineering Problems (RC24 -RC32) 

    RC24 RC25 RC26 RC27 RC28 RC29 RC30 RC31 RC32 

Best 
f -1.934170E+02 1.616122E+03 3.536096E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 1.232595E-32 -3.066554E+04 

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Median 
f -1.803795E+02 1.661023E+03 3.726244E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 1.805425E-15 -3.066554E+04 

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Mean 
f -1.812541E+02 1.679273E+03 3.734397E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 3.662051E-14 -3.066554E+04 

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Worst 
f -1.762534E+02 1.918258E+03 4.166728E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 3.968012E-13 -3.066554E+04 

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Std 
f 3.645657E+00 8.252875E+01 1.447422E+00 NA 5.569495E-12 1.400214E-09 4.532467E-16 8.680683E-14 3.236915E-12 

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

FR 1.000000E+00 1.000000E+00 1.000000E+00 NA 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 

c 0, 0, 0 0, 0, 0 0, 0, 0 NA 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 



Table VI. Results of Power Electronic Problems (RC45 -RC50)

    RC45 RC46 RC47 RC48 RC49 RC50 

Best 
f 8.817609E-02 1.239425E-01 4.567615E-02 5.721066E-01 5.895130E-02 2.865583E-01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.564735E-02 

Median 
f 8.818517E-02 1.240671E-01 4.665223E-02 5.721078E-01 5.895163E-02 2.865583E-01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.564735E-02 

Mean 
f 9.050944E-02 1.534037E-01 5.177782E-02 5.722402E-01 6.142385E-02 2.865602E-01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.564760E-02 

Worst 
f 1.158621E-01 2.989266E-01 8.568923E-02 5.739832E-01 9.273689E-02 2.866038E-01 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.565338E-02 

Std 
f 6.595029E-03 4.987410E-02 1.088397E-02 3.939256E-04 7.320693E-03 9.096783E-06 

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.205439E-06 

FR 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 0.000000E+00 

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

Table VII. Results of Livestock Feed Ration Optimization Problems (RC51 -RC57) 

    RC51 RC52 RC53 RC54 RC55 RC56 RC57 

Best 
f 4.548820E+03 3.510740E+03 4.997607E+03 4.240544E+03 1.918801E+03 1.047739E+04 2.289147E+03 

v 1.053822E-04 0.000000E+00 0.000000E+00 0.000000E+00 1.030933E-02 1.855236E-02 7.110005E-03 

Median 
f 4.550732E+03 3.820756E+03 5.050062E+03 4.240544E+03 2.114568E+03 1.149086E+04 2.812103E+03 

v 3.725959E-06 0.000000E+00 0.000000E+00 0.000000E+00 9.744082E-03 8.367024E-03 3.312377E-03 

Mean 
f 4.553275E+03 3.798519E+03 5.047819E+03 4.240568E+03 3.653526E+03 1.223436E+04 2.791247E+03 

v 1.574014E-05 0.000000E+00 0.000000E+00 8.715626E-07 6.891171E-03 7.714438E-03 3.019498E-03 

Worst 
f 4.566131E+03 4.109108E+03 5.173172E+03 4.237968E+03 6.660606E+03 1.368937E+04 2.874921E+03 

v 1.457714E-05 0.000000E+00 0.000000E+00 2.178907E-05 1.550304E-04 3.844068E-03 2.110542E-03 

Std 
f 5.782437E+00 1.808565E+02 5.398990E+01 8.160676E-01 2.132424E+03 1.189013E+03 1.200171E+02 

v 2.839097E-05 0.000000E+00 0.000000E+00 4.357813E-06 4.773834E-03 4.112392E-03 1.118437E-03 

FR 0.000000E+00 1.000000E+00 1.000000E+00 9.600000E-01 0.000000E+00 0.000000E+00 0.000000E+00 

c 0, 0, 3 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 1 

 

 

 

 

 

 




