

A Differential Evolution Algorithm with Q-Learning

for Solving Engineering Design Problems

Damla Kizilay
Industrial Engineering

Department, Izmir

Democracy University

Izmir, Turkey

damla.kizilay@idu.edu.tr

M. Fatih Tasgetiren
International Logistics

Management Department,

 Yasar University

Izmir, Turkey

fatih.tasgetiren@yasar.edu.tr

Hande Oztop
Industrial Engineering

Department

Yasar University

Izmir, Turkey

hande.oztop@yasar.edu.tr

Levent Kandiller
Industrial Engineering

Department

Yasar University

Izmir, Turkey

levent.kandiller@yasar.edu.tr

P. N. Suganthan
School of Electrical and

Electronic Engineering

Nanyang Technological

University, Singapore

epnsugan@ntu.edu.sg

Abstract— In this paper, a differential evolution algorithm with

Q-Learning (DE-QL) for solving engineering Design Problems

(EDPs) is presented. As well known, the performance of a DE

algorithm depends on the mutation strategy and its control

parameters, namely, crossover and mutation rates. For this reason,

the proposed DE-QL generates the trial population by using the QL

method in such a way that the QL guides the selection of the

mutation strategy amongst four distinct strategies as well as

crossover and mutation rates from the Q table. The DE-QL

algorithm is well equipped with the epsilon constraint handling

method to balance the search between feasible regions and

infeasible regions during the evolutionary process. Furthermore, a

new mutation operator, namely DE/Best to current/1, is proposed

in the DE-QL algorithm. In this paper, 57 EDPs provided in

“Problem Definitions and Evaluation Criteria for the CEC 2020

Competition and Special Session on A Test-suite of Non-Convex

Constrained Optimization Problems from the Real-World and

Some Baseline Results” are tested by the DE-QL. We provide our

results in Appendixes and will be evaluated with other competitors

in the competition.

Keywords— differential evolution, engineering design problems,

reinforcement learning, epsilon constraint handling method

I. INTRODUCTION

Constrained optimization is a highly important field of
research as most of the real-world optimization problems are
related to at least one constraint. It is difficult to solve
constrained optimization problems because the solution space is
divided into feasible and infeasible by constrained conditions.
We consider the constrained optimization problem as follow [1]:

min 𝑓(𝑥) = (𝑥1, 𝑥2, . . , 𝑥𝐷) (1)

𝑆𝑡:

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, . . , 𝑝 (2)

ℎ𝑗(𝑥) = 0, 𝑗 = 𝑝 + 1, . . , 𝑚 (3)

where 𝐷 is the dimension of the problem. A solution is

regarded as feasible if 𝑔𝑖(𝑥) ≤ 0, for 𝑖 = 1, … , 𝑝, and |ℎ𝑗(𝑥)| −
𝜀 ≤ 0, for 𝑗 = 𝑝 + 1, … , 𝑚. The total violation �̅� of decision
vector, x is defined as

 𝜗(𝑥) = ∑ 𝐺𝑖(𝑥) + ∑ 𝐻𝑗(𝑥),𝑚
𝑗=𝑝+1

𝑝
𝑖=1 (4)

where

𝐺𝑖(𝑥) = {
𝑔𝑖(𝑥) 𝑖𝑓 𝑔𝑖(𝑥) > 0

0 𝑖𝑓 𝑔𝑖(𝑥) ≤ 0
 (5)

𝐻𝑗(𝑥) = {
|ℎ𝑗(𝑥)| 𝑖𝑓 |ℎ𝑗(𝑥)| − 𝜀 > 0

0 𝑖𝑓 |ℎ𝑗(𝑥)| − 𝜀 ≤ 0
 (6)

 Differential evolution (DE) was proposed by Storn and
Price [2]. It is a global optimizer for continuous optimization
problems with a real value objective function. Due to its
simplicity and efficiency, DE has been successfully applied in
many fields. Excellent review of DE on state-of-the-art research
can be found in the survey [3], [4].

 For the last two decades, DE has been applied to several
real-world problems and classical benchmark problems due to
its simplicity and robustness [5]–[11]. Several DE variants have
been proposed for solving constrained real-parameter
optimization problems. In [12], the author proposed a success-
history based adaptive differential evolution algorithm, so-
called SHADE, which is a novel, adaptive DE algorithm, and an
improvement over JADE [13]. SHADE maintains a diverse set
of parameters to guide control parameter adaptation as the
search progresses for a more robust search [12]. L-SHADE [14]
extends SHADE with linear population size reduction, which
continually decreases the population size according to a linear
function. One of the first modifications of DE for constrained
problems was proposed by Lampinen [15]. Wu et al. [9] also
proposed a promising approach with a variable reduction
strategy handling the equality constraints. These adaptive
variants have generated much better results than the traditional
DEs in the literature. Recently, three sophisticated DE variants
based on the epsilon constraint method are presented in [16]–
[18]. In this paper, we present a differential evolution algorithm
with Q-Learning (DE-QL) for solving engineering design
problems (EDPs). In this paper, 57 EDPs provided in “Problem
Definitions and Evaluation Criteria for the CEC 2020
Competition on EDPs” are presented for the CEC2020
competition. The results are evaluated with other algorithms in
the competition.

 The remaining part of the paper is organized as follows.
Section Ⅱ explains the basic differential evolution. Section III
gives details of the DE-QL algorithm. Computational results of

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

benchmark instances are shown in Section IV, whereas Section
V summarizes the concluding remarks.

II. DE ALGORITHM

The traditional DE algorithm begins with a population of NP
individuals. Each individual in NP has a D-dimensional vector
with parameter values. Each vector is obtained randomly and

uniformly within the search ranges [𝑥𝑖𝑗
𝑚𝑖𝑛 , 𝑥𝑖𝑗

𝑚𝑎𝑥] as follows:

 𝑥𝑖𝑗
0 = 𝑥𝑖𝑗

𝑚𝑖𝑛 + (𝑥𝑖𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑚𝑖𝑛) × 𝑟 (7)

where 𝑥𝑖𝑗
𝑔

 is the 𝑖𝑡ℎ target individual with respect to 𝑗𝑡ℎ

dimension at generation 𝑔; and 𝑟 is a uniform random number
in [0,1]. Note that for each individual in the population, we keep
the following information: 𝑓(𝑥) is the objective function value;
total violation 𝑣(𝑥) ; then, 𝑝𝑓(𝑥) = 𝑓(𝑥) + 𝑣(𝑥) is the
penalized fitness value and; 𝑓𝐹(𝑥) is a feasibility flag of a
solution, where it is 0 if the solution is feasible, and 1 otherwise.

In each generation, mutation and crossover operators with
parameters 𝐹 and 𝐶𝑟 are applied to each individual 𝑥𝑖 (𝑖 =
1, . . , 𝑁𝑃). First a mutant individual 𝑣𝑖 and then, a trial
individual 𝑢𝑖 is generated. If 𝑓(𝑢𝑖) is better than 𝑓(𝑥𝑖), 𝑥𝑖 will
be replaced by 𝑢𝑖. The algorithm evolves the population until
the termination criterion (TC) is achieved, and then the best
solution of the population is reported. The pseudo-code of DE is
shown in Fig. 1.

Step 1. Determine parameters: 𝑁𝑃, 𝐹, 𝐶𝑟 and 𝑇𝐶

Step 2. Initialization: Randomly generate a population 𝑁𝑃 =
{𝑥1, . . , 𝑥𝑛} and evaluate each solution in 𝑁𝑃.

Step 3. Population update: For each individual

a. Perform a mutation operator on 𝑥𝑖 to generate 𝑣𝑖.
b. Perform a crossover operator on 𝑣𝑖 and 𝑥𝑖 to generate a

trial vector 𝑢𝑖.
c. Update target individual replace 𝑥𝑖 with 𝑢𝑖 if 𝑓(𝑢𝑖) ≤

𝑓(𝑥𝑖)
Step 4: Termination: If stopping criterion is satisfied, report the
best solution 𝑥𝑏𝑒𝑠𝑡 in 𝑁𝑃. Otherwise, go to Step 3.

Fig. 1. Differential evolution Algorithm

Some traditional mutation strategies are presented in the
literature as follows:

S1. DE/rand/1:

𝑣𝑖
𝑔

= 𝑥𝑎
𝑔−1

+ 𝐹 × (𝑥𝑏
𝑔−1

− 𝑥𝑐
𝑔−1

) (8)

S2. DE/current to best/1:

𝑣𝑖
𝑔

= 𝑥𝑖
𝑔−1

+ 𝐹(𝑥𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

) + 𝐹(𝑥𝑎
𝑔−1

− 𝐴𝑏
𝑔−1

) (9)
S3. DE/Current to pbest/1:

𝑣𝑖
𝑔

= 𝑥𝑖
𝑔−1

+ 𝐹(𝑥𝑝𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

) + 𝐹(𝑥𝑎
𝑔−1

− 𝐴𝑏
𝑔−1

) (10)

S4. DE/Best from Best to current/1:

𝑣𝑖
𝑔

= 𝑥𝑏𝑒𝑠𝑡
𝑔−1

+ 𝑈(−1,1) × (𝑥𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

), (11)

where 𝑎, 𝑏, 𝑐 are three randomly chosen individuals from the
target population such that (𝑎 ≠ 𝑏 ≠ 𝑐 ∈ (1, . . , 𝑁𝑃)) and 𝑗 =
1, . . , 𝐷 . 𝐹 ∈ (0,2) is a mutation scale factor affecting the
differential variation between the two individuals from the

population. Note that 𝑥𝑝𝑏𝑒𝑠𝑡
𝑔−1

 is selected by tournament selection

with size 2 and 𝑈(−1,1) is a uniform random number between
-1 and 1. Note that DE/Best to current/1 is presented for the first

time in this paper. In addition to the above, note that these
mutation strategies are used in the DE-QL algorithm.

During the generation of mutant individuals, they might be
outside the search ranges. For this reason, parameter values
violating the search range are restricted to below in this paper:

𝑣𝑖
𝑔

= {
𝑥𝑖

𝑚𝑖𝑛 𝑖𝑓 𝑣𝑖
𝑔

< 𝑥𝑖
𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 𝑖𝑓 𝑣𝑖

𝑔
> 𝑥𝑖

𝑚𝑖𝑛
 (12)

 Trial individuals are obtained by recombining mutant
individuals with their corresponding target individuals as
follows:

𝑢𝑖
𝑔

= {
𝑣𝑖

𝑔
 𝑖𝑓 𝑟𝑖

𝑔
≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝐷𝑗

𝑥𝑖
𝑔−1

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

where the index 𝐷𝑗 is a randomly chosen dimension (𝑗 =
1, . . , 𝐷). It makes sure that at least one parameter of the trial

individual 𝑢𝑖
𝑔

 will be different from the target individual 𝑥𝑖
𝑔−1

.

𝐶𝑟 is a user-defined crossover constant in the range [0,1], and

𝑟𝑖
𝑔

 is a uniform random number in [0,1]...

III. DE_QL ALGORITHM

A. Q-Learning Procedure

In the DE-QL algorithm, the mutation strategy, as well as
mutation and crossover rates, are all determined by the Q-
Learning algorithm. The Q-learning (QL) is one of the widely
used reinforcement learning algorithms [26]. The QL aims to
choose an appropriate action based on experience by interacting
with the environment. Once the agent (learner) performs a
chosen action, it obtains a reward or penalty. Then, it learns to
choose the best action to perform by assessing the action
alternatives using the cumulative rewards (Q-values).

The Q-value can be calculated for each state-action pair by a
Q-learning function given in Eq. (5). Then, Q-values are kept for
all state-action pairs in a Q-value table. Let 𝑆 = [𝑠1, 𝑠2, … 𝑠𝑝] be

the set of states, 𝐴 = [𝑎1, 𝑎2, … 𝑎𝑝] be the set of actions, 𝑟𝑡+1 be

the reward, 𝑙𝑓 ∈ [0,1] be the learning factor, 𝑑𝑓 ∈ [0,1] be the
discount factor and 𝑄(𝑠𝑡 , 𝑎𝑡) be the Q-value at time t. The
learner aims to maximize its total reward.

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) +

𝑙𝑓[𝑟𝑡+1 + 𝑑𝑓 ∗ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (14)

In the DE-QL algorithm, we assume that there is only one
state for each parameter, where the reward value of 1 is given to
an action that improves the current solution. We determine the
mutation strategy (𝑆), crossover rate (𝐶𝑟), and mutation rate (𝐹)
from the Q-Table. Briefly, at each function evaluation, we
update the Q-values of the chosen actions for all parameters
through the Q-learning function. In other words, if a target
individual is improved by a chosen action list, a reward 1 is
assigned to each of the chosen action lists, and Q-Table is
updated. Then, in the next function evaluation, the algorithm
chooses the best action (value/strategy) for each parameter with
the maximum Q-value. Note that, in the DE-QL algorithm, we
also choose the actions of the parameters randomly with a small
jumping probability (𝑗𝑃) to escape from local minima. The
action list of each parameter is given in Table I.

TABLE I. ACTION LIST OF THE PARAMETERS

Parameter Action List

𝑆 {S1, S2, S3, S4}

𝐹 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

𝐶𝑟 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

B. Constraint Handling

For the next generation, we employ the superiority of
feasible solutions (SF) and the 𝜖-constraint handling method. As
well-known, evolutionary operators can generate infeasible
solutions. In this case, care must be taken with them violating
the constraints. There exist different approaches to handle the
constraints [4].

Deb [24] was the first to propose the superiority of feasible
solutions (SF) for constrained optimization based on
lexicographic ordering where constraint violation and objective
function value are distinguished. The aim is to optimize both
constraint violation and objective function by a lexicographic
order where constraint violation precedes objective function
value. In SF, when two solutions 𝑥𝑎 and 𝑥𝑏 are evaluated, 𝑎𝑎 is
deemed to be superior to 𝑥𝑏 under the following conditions for
a minimization problem:

▪ 𝑥𝑎 is feasible and 𝑥𝑏 is not.
▪ 𝑥𝑎 and 𝑥𝑏 are both feasible and 𝑥𝑎 has a smaller

objective function value than 𝑥𝑏.
▪ 𝑥𝑎 and 𝑥𝑏 are both infeasible, but 𝑥𝑎 has a smaller

overall constraint violation 𝑣𝑖𝑜𝑙(𝑥) as computed by
using Eq. (2).

 Takahama and Sakai [25] developed the ε-constrained
method, where the relaxation of the constraints is controlled by
using the 𝜖 parameter. The 𝜖 level is updated until the
generation counter 𝑔 reaches the control generation 𝑔𝐶 . After
the generation counter exceeds 𝑔𝐶 , the 𝜖 level is set to zero to
obtain solutions with no constraint violation. The idea behind
the EC method is that solutions with the total violation less that
𝜖(𝑔) are treated as feasible solutions when comparing two
solutions. The 𝜖-constraint handling method can be summarized
as follows:

𝜖(0) = 𝜗(𝑥𝜃) (15)

𝜖(𝑔) = {
𝜖(0) (1 −

𝑔

𝑔𝐶
)

𝑐𝑝
0 < 𝑔 < 𝑔𝐶

0 𝑔 > 𝑔𝐶

 (16)

 where 𝑥𝜃 is the top 𝜃𝑡ℎ individual.

 Briefly, when we compare target individual with a trial
individual by SF method, however, first, we assume that any
individual having lower constraint violation than 𝜖(𝑔) level, we
treat them as a feasible solution. Then, the SF method makes a
selection between 𝑥𝑖 and 𝑢𝑖.

C. Generalized Opposition-Based Learning

Opposition-based learning (𝑂𝐵𝐿) is proposed by [27], which

is a new method in computational intelligence and has been

applied successfully to further improve various heuristic

optimization algorithms [28-30]. 𝑂𝐵𝐿 is based on the idea that

when evaluating a solution to a given problem, its opposite

solution gives a chance to find a candidate solution closer to the

global optimal. Inspired from 𝑂𝐵𝐿, a generalized 𝑂𝐵𝐿 (𝐺𝑂𝐵𝐿)

is introduced in [31-33]. Suppose that 𝑥 is the current solution

with 𝑥 ∈ [𝑎, 𝑏]. Then its opposite solution is given by:

𝑥∗ = 𝑘(𝑎 + 𝑏) − 𝑥 (17)

In GOBL, opposite solutions are gathered by dynamically

updated interval boundaries in the population as follows:

𝑥𝑖𝑗
∗ = 𝑘[𝑎𝑗

𝑔
+ 𝑏𝑗

𝑔
] − 𝑥𝑖𝑗

𝑔
 (18)

𝑎𝑗
𝑔

= 𝑚𝑖𝑛(𝑥𝑖𝑗
𝑔

), 𝑏𝑗
𝑔

= 𝑚𝑎𝑥(𝑥𝑖𝑗
𝑔

) (19)

𝑥𝑖𝑗
∗ = 𝑟𝑎𝑛𝑑(𝑎𝑗

𝑔
, 𝑏𝑗

𝑔
) 𝑖𝑓 𝑥𝑖𝑗

∗ < 𝑥𝑚𝑖𝑛 𝑜𝑟 𝑥𝑖𝑗
∗ > 𝑥𝑚𝑎𝑥

𝑖 = 1, . . , 𝑁𝑃, 𝑗 = 1, . . , 𝐷, 𝑘 = 𝑟𝑎𝑛𝑑[0,1] (20)

We employ the GOBL algorithm to further improve each trial

individual 𝑢𝑖
𝑔

obtained by the DE_QL algorithm.

D. VNS Local Search

To develop a VNS local search, we employ the idea of using
multiple neighborhood structures from the variable
neighborhood search algorithm from [34]. We use two different
mutation strategies in a VNS loop as well as the crossover
operator to further improve trial individuals. We choose the S1
and S4 and mutation strategies as well as a uniform crossover to
be employed in the VNS loop as follows: Note that 𝑡𝑉, 𝑡𝑈 are
temporary individuals.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆(𝑢𝑖
𝑔

)
𝑘𝑚𝑎𝑥 = 2
𝑘 = 1

𝑡𝑋 = 𝑢𝑖
𝑔

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐶𝑟 𝑎𝑛𝑑 𝐹 𝑓𝑟𝑜𝑚 𝑄𝑡+1
(𝑠1, 𝑎𝑡)𝑄

𝑑𝑜{
 𝑖𝑓 (𝑘 == 1){

 𝑡𝑉 = 𝑥𝑎
𝑔−1 + 𝐹 × (𝑥𝑏

𝑔−1 − 𝑥𝑐
𝑔−1)

 𝑡𝑈 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑡𝑉 𝑤𝑖𝑡ℎ 𝑡𝑋
 }𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑘 == 2){

 𝑡𝑉 = 𝑥𝑏𝑒𝑠𝑡
𝑔−1 + 𝑈(−1,1) × (𝑥𝑏𝑒𝑠𝑡

𝑔−1 − 𝑥𝑖
𝑔−1)

 𝑡𝑈 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑡𝑉 𝑤𝑖𝑡ℎ 𝑡𝑋
 𝑒𝑛𝑑𝑖𝑓

 𝑖𝑓 (𝑝𝑓(𝑡𝑈) < 𝑝𝑓(𝑡𝑋)) 𝑡ℎ𝑒𝑛{

 𝑡𝑋 = 𝑡𝑈
 𝑘 = 0
 𝑅 = 1 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑄 − 𝑇𝑎𝑏𝑙𝑒
 }𝑒𝑙𝑠𝑒{
 𝑘 = 𝑘 + 1
 𝑒𝑛𝑑𝑖𝑓

} 𝑤ℎ𝑖𝑙𝑒 (𝑘 ≤ 𝑘𝑚𝑎𝑥)

𝑢𝑖 = 𝑡𝑋

𝑈𝑝𝑑𝑎𝑡𝑒 𝑥𝑏𝑒𝑠𝑡
𝑔−1

 𝑤𝑖𝑡ℎ 𝑢𝑖
𝑔

𝑟𝑒𝑡𝑢𝑟𝑛 𝑢𝑖
𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Fig. 2. Outline of VNS Local Search

We employ the VNS local search to further improve each

trial individual 𝑢𝑖
𝑔

obtained by GOBL algorithm.

E. Linear Population Reduction Strategy

In order to improve the performance of DE-QL, a population
size reduction strategy is used as in the original LSHADE. The
population size 𝑁𝑃 dynamically decreases with the increasing
of 𝐹𝐸𝑠 according to Eq (X)

𝑁𝑃 = 𝑅𝑜𝑢𝑛𝑑 (𝑁𝑃𝑚𝑎𝑥 −
𝐹𝐸𝑠

𝑀𝑎𝑥𝐹𝐸𝑠
(𝑁𝑃𝑚𝑎𝑥 − 𝑁𝑃𝑚𝑖𝑛)) (21)

F. Strategy and Parameter Selection

As mentioned before, mutation strategy, crossover and
mutation rates are selected from the action lists maximizing the
QT, but the random selection is also carried out to escape from
local minima.

G. Selection for Next Generation

As mentioned before, when we compare target individual
with a trial individual by SF method, however, first, we assume
that any individual having lower constraint violation than 𝜖(𝑔)
level, we treat them as a feasible solution. Then, the SF method
makes a selection between 𝑥𝑖 and 𝑢𝑖. Ultimately, the outline of
the DE-QL algorithm is given in Fig. 3.

Step 1. Determine parameters
Step 2. Initialize population
Step 3. Evaluate initial population

a. 𝑓(𝑥1
0), . . , 𝑓(𝑥𝑁𝑃

0)
b. Determine 𝑥𝑏𝑒𝑠𝑡 , 𝜗(𝑥𝑖

0), 𝑝𝑓(𝑥𝑖
0), 𝐹(𝑥𝑖

0); 𝑖 = 1, . . , 𝑁𝑃)

Step 4. Population update: For each 𝑥𝑖
𝑔−1

a. Choose a mutation strategy from Q-Table with 𝑗𝑃
b. Choose the mutation rate from Q-Table with 𝑗𝑃
c. Choose the crossover rate from Q-Table with 𝑗𝑃

d. Generate trial individual 𝑢𝑖
𝑔

e. Apply GOBL to 𝑢𝑖
𝑔

f. Apply VNS to 𝑢𝑖
𝑔

g. Update feasibility flag of 𝑢𝑖
𝑔

 If (𝜗(𝑢𝑖
𝑔

) ≤ 𝜖(𝑔)), then 𝑓𝐹(𝑢𝑖
𝑔

) = 0; Else 𝑓𝐹(𝑢𝑖
𝑔

) = 1

h. Make a selection

If (𝑓𝐹(𝑢𝑖
𝑔

) = 0 ⋀ 𝑓𝐹(𝑥𝑖
𝑔−1

) = 1)

 Then 𝑥𝑖
𝑔

= 𝑢𝑖
𝑔

 𝑎𝑛𝑑 𝑅 = 1 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑄 − 𝑇𝑎𝑏𝑙𝑒

Else If (𝑓𝐹(𝑢𝑖
𝑔

) = 0 ⋀ 𝑓𝐹(𝑥𝑖
𝑔−1

) = 0)

 Then 𝑥𝑖
𝑔

= 𝑚𝑖𝑛{𝑓(𝑢𝑖
𝑔

), 𝑓(𝑥𝑖
𝑔−1

)} 𝑎𝑛𝑑
 𝑅 = 1 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑄 − 𝑇𝑎𝑏𝑙𝑒

Else If (𝑓𝐹(𝑢𝑖
𝑔

) = 1 ⋀ 𝑓𝐹(𝑥𝑖
𝑔−1

) = 1)

Then 𝑥𝑖
𝑔

= 𝑚𝑖𝑛{𝜗(𝑢𝑖
𝑔

), 𝜗(𝑥𝑖
𝑔−1

)}

i. Update 𝑥𝑏𝑒𝑠𝑡 as in selection

Step 4. Update Q-Table

Step 5. Update population size NP
Step 6. Update epsilon level 𝝐(𝒈)

Step 7. Termination: If the termination criterion is
satisfied, report 𝑥𝑏𝑒𝑠𝑡 . Otherwise, go to step 4.

Fig. 3. Outline of DE-QL algorithm

IV. COMPUTATIONAL RESULTS

The algorithms proposed are coded in Visual C++ and run
on an Intel Core 2 Quad 2.66 GHz PC with 3.5GB memory.
Population size is taken as 90. Jumping probability is taken as
𝑗𝑃=0.1. The algorithm was tested using benchmark instances in
“Problem Definitions, and Evaluation Criteria for the CEC 2020
Competition and Special Session on A Test-suite of Non-
Convex Constrained Optimization Problems from the Real-
World and Some Baseline Results"[1] and compared to those
algorithms in [16]–[18]. In line with guidelines in [1], we carried
out all 25 runs. Note that we tried to convert the Matlab Codes

into C codes. We could be able to convert most of the problems
except for RC34-RC44 as well as RC27, RC33.

V. CONCLUSION

Computational results are given in Table II to V. DE-QL
algorithm seems to be quite competitive to those three best-
performing algorithms from the literature. During the
competition, DE-QL algorithms can be further improved by
improving the Q-Table. In the current one, the state is taken as
1, and the same crossover and mutation rate, as well as mutation
strategy, are applied to all individuals in the population. We can
define the states as population size and draw all parameters
(actions) from a complete Qij Table. During the competition, we
will try to convert the Matlab codes into C codes.

REFERENCES

[1] A. Kumar, G. Wu, M. Ali, R. Mallipeddi, P. N. Suganthan, S. Das
“Problem Definitions and Evaluation Criteria for the CEC 2020
Competition and Special Session on A Test-suite of Non-Convex
Constrained Optimization Problems from the Real-World and Some
Baseline Results". 2020.

[2] R. Storn and K. Price, “Differential Evolution - A simple evolution
strategy for fast optimization,” Dr. Dobb’s J., vol. 22, no. 4, pp. 18–24,
1997.

[3] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, 2011.

[4] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution-An updated survey,” Swarm Evol. Comput., vol. 27,
pp. 1–30, 2016.

[5] T. Ray, R. Sarker, and X. Li, “Preface,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 9592, no. c, p. v, 2016.

[6] N. M. Hamza, D. L. Essam, and R. A. Sarker, “Constraint Consensus
Mutation-Based Differential Evolution for Constrained Optimization,”
IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 447–459, 2016.

[7] A. Zamuda, J. D. Hernández Sosa, and L. Adler, “Constrained differential
evolution optimization for underwater glider path planning in sub-
mesoscale eddy sampling,” Appl. Soft Comput. J., vol. 42, pp. 93–118,
2016.

[8] S. M. Guo, J. S. H. Tsai, C. C. Yang, and P. H. Hsu, “A self-optimization
approach for L-SHADE incorporated with eigenvector-based crossover
and successful-parent-selecting framework on CEC 2015 benchmark set,”
2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc., pp. 1003–1010,
2015.

[9] G. Wu, W. Pedrycz, P. N. Suganthan, and R. Mallipeddi, “A variable
reduction strategy for evolutionary algorithms handling equality
constraints,” Appl. Soft Comput. J., vol. 37, pp. 774–786, 2015.

[10] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen,
“Differential evolution with multi-population based ensemble of mutation
strategies,” Inf. Sci. (Ny)., vol. 329, pp. 329–345, 2016.

[11] Lixin Tang, Yun Dong, and Jiyin Liu, “Differential Evolution With an
Individual-Dependent Mechanism,” IEEE Trans. Evol. Comput., vol. 19,
no. 4, pp. 560–574, 2014.

[12] R. Tanabe and A. Fukunaga, “Evaluating the performance of SHADE on
CEC 2013 benchmark problems,” 2013 IEEE Congr. Evol. Comput. CEC
2013, no. 1, pp. 1952–1959, 2013.

[13] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no.
5, pp. 945–958, 2009.

[14] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” Proc. 2014 IEEE Congr.
Evol. Comput. CEC 2014, pp. 1658–1665, 2014.

[15] J. Lampinen, “A constraint handling approach for the differential
evolution algorithm,” Proc. 2002 Congr. Evol. Comput. CEC 2002, vol.
2, pp. 1468–1473, 2002.

[16] A. Trivedi, D. Srinivasan, N. Biswas, An improved unified differential
evolution algorithm for constrained optimization problems, in: 2018 521
IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1–10..

[17] M. Hellwig, H.-G. Beyer, A matrix adaptation evolution strategy for
constrained real-parameter optimization, in: 2018 IEEE Congress on 523
Evolutionary Computation (CEC), IEEE, 2018, pp. 1–8.

[18] Z. Fan, Y. Fang, W. Li, Y. Yuan, Z. Wang, X. Bian, Lshade44 with an
improved constraint-handling method for solving constrained 525 single-
objective optimization problems, in: 2018 IEEE Congress on
Evolutionary Computation (CEC), IEEE, 2018, pp. 1–8.

[19] A. Zamuda, “Adaptive constraint handling and Success History
Differential Evolution for CEC 2017 Constrained Real-Parameter
Optimization,” 2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc., no.
1, pp. 2443–2450, 2017.

[20] R. Polakova, “L-SHADE with competing strategies applied to
constrained optimization,” 2017 IEEE Congr. Evol. Comput. CEC 2017 -
Proc., no. 2, pp. 1683–1689, 2017.

[21] J. Tvrdík and R. Poláková, “A simple framework for constrained
problems with application of L-SHADE44 and IDE,” 2017 IEEE Congr.
Evol. Comput. CEC 2017 - Proc., pp. 1436–1443, 2017.

[22] A. Trivedi, K. Sanyal, P. Verma, and D. Srinivasan, “A unified
differential evolution algorithm for constrained optimization problems,”
2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc., pp. 1231–1238,
2017.

[23] P. Hansen, N. Mladenović, and D. Urošević, “Variable neighborhood
search and local branching,” Comput. Oper. Res., vol. 33, no. 10, pp.
3034–3045, 2006.

[24] K. Deb, Deb, K.: An Efficient Constraint Handling Method for Genetic
Algorithm. Computer Methods in Applied Mechanics and Engineering
186, 311-338, vol. 186. 2000.

[25] T. Takahama and S. Sakai, Efficient Constrained Optimization by the ε
Constrained Rank-Based Differential Evolution. 2010.

[26] S.S. Choong, L-P. Wong, and C.P. Lim, “Automatic design of hyper-
heuristic based on reinforcement learning,” Information Sciences, vol.
436-437, pp. 89-107, 2018.

[27] H.R. Tizhoosh, Opposition-based learning: a new scheme for machine
intelligence, in: Proceedings of International Conference on
Computational Intelligence for Modeling Control and Automation, 2005,
pp. 695–701.

[28] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based
differential evolution algorithms, in: Proceedings of IEEE Congress on
Evolutionary Computation, 2006, pp. 2010–2017.

[29] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based
differential evolution for optimization of noisy problems, in: Proceedings
of IEEE Congress on Evolutionary Computation, 2006, pp. 1865–1872.

[30] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based
differential evolution, IEEE Trans. Evol. Comput. 12 (1) (2008) 64–79.

[31] H. Wang, Z.J. Wu, S. Rahnamayan, Enhanced opposition-based
differential evolution for solving high-dimensional continuous
optimization problems, Soft Comput. 15 (11) (2011) 2127–2140.

[32] H. Wang, Z.J. Wu, S. Rahnamayan, L.S. Kang, A scalability test for
accelerated DE using generalized opposition-based learning, in:
Proceedings of International Conference on Intelligent System Design
and Applications, 2009,pp. 1090–1095.

[33] H. Wang, Z.J. Wu, S. Rahnamayan, Y. Liu, M. Ventresca, Enhancing
particle swarm optimization using generalized opposition-based learning,
Inform. Sci.181 (20) (2011) 4699–4714.

[34] P. Hansen, N. Mladenović, and D. Urošević, “Variable neighborhood
search and local branching,” Comput. Oper. Res., vol. 33, no. 10, pp.
3034–3045, 2006.

Table II. Results of Industrial Chemical Processes problems (RC01 -RC07)

Table III. Results of Process Synthesis and Design Problems (RC08 -RC14)

 RC08 RC09 RC10 RC11 RC12 RC13 RC14

Best
f 2.000000E+00 2.557655E+00 1.076543E+00 9.923846E+01 2.924831E+00 2.688742E+04 5.363894E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Median
f 2.000000E+00 2.557655E+00 1.076543E+00 9.924496E+01 2.924831E+00 2.688742E+04 5.363896E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 6.033899E-26 0.000000E+00 0.000000E+00 0.000000E+00

Mean
f 2.000000E+00 2.557655E+00 1.076543E+00 1.015512E+02 2.935533E+00 2.688742E+04 5.386137E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 2.414409E-27 0.000000E+00 0.000000E+00 0.000000E+00

Worst
f 2.000000E+00 2.557655E+00 1.076543E+00 1.078925E+02 3.081732E+00 2.688742E+04 5.919122E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Std
f 0.000000E+00 1.359740E-15 4.532467E-16 3.755235E+00 3.175656E-02 1.113899E-11 1.110386E+03

v 0.000000E+00 0.000000E+00 0.000000E+00 1.206762E-26 0.000000E+00 0.000000E+00 0.000000E+00

FR 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 0

 RC01 RC02 RC03 RC04 RC05 RC06 RC07

Best
f 1.893116E+02 7.049037E+03 -4.529120E+03 -3.882604E-01 -4.000026E+02 1.133967E+00 1.634482E+00

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 6.727716E-02 8.747879E-02

Median
f 1.893116E+02 7.049037E+03 -4.529120E+03 -3.745107E-01 0.000000E+00 1.084778E+00 1.329929E+00

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.343533E-01 6.879491E-01

Mean
f 1.893413E+02 7.049037E+03 -4.524889E+03 -2.892402E-01 -8.000528E+00 1.110147E+00 1.248564E+00

v 0.000000E+00 0.000000E+00 2.506583E-03 0.000000E+00 0.000000E+00 2.131301E-01 8.380490E-01

Worst
f 1.896505E+02 7.049037E+03 -4.494899E+03 -9.999996E-05 1.000000E+02 1.093033E+00 9.978200E-01

v 0.000000E+00 0.000000E+00 2.088819E-02 0.000000E+00 0.000000E+00 7.361013E-01 2.394716E+00

Std
f 8.718300E-02 1.087359E-08 1.075976E+01 1.492452E-01 8.621718E+01 4.298594E-02 3.398562E-01

v 0.000000E+00 0.000000E+00 6.927829E-03 0.000000E+00 0.000000E+00 2.115046E-01 8.362716E-01

FR 1.000000E+00 1.000000E+00 8.800000E-01 1.000000E+00 1.000000E+00 0.000000E+00 0.000000E+00

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1, 4, 5 5, 7, 0

Table IV. Results of Mechanical Engineering Problems (RC15 -RC23)

 RC15 RC16 RC17 RC18 RC19 RC20 RC21 RC22 RC23

Best
f 2.994424E+03 3.221300E-02 1.266523E-02 8.077438E+03 1.670218E+00 2.638958E+02 2.352425E-01 -4.740975E-02 1.606987E+01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Median
f 2.994424E+03 3.221300E-02 1.266524E-02 1.093501E+04 1.670218E+00 2.638958E+02 2.352425E-01 -4.740975E-02 1.606987E+01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Mean
f 2.994424E+03 3.221788E-02 1.266581E-02 1.085138E+04 1.670218E+00 2.638958E+02 2.352425E-01 -4.504460E-02 1.606987E+01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Worst
f 2.994424E+03 3.233488E-02 1.267668E-02 1.355810E+04 1.670218E+00 2.638958E+02 2.352425E-01 -3.307692E-02 1.606987E+01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Std
f 4.641246E-13 2.437644E-05 2.275941E-06 1.459232E+03 1.868784E-16 1.640928E-14 1.133117E-16 4.862111E-03 2.346719E-08

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

FR 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Table V. Results of Mechanical Engineering Problems (RC24 -RC32)

 RC24 RC25 RC26 RC27 RC28 RC29 RC30 RC31 RC32

Best
f -1.934170E+02 1.616122E+03 3.536096E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 1.232595E-32 -3.066554E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Median
f -1.803795E+02 1.661023E+03 3.726244E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 1.805425E-15 -3.066554E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Mean
f -1.812541E+02 1.679273E+03 3.734397E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 3.662051E-14 -3.066554E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Worst
f -1.762534E+02 1.918258E+03 4.166728E+01 NA 1.461414E+04 2.964895E+06 2.658559E+00 3.968012E-13 -3.066554E+04

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Std
f 3.645657E+00 8.252875E+01 1.447422E+00 NA 5.569495E-12 1.400214E-09 4.532467E-16 8.680683E-14 3.236915E-12

v 0.000000E+00 0.000000E+00 0.000000E+00 NA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

FR 1.000000E+00 1.000000E+00 1.000000E+00 NA 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00

c 0, 0, 0 0, 0, 0 0, 0, 0 NA 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Table VI. Results of Power Electronic Problems (RC45 -RC50)

 RC45 RC46 RC47 RC48 RC49 RC50

Best
f 8.817609E-02 1.239425E-01 4.567615E-02 5.721066E-01 5.895130E-02 2.865583E-01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.564735E-02

Median
f 8.818517E-02 1.240671E-01 4.665223E-02 5.721078E-01 5.895163E-02 2.865583E-01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.564735E-02

Mean
f 9.050944E-02 1.534037E-01 5.177782E-02 5.722402E-01 6.142385E-02 2.865602E-01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.564760E-02

Worst
f 1.158621E-01 2.989266E-01 8.568923E-02 5.739832E-01 9.273689E-02 2.866038E-01

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.565338E-02

Std
f 6.595029E-03 4.987410E-02 1.088397E-02 3.939256E-04 7.320693E-03 9.096783E-06

v 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.205439E-06

FR 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 0.000000E+00

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Table VII. Results of Livestock Feed Ration Optimization Problems (RC51 -RC57)

 RC51 RC52 RC53 RC54 RC55 RC56 RC57

Best
f 4.548820E+03 3.510740E+03 4.997607E+03 4.240544E+03 1.918801E+03 1.047739E+04 2.289147E+03

v 1.053822E-04 0.000000E+00 0.000000E+00 0.000000E+00 1.030933E-02 1.855236E-02 7.110005E-03

Median
f 4.550732E+03 3.820756E+03 5.050062E+03 4.240544E+03 2.114568E+03 1.149086E+04 2.812103E+03

v 3.725959E-06 0.000000E+00 0.000000E+00 0.000000E+00 9.744082E-03 8.367024E-03 3.312377E-03

Mean
f 4.553275E+03 3.798519E+03 5.047819E+03 4.240568E+03 3.653526E+03 1.223436E+04 2.791247E+03

v 1.574014E-05 0.000000E+00 0.000000E+00 8.715626E-07 6.891171E-03 7.714438E-03 3.019498E-03

Worst
f 4.566131E+03 4.109108E+03 5.173172E+03 4.237968E+03 6.660606E+03 1.368937E+04 2.874921E+03

v 1.457714E-05 0.000000E+00 0.000000E+00 2.178907E-05 1.550304E-04 3.844068E-03 2.110542E-03

Std
f 5.782437E+00 1.808565E+02 5.398990E+01 8.160676E-01 2.132424E+03 1.189013E+03 1.200171E+02

v 2.839097E-05 0.000000E+00 0.000000E+00 4.357813E-06 4.773834E-03 4.112392E-03 1.118437E-03

FR 0.000000E+00 1.000000E+00 1.000000E+00 9.600000E-01 0.000000E+00 0.000000E+00 0.000000E+00

c 0, 0, 3 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 1

