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Abstract—Computational Intelligence is frequently applied to
solve RNA design problems, to construct RNA sequences that
fold into biochemically useful structures and alignments. RNA
Design’s NP-Hardness means that heuristic solutions, such as
Evolutionary algorithms’ Simulated Annealing, are commonly
used to more effectively search for RNA sequences that fold into
the target structure. Examples of Simulated Annealing in RNA
Design include SIMARD, the ERD approach, and RNAPredict,
all which aim to return RNA Sequences as close as possible to
the target structure. However, such methods only use a single
simulated annealing cooling schedule even though literature
covers many schedules with varied convergence and perfor-
mances guarantees. Since existing RNA Design cooling schedule
surveys only cover at most four RNA design problems over two
simulated annealing variants, we investigate the performance of
four major simulated annealing schedules with ten variants on
twenty-nine RNA design sequences. Relevant findings include
a) the insensitivity of geometric schedule parameters, b) that
logarithmic cooling schedules can solve RNA Design problems not
solved by other schedules, c) suggestions for adjusting geometric
schedule stopping conditions, and d) identifying common issues
in popular adaptive and non-adaptive schedules for RNA Design.

Index Terms—Bioinformatics, RNA Design, Simulated Anneal-
ing, Computational Intelligence

I. INTRODUCTION

Bioinformatics relates to inferring properties of biological
structures (e.g., RNA, DNA, and proteins) using Compu-
tational Intelligence [1]–[3], methods of combining human
insight with the power of computation. Due to the complexity
and importance of such biological processes, improved analy-
sis is an active and ongoing frontier [4] [5]. Computational In-
telligence is thus frequently applied in bioinformatics whether
in aligning similar sequences of genes in species [6], designing
databases and catalogues of existing RNA sequences [7], or
inferring from sampled genetic subsequences what bacteria are
present in a water supply [8].

Of particular interest is the RNA design problem: deter-
mining a sequence of RNA, a linear string of Adenine (A),
Uracil (U), Guanine (G), and Cytosine (C), that folds into
certain structures that guide biological function. Unlike DNA,
RNA molecules are “single”-stranded and can therefore loop
in on themselves to form complex shapes. The bonding of base
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pairs (e.g., A bonds to U, G bonds to C, and the less stable
wobble pair of G bonded with U) results in diverse secondary
structures. For example, the sequence in Fig. 1 folds and loops
into itself to allow for unique functionality, such as sending
“orders” or messages for specific enzymes to aid in digestion.
Creating RNA sequences that can fold into a target structure of
interest is therefore a significant bioinformatics problem [2].

Fig. 1. The secondary structure of Bacillus subtilis (M13175) RNase P RNA.
RNA Design problems involve finding RNA sequences that fold in certain
target structures via Evolutionary Algorithms such as Simulated Annealing.

However, designing RNA sequences that fold into a specific
structure is challenging. First, physically testing candidate
RNA sequences is prohibitively expensive due to the cost of
maintaining and using specialized equipment as well as the
number of potential candidate RNA sequences. Furthermore,
the problem is NP-Hard [2] due to the complexity of RNA
folding in practice and how even a single change in one RNA
molecule often results in a fundamentally different structure,
even when using RNA folding models such as Vienna [9].

Due to this computational complexity, Computational In-
telligence guided heuristics are thus used, particularly evolu-
tionary algorithms such as our lab’s SIMARD [2]: Simulated
Annealing to solve RNA Design. Evolutionary algorithms are
methods to iteratively improve solution as inspired by biology
and survival of the fittest.

While most RNA Design research in evolutionary algo-
rithms is on improving measures of evolutionary fitness or
defining useful mutations, we instead propose surveying the
affect of the chosen cooling schedule. The cooling schedule
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determines how the search’s temperature, the tendency to
explore the problem space rather than converge to a solution,
is modified over algorithm runtime. This choice is essential to
algorithm convergence and efficiency [10]. Commonly, Sim-
ulated Annealing for RNA Design uses one default schedule,
a geometric schedule with default parameters [2] [7], while
ignoring other available cooling schedule variants and settings
[11]. Key questions we consider are the sensitivity of schedule
parameters settings, if adaptive schedules that dynamically
perturb temperature are effective [11], and how important
a more “gradual” cooling schedule is to convergence and
performance. This will further evaluate the effectiveness of
RNA Design via Simulated Annealing.

II. LITERATURE REVIEW

General RNA Design research in Simulated Annealing
relates to using a single cooling schedule with set parameters,
usually the geometric schedule, then tailoring evolutionary
algorithm properties to RNA Design specifics. Some example
approaches include using a database of biologically observed
sequences to suggest more realistic candidate sequences [7] or
choosing the best candidate of multiple neighbours to improve
convergence [2]. However, all these approaches fail to examine
cooling schedule variants and their relative effectiveness.

To our knowledge, the only RNA Design publication related
to multiple cooling schedules was Erhan et. al’s on applying
three different cooling schedules for SIMARD on a handful
of RNA sequences: the adaptive AARTs schedule and two
variants of Geometric schedules [12]. Our new examination is
valuable for many reasons. First, [12] was developed before
many key improvements of SIMARD (e.g., using the ERD
database to return more biologically consistent candidates,
query pool selection, and the relative proportional temperature
mutation); these improvements may change the suitability of
particular schedules. Additionally, our new survey covers a
larger scope of 29 RNA Design problems using four main
scheduling variants and 10 total schedule parameterizations, a
more robust analysis.

While there are other papers examine varied cooling sched-
ules, their focus is on other problem domains such as the Trav-
elling Salesmen Problem [11], Quadratic Assignment Problem
(QAP) [11], or image smoothing [10]. Since evolutionary
algorithms’ performance varies for different domains [10] [13],
we cannot conclude that these cooling schedules surveys
would extend to RNA Design. Even echoing previous results is
of interest to the wider computational intelligence community
in the adaptability of cooling schedule algorithms in general.

III. METHOD

We will first discuss Simulated Annealing [14] so-
lutions to RNA Design, particularly our lab’s SIMARD
[12] [15] [16] [17]. SIMARD and Simulated Annealing in-
volves three major components:

1) A cost function that measures how “distant” a solution
is to folding into the target structure;

2) The Neighbour or Mutator, a function that takes then
perturbs the current solution;

3) A cooling schedule with parameters to update the tem-
perature at iteration n, T (n), after each chain of itera-
tions. This temperature decides how likely the system
is to update the current solution with the neighbor
considering its cost.

One advantage of Simulated Annealing for RNA Design
is that different biologists have different estimations of how
an RNA sequence will fold, how close a candidate is to the
intended structure, and estimates for how stable a configuration
is based on the free or available energy. This plug-and-play
property is important, especially due to the continued evolution
of improved RNA folding models [9].

For more details, see the complete description and pseu-
docode Hampson et. al [2]. We will nonetheless summarize
each aspect of SIMARD to give sufficient context for our
cooling schedule experiment design in the next section.

A. Cost Setting

Given a candidate RNA sequence, the Vienna package is
used [9] to predict how an RNA sequence would fold, which
can then be compared to the target structure.

We represent RNA structures via dot-bracket notation [2],
where the candidate sequence’s “structure” is represented as
a sequence of dots and brackets: a dot or “.”, if the base
is not connected, and brackets where an open bracket “(”
indicates that the base connects to the next closing bracket in
the sequence. For example the sequence ...(...).. means
that the 4th and 8th base are paired together while the rest are
unpaired. More complex representations can be encoded as
well. For example, a sequence such as (....) loops around
to form a circle, a multi-loop.

Given that the candidate sequence folds into structure A
represented in dot-bracket notation and a target structure B,
in dot-bracket notation where Ai is the character at position i
and Bi is the character at position i we can then compare the
distance. We use the Hamming Distance metric where each
position is compared for whether it correctly represents a dot
or bracket:

Hamming Distance =

N−1∑
i=1

|Ai −Bi|

For example, the target structure A =...(..).. and the
candidate structure B =(......). differ in four locations
(1st, 4th, 7th, and 8th), resulting in a hamming distance of four.
As discussed, SIMARD’s goal is to find a candidate sequence
that folds as close to the intended structure as possible.

B. Mutation Setting

The neighbour operation represents how nearby RNA se-
quences are generated given the current solution. We used
the ERD database method, a repository of common RNA
sequences used to ensure that candidate solutions are “biolog-
ically consistent” [7] with observed sequences from nature.



Before the simulated annealing is run, an initialization step
determines what candidate structures are involved in the target
sequence. These structures are, for example, loops, bulges, or
hairpin loops in Figure 1 of a certain length. The initial random
solution is a random setting of each structure that is encoded
as a RNA subsequence, a part of the whole RNA sequence.

The neighbour operator then uses a mutate operation that
swaps candidate subsequences for other matching subse-
quences, such as swapping two sequences that are both
expected to become a loop of the same length as in the
target structure. In addition, we use the Dynamic Exploration
Strategy (DES) [2] where multiple mutation steps are taken
instead of one. Given a mutation factor, 0.33 by default, the
number of mutations is based on the relative temperature, a
constant that ranges from 0 to 1 that is highest at the start of
the search:

Steps = dmutation factor ·#subsequences · rel tempe

For example, with a mutation factor of 0.33 at the initial
temperature, a relative temperature of 1.00, results in the
most swaps where 33% of these subsequences/structures are
swapped out for alternatives from the ERD database. The main
advantage of this approach is that many mutation steps can be
taken at once, speeding up exploration [17].

C. Cooling Schedule

After every step of the algorithm, a decision is made
whether to update the current solution with the new mutated
neighbor. If the solution improves the current solution it is
always accepted otherwise a uniform probability from 0 to 1
is drawn where a solution is replaced if this random probability

exceeds e
−(costj−costi)

T (n) where T (n) is the temperature at the
current “chain” of steps and costi is the cost of the current
solution and costj is the cost of the candidate solution,
the neighbor after the mutation step. The cooling schedule
[14] determine how and when the temperature decreases,
usually by updating after every “chain” (e.g., 1000 steps). The
temperature therefore represents a tendency to explore more
varied, poorer solutions to avoid converging to local optimums.

SIMARD and other Simulated Annealing variants (e.g., [7])
use the popular geometric schedule of:

T (n) = β · T (n− 1).

The temperature follows the geometric sequence in that
T (n) equals βn ·T (0): with a β of 0.8, temperature goes from
1.0·T (0) to 0.8·T (0) then 0.64·T (0). As motivated previously,
studies of varying this β or leveraging more diverse cool-
ing schedules have not been sufficiently examined for RNA
Design. For example, there are logarithmic schedules [18]
with stronger convergence guarantees and adaptive schedules
[11] [19] that are less sensitive to exact parameter settings.

IV. EXPERIMENTAL DESIGN AND DATA

Our goal is to compare and analyze multiple cooling sched-
ules on SIMARD. We will discuss our choices of the RFAM
data set, four cooling schedules, and our methodology.

A. Data

We consider the RFAM data set’s 30 sequences [20], a
popular data set for RNA design problems [2]. This data covers
a mixture of RNA Design problems of varied lengths and
difficulties. We, however, do not consider sequence 23 due
to it requiring a pseudoknot when our Vienna folding model
cannot support designing such a sequence [2], so we only
consider the other 29.

B. Scheduling Variants

We considered four total schedule algorithms with a com-
bined 10 parameterizations. One schedule is the adaptive
AARTs methods while the remaining three are the non-
adaptive geometric, linear, and logarithmic cooling schedules.
The non-adaptive methods differ in how severely temperature
is decreased after each chain of computation.

1) AARTs Adaptive Schedule: We first consider the adaptive
scheduling algorithm of AARTs [11]. This method is adaptive
because the cooling schedule parameters do not need to be
tuned and adapted to specific problems, a valuable property
because evolutionary algorithm parameterization is often more
of an art than a science [11].

For example, setting the initial temperature usually involves
considering factors such as range of the cost function between
the best and worst possible solutions [11]. However, AARTs
instead sets an initial temperature, T (0), using the following
equation:

T (0) = ∆C(+)(
m2

m2χ0 − (1− χ0)m1)
)−1

by first generating a random candidate solution then running
the neighbour operation a sufficient number of times based
on the number of possible neighbours of this candidate; χ0

is the initial acceptance ratio, ∆C(+) is the average distance
or cost of neighbours that are worse than the initial random
solution, m1 is the number of lower distance neighbours and
m2 is the number of higher cost neighbors. This estimates the
initial temperature that results in sufficient exploration given
the cooling schedule update rule:

T (n) = T (n− 1) · (1 +
ln(1 + δ) · T (n− 1)

3σ · T (n− 1)
)−1 (1)

δ is an adjustment factor, generally suggested to be 0.1 [14].
The σ is a variance term during the last chain of steps. A high
variance thus results in a lower temperature drop.

While there are alternative adaptive schedule algorithms,
many require far more tuning than AARTs; for example,
setting a tolerance for when a temperature update is not
beneficial that is essential to good convergence properties
[19]. For this reason, we only consider AARTs though further
adaptive schedules may be considered in a future work.



2) Geometric, Linear, and Logarithmic Schedules: We also
choose three non-adaptive schedules where the temperature is
decreased after every chain. First, we consider the ubiquitous
Geometric Schedule of:

T (n) = β · T (n− 1);

where β ranges between 0.8 and 0.99, generally [18]. For
SIMARD, a lower β of 0.7 was successful, possibly because of
the mutation/neighbour policy that more quickly converges to
high quality solutions; see [16] for more details. The geometric
schedule is used in SIMARD [2] [17] [16] and other RNA
related work, such as ERD’s evolutionary RNA Database
approach [7].

Another family of methods fix a starting temperature and
ending temperature then fit a simple function to these con-
straints [21]. This ensures that the program ends after a
certain number of iterations or are comparable to some other
schedule’s temperature curve. One approach is the Linear
schedule [21], where a constant decrement d is used:

Linear(d) : T (n) = max(T (0)− n · d, 0)

For example, setting d to T (0)
10 we ensure that the initial

temperature is T (0) and at n = 10 it equals 0.
While there are other “fitted” variants (e.g., fit a quadratic

function, fit a cubic function, etc.), we focus on the linear
function because of its simplicity and how it contrasts with
the geometric schedules in that there is more time spent at
higher temperatures while geometric sequences spend more
time at lower temperatures. See Table I for a comparison of
temperatures of similar schedules.

Our final choice is the Logarithmic Schedule [18] that
ensures convergence of Simulated Annealing if:

T (n) ≥ T (0) · 1

log2(1 + (n+ 1))

However, this method often takes very long to converge
[18]. We therefore represent a more general cooling schedule
with a parameter alpha (α) to speed up the logarithmic
schedule:

Log(α) : T (n) = T (0) ·min(1,
1

log2(1 + α · (n+ 1))
)

Where T (0) is always set to the initial temperature. A higher
α ≥ 1 implies a faster asymptotic convergence to zero
and therefore fewer iterations to reach a sufficiently low
temperature to stop, though it does not fulfill the intended
convergence property.

C. Methodology

We consider both the adaptive AARTs method and the three
non-adaptive schedules, we consider three schedule categories:
1) low exploration settings, 2) medium exploration settings,
and 3) high exploration settings. Recall that Simulated Anneal-
ing problems start in an exploration phase, high temperatures

where worse solutions are more likely to replace the current
solution to avoid local minimums, and exploitation, the lower
temperatures where worse solutions are rarely considered [14].
Our goal is to consider different parameterizations where there
is varying emphasis on the “exploration” temperatures.

For geometric, we consider βs of 0.7, 0.8, and 0.9. 0.7
therefore corresponds to low exploration, 0.8 to medium
exploration, and 0.9 to high exploration. We then set the
parameters of the other two schedules such that it equals
the corresponding geometric schedule after ten iterations. For
example, both Geo(0.7) and Linear(9.718) equal 0.03 ·T (0) at
the 10th iteration. For the high exploration setting, we use
Log(α = 1) instead of the true solution Log(α = 0.527)
because both methods perform analogously in experiments and
because the overall temperatures are similar, 0.35 ·T (0) versus
0.28 · T (0) at the n = 10th iteration. These full results for
this setting can be attained by contacting the paper’s authors;
the main difference is that Log(α = 0.527) takes longer to
converge to its solutions.

Five runs for each schedule is used and we averaged the
hamming distance and energy of the final solution. Based
on prior experiment results, we use SIMARD with the QPS
variant with a mutation factor of 0.33 with a pool size of
3, which achieved the lowest hamming distance in recent
SIMARD experiments [2]. The initial temperature is set to 100
based on past SIMARD methods and the maximum runtime
was set at 4 hours per each sequence, a time where all the
geometric schedules converged successfully. All experiments
were run on Compute Canada’s WestGrid’s Cedar.

The parameters of schedules, such as chain length, are set to
the default settings in the ParSA software [22]. For example,
the δ used for AARTs is set to 0.01 per the original AARTs
schedule designers’ recommendations.

V. RESULTS AND DISCUSSION

We next apply this methodology to compare varied cooling
schedules’ temperatures and effectiveness.

A. Temperature Comparisons

A summary of the resulting temperatures for the non-
adaptive schedules are listed in Table I for low exploration
schedules, Table II for medium exploration, and Table III for
high exploration. For example, the Geo(0.7) schedule only
stays above 50% of the initial temperature, T (0), for iterations
n = 0 to n = 2 while Geo(0.9) stays above 0.5 for four
iterations. Logarithmic tends to stay above 50% for at most
one or two iterations then slowly decreases, it is more focused
on a long exploitation period at low temperatures. Linear is
more evenly spread between low and high temperatures.

Example AARTs schedule temperatures are shown in Table
IV. These schedules tend to start at a middle temperature (e.g.,
50.8 or a relative temperature of 0.508 compared to the initial
temperature of the other schedules). These temperatures then
decrease more slowly and stay in this high temperature range
for a longer time than the other schedules.



TABLE I
TEMPERATURES FOR THE LOW EXPLORATION SCHEDULES.

Relative Temperature at Iteration n
Iteration n=0 n=1 n=2 n=3 n=5 n=7 n=10
Geo(0.7) 1.00 0.70 0.49 0.34 0.17 0.08 0.03

Linear(9.718) 1.00 0.90 0.81 0.71 0.51 0.22 0.03
Log(4.3 · 109) 1.00 0.03 0.03 0.03 0.03 0.03 0.03

TABLE II
TEMPERATURES FOR THE MEDIUM EXPLORATION SCHEDULES.

Relative Temperature at Iteration n
Iteration n=0 n=1 n=2 n=3 n=5 n=7 n=10
Geo(0.8) 1.0 0.80 0.64 0.51 0.33 0.21 0.11

Linear(8.92) 1.0 0.91 0.82 0.73 0.55 0.37 0.11
Log(57.7) 1.0 0.17 0.146 0.134 0.12 0.113 0.11

TABLE III
TEMPERATURES FOR THE HIGH EXPLORATION SCHEDULES.

Relative Temperature at Iteration n
Iteration n=0 n=1 n=2 n=3 n=5 n=7 n=10
Geo(0.9) 1.00 0.90 0.81 0.73 0.59 0.48 0.35

Linear(6.51) 1.00 0.93 0.87 0.74 0.67 0.54 0.35
Log(1) 1.00 0.63 0.50 0.43 0.36 0.32 0.28

B. Hamming Distance Comparisons

Table V summarizes the hamming distances averaged over
five runs for each schedule while Table VI ranks the schedules
by the lowest distance. Table VIII, IX, X, and XI list the
complete results over all twenty nine RFAM sequences for
each method in each category of schedule.

Overall, the best performers are the geometric methods and
the low exploration log schedule with α = 4.3 · 109 with an
average hamming distance from 0.6 to 0.7. All these methods
solve 21 to 22 of the 29 sequences. There is a statistically
significant difference (p-value less than 5%) between these
schedules and each of the lower quality schedules in com-
paring the average distances in the 5 · 29 runs, implying a
meaningful improvement of RNA Design quality.

For general trends, the low exploration log option achieves
the lowest average distance, 0.6, via solving an additional
sequence not solved by any non-log approaches while solving

TABLE IV
AARTS SCHEDULE TEMPERATURES FOR EVERY 5TH SEQUENCE AND THE

TOP-3 LONGEST SEQUENCES. NOTE THAT ITERATION 0 IS USED FOR
CALIBRATION WITH A TEMPERATURE OF ZERO AND A NOT APPLICABLE
(NA) ENTRY MEANS THAT THE SCHEDULED ALREADY CONVERGED TO A

ZERO DISTANCE SOLUTION.

Relative Temperature at Iteration n
Name n=0 n=1 n=2 n=3 n=5 n=7 n=10
RF00005 0.0 NA NA NA NA NA NA
RF00010 0.0 0.659 0.579 0.519 0.428 0.366 0.297
RF00015 0.0 0.389 0.350 0.319 0.267 NA NA
RF00020 0.0 0.139 0.125 0.113 0.093 0.077 0.061
RF00025 0.0 0.453 0.402 0.360 0.296 0.250 0.203
RF00030 0.0 0.690 0.616 0.555 0.462 0.394 0.320
RF00018 0.0 0.619 0.547 0.495 0.409 0.352 0.292
RF00011 0.0 0.869 0.763 0.681 0.559 0.479 0.394
RF00024 0.0 0.508 0.453 0.408 0.341 0.268 0.219

TABLE V
OVERALL RESULTS

Schedule Avg. Distance Avg Energy # Solved
AARTs 1.53 -51.61 21/29
Geo(0.7) 0.68 -50.76 22/29
Linear(9.718) 1.32 -51.74 17/29
Log(4.3 · 109) 0.60 -51.11 23/29
Geo(0.8) 0.64 -50.73 21/29
Linear(8.92) 1.23 -51.07 18/29
Log(57.7) 1.07 -51.61 21/29
Geo(0.9) 0.66 -51.06 22/29
Linear(6.51) 1.57 -50.99 16/29
Log(1) 2.13 -52.41 19/29

other sequences equally well or slightly better. The fact that
all geometric schedules performed similarly is a useful result
that exact parameter setting is not essential. For the geometric
methods, one trend is that none of the experiments timed out
at our set four hour mark despite not achieving zero distance
solutions. Perhaps the default convergence conditions should
be tweaked to allow for more exploration time.

TABLE VI
RANKING OF METHODS BY LOWEST AVERAGE HAMMING DISTANCE

Type Schedule Distance Energy # Solved
Low Exploration Log(4.3 · 109) 0.60 -51.11 23/29
Med Exploration Geo(0.8) 0.64 -50.73 21/29
High Exploration Geo(0.9) 0.66 -51.06 22/29
Low Exploration Geo(0.7) 0.68 -50.76 22/29
Med Exploration Log(57.7) 1.07 -51.61 21/29
Med Exploration Linear(8.92) 1.23 -51.07 18/29
Low Exploration Linear(9.718) 1.32 -51.74 17/29

Adaptive AARTs 1.53 -51.61 21/29
High Exploration Linear(6.51) 1.57 -50.99 16/29
High Exploration Log(1) 2.13 -52.41 19/29

The linear methods are three of the five worst performers
because they prematurely end via freezing, achieving zero
temperature, for eight to twelve of the 29 experiments. This
suddenly ends the search without sufficient exploitation at
low temperatures as in the other methods. Recall that linear
formula differs from the other schedules in that it has a final
iteration where the temperature is zero and no further state
transitions are possible. This suggests that lower decrements
would be preferable or more asymptotic cooling schedules
should be used. Considering the difficulty and diversity of
these problems, these fixed end schedules may be a poor
choice and require too much calibration to be useful.

For the Logarithmic methods, they tended to timeout unless
a very large alpha is used as in the low exploration setting. For
example, the Log(1) method times out in 10 of 29 problems
while Log(57.7) times out for 8 of 29. The Log(0.52) method
an even higher exploration schedule which we did not include
due to space limitations, timed out in 16 of 29. Nonetheless,
the log methods were able solve sequence 3 when no other
schedule could. Note that a zero distance implies that all five
tests achieved the best possible solution. This shows that the
log schedule is another useful tool in RNA design that we
believe has not been considered in previous research.



For AARTs, we found that the temperature initialization
and adaptive update schedule resulted in far more iterations to
achieve similar results as the other methods: as an example,
for RF00009.115.seq one AARTs run took 55386 steps while a
Geo(0.7) run only took 11714 steps to achieve the same quality
of solution. As shown in Table IV, AARTs’ temperatures tends
to start at a middle temperature then decrease more slowly and
stays in this high range for a longer time. This plateauing ends
up resulting in more timeouts with insufficient exploitation
to achieve a low distance. We therefore do not recommend
AARTs for RNA Design with SIMARD.

C. Energy Comparisons
Other than the distance objective, we also consider the low-

est energy in Table VII. Compared to the distance results, this
table is shuffled significantly where the method that timeouts
the most actually achieves the best energy and worst distance.
While non-intuitive, energy did not correlate well with distance
in past RNA Design research [2]: a high energy may have low
hamming distance or high hamming distance; for example,
both AARTS and Log(57.7) achieve an equivalent average
energy, -51.61, but the average distance between them differs
by roughly 0.5, implying a large difference in utility.

TABLE VII
RANKING OF METHODS BY LOWEST AVERAGE ENERGY.

Type Schedule Distance Energy # Solved
High Exploration Log(1) 2.13 -52.41 19/29
Low Exploration Linear(9.718) 1.32 -51.74 17/29

Adaptive AARTS 1.53 -51.61 21/29
Med Exploration Log(57.7) 1.07 -51.61 21/29
Low Exploration Log(4.3 · 109) 0.60 -51.11 23/29
Med Exploration Linear(8.92) 1.23 -51.07 18/29
High Exploration Geo(0.9) 0.66 -51.06 22/29
High Exploration Linear(6.51) 1.57 -50.99 16/29
Low Exploration Geo(0.7) 0.68 -50.76 22/29
Med Exploration Geo(0.8) 0.64 -50.73 21/29

In the RNA design field, any method requires models for
both how a sequence would fold and an estimate of energy
from this folding. These models affect reliability since it is
approximating a complex biological system and can miss
important factors, such as pseudoknots. In fact, the biologically
preferred folded sequence often has energy within 20% of the
lowest possible energy, which is unexpected under nature’s
basic principle of energy minimization [23]. An ongoing issue
in RNA design is discovering a clearer understanding and
modeling of distance and energy.

VI. CONCLUSION AND FUTURE RESEARCH

In this work, we highlight cooling schedules’ impact on
RNA Design. Example observations are the logarithmic sched-
ule solving a new sequence, the need for adapting the conver-
gence procedure for the geometric schedule, and the insensitiv-
ity of geometric schedule parameters. These results reconfirm
the value and robustness of RNA Design via evolutionary
Computational Intelligence. Future work may consider more
schedule variants, more data sets, or use metaheuristics to
suggest a preferred scheduling algorithm.
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TABLE VIII
AARTS RESULTS, A METHOD WITH ADAPTIVE SCHEDULING. TO MEANS A TIMEOUT ENDED THE SEARCH.

Sequence Length Avg. Distance (AARTs) Avg. Energy (AARTs)
RF00008.11.seq 54 0 -14.6

RF00029.107.seq 73 0 -23
RF00005.1.seq 74 0 -24.32
RF00027.7.seq 79 0 -51.54

RF00019.115.seq 83 0 -27.3
RF00014.2.seq 87 0 -34.36
RF00006.1.seq 89 0 -18.28
RF00026.1.seq 102 0 -4.2

RF00001.121.seq 117 0 -38.36
RF00021.10.seq 118 0 -49.32

RF00020.107.seq 119 2 (TO) -36.88
RF00016.15.seq 129 2 (TO) -17.7

RF00015.101.seq 140 0 -34.82
RF00022.1.seq 148 0 -41.96
RF00002.2.seq 151 0 -23.24

RF00007.20.seq 154 0 -51.56
RF00003.94.seq 161 1.6 (TO) -48.22

RF00013.139.seq 185 0 -61.98
RF00004.126.seq 193 0 -55.48

RF00025.12.seq 210 0 -41.68
RF00012.15.seq 215 0 -51.18
RF00017.90.seq 301 0 -121.4
RF00030.30.seq 340 0 -72.96

RF00028.1.seq 344 0.4 (TO) -63.31
RF00009.115.seq 348 0 -58.74
RF00010.253.seq 357 9.2 (TO) -117.92

RF00018.2.seq 360 7.6 (TO) -66.22
RF00011.18.seq 382 16 (TO) -120.02
RF00024.16.seq 451 5.6 (TO) -126.06

Averages 191.86 1.53 -51.61

TABLE IX
FULL RESULTS, LOW EXPLORATION SCHEDULES. FOR SEQUENCES NOT SOLVED WITH ZERO DISTANCE, A (C) MEANS THE SIMULATION CONVERGED

VIA A STOPPING CONDITION, (F) MEANS THE TEMPERATURE REACHED ZERO (I.E., BECAME FROZEN), AND (TO) MEANS A TIMEOUT.

Sequence Length Geo(0.7) Dist. Geo(0.7) Energy Linear Distance Linear Energy Log Distance Log Energy
RF00008.11.seq 54 0 -14.24 0 -17.76 0 -17.02

RF00029.107.seq 73 0 -18.62 0 -20.26 0 -20.44
RF00005.1.seq 74 0 -23.78 0 -21.26 0 -21.56
RF00027.7.seq 79 0 -46.02 0 -52.2 0 -47.54

RF00019.115.seq 83 0 -20 0 -25.1 0 -25.94
RF00014.2.seq 87 0 -37.52 0 -36.7 0 -38.68
RF00006.1.seq 89 0 -22.5 0 -19 0 -20.32
RF00026.1.seq 102 0 -3.7 0 -4.24 0 -5

RF00001.121.seq 117 0 -31.02 0 -30.36 0 -30.82
RF00021.10.seq 118 0 -48.88 0 -46.68 0 -48.74

RF00020.107.seq 119 2 (C) -35.38 2 (F) -34.1 2 (TO) -33.3
RF00016.15.seq 129 2 (C) -23.84 2 (F) -21.12 2 (TO) -21.26

RF00015.101.seq 140 0 -31.74 0 -32.96 0 -34.66
RF00022.1.seq 148 0 -41.12 0 -42.4 0 -39.5
RF00002.2.seq 151 0 -22.48 1.2 (F) -23.3 0 -23.86

RF00007.20.seq 154 0 -49.92 0 -53.3 0 -51.58
RF00003.94.seq 161 1.2 (C) -47 2 (F) -49.06 0 -43.06

RF00013.139.seq 185 0 -58.8 0 -59.86 0 -57.82
RF00004.126.seq 193 0 -58.18 0 -53.82 0 -54.96
RF00025.12.seq 210 0 -42.16 0.4 (F) -40.34 0 -44.02
RF00012.15.seq 215 0 -53.68 0 -55.98 0 -45.24
RF00017.90.seq 301 0 -126.2 0 -124.26 0 -127.76
RF00030.30.seq 340 0 -70.18 1.6 (F) -76.06 0 -74.24

RF00028.1.seq 344 0 -63.99 2.4 (F) -61.45 0 -61.15
RF00009.115.seq 348 0 -58.68 0.4 (F) -57.3 0 -61.24
RF00010.253.seq 357 3.8 (C) -122.52 7.8 (F) -125.78 3.8 (TO) -122.84

RF00018.2.seq 360 4 (C) -66.74 7.6 (F) -74.56 4 (TO) -62.42
RF00011.18.seq 382 4.8 (C) -110.34 7.6 (F) -116.54 3.6 (TO) -114.94
RF00024.16.seq 451 2 (C) -122.82 3.2 (F) -124.7 2 (TO) -132.4

Averages 191.86 0.68 -50.76 1.32 (F) -51.74 0.6 -51.11



TABLE X
FULL RESULTS, MEDIUM EXPLORATION SCHEDULES. FOR SEQUENCES NOT SOLVED WITH ZERO DISTANCE, A (C) MEANS THE SIMULATION

CONVERGED VIA A STOPPING CONDITION, (F) MEANS THE TEMPERATURE REACHED ZERO (I.E., BECAME FROZEN), AND (TO) MEANS A TIMEOUT.

Sequence Length Geo(0.8) Dist Geo(0.8) Energy Linear Distance Linear Energy Log Distance Log Energy
RF00008.11.seq 54 0 -15.24 0 -13.9 0 -13.42

RF00029.107.seq 73 0 -16.92 0 -20.5 0 -20.88
RF00005.1.seq 74 0 -21.34 0 -27.24 0 -26.6
RF00027.7.seq 79.8 0 -46.2 0 -46.22 0 -52.54

RF00019.115.seq 83.8 0 -28.24 0 -21.28 0 -22
RF00014.2.seq 87.4 0 -34.06 0 -37.5 0 -38.36
RF00006.1.seq 91.6 0 -17.6 0 -20.54 0 -22.56
RF00026.1.seq 105 0 -7.48 0 -4.12 0 -3.84

RF00001.121.seq 117.2 0 -34.52 0 -34.76 0 -35.1
RF00021.10.seq 118.2 0.4 (C) -45.38 0 -47.16 0 -49.16

RF00020.107.seq 121 2 (C) -32.62 2 (F) -35.58 2 (TO) -39.5
RF00016.15.seq 131.2 1.6 (C) -21.88 2 (F) -17.22 2 (TO) -18.5

RF00015.101.seq 141.6 0 -35.22 0 -33.52 0 -30.72
RF00022.1.seq 148.6 0 -38.14 0 -37.58 0 -39.98
RF00002.2.seq 151.6 0 -26.3 0.8 (F) -22.64 0 -23.6

RF00007.20.seq 155.4 0 -53.28 0 -55.14 0 -47.76
RF00003.94.seq 165.8 0.8 (C) -50.38 2 (F) -47.4 0 -43.08

RF00013.139.seq 186.6 0 -59.58 0 -59.88 0 -68.42
RF00004.126.seq 196.4 0 -55.6 0 -55.62 0 -49.26
RF00025.12.seq 211 0 -46.36 0 -38.44 0 -44.68
RF00012.15.seq 232.2 0 -59.3 0 -51.06 0 -48.78
RF00017.90.seq 308.8 0 -123.06 0 -122.62 0 -121.92
RF00030.30.seq 340.8 0 -68.394 1.6 (F) -71.54 1.6 (TO) -83.58
RF00028.1.seq 344 0 -58.59 1.6 (F) -61.71 1.6 (TO) -61.21

RF00009.115.seq 348 0 -58.1 0.8 (F) -62.3 0 -55.42
RF00010.253.seq 357 4.4 (C) -121.28 6.6 (F) -120.4 7.4 (TO) -124.64

RF00018.2.seq 360 3.2 (C) -63.64 7.6 (F) -70.72 4.8 (TO) -67.24
RF00011.18.seq 382 4.2 (C) -113.36 7.8 (F) -115.3 9.2 (TO) -114.58
RF00024.16.seq 451 2 (C) -119.02 2.8 (F) -129.02 2.4 (TO) -129.38

Averages 191.86 0.64 -50.73 1.23 -51.07 1.07 -51.61

TABLE XI
FULL RESULTS, HIGH EXPLORATION SCHEDULES. FOR SEQUENCES NOT SOLVED WITH ZERO DISTANCE, A (C) MEANS THE SIMULATION CONVERGED

VIA A STOPPING CONDITION, (F) MEANS THE TEMPERATURE REACHED ZERO (I.E., BECAME FROZEN), AND (TO) MEANS A TIMEOUT. WE DID NOT
INCLUDE THE LOG(0.52) SCHEDULE DUE TO SPACE, BUT IT IS SIMILAR TO THE LOG(1) SCHEDULE EXCEPT WITH MORE TIMEOUTS (16/29) AND WORSE,

AS IN HIGHER, DISTANCES.

Sequence Length Geo(0.9) Dist Geo(0.9) Energy Linear Distance Linear Energy Log Distance Log Energy
RF00008.11.seq 54 0 -15.18 0 -15.28 0 -13.32

RF00029.107.seq 73 0 -20.84 0 -19.7 0 -20.76
RF00005.1.seq 74 0 -23.42 0 -25.52 0 -23.84
RF00027.7.seq 79 0 -47.22 0 -54.36 0 -46.6

RF00019.115.seq 83 0 -23.62 0 -22.64 0 -25.06
RF00014.2.seq 87 0 -36.02 0 -37.42 0 -35.52
RF00006.1.seq 89 0 -21.02 0 -20.16 0 -19.06
RF00026.1.seq 102 0 -5.04 0 -3.9 0 -4.76

RF00001.121.seq 117 0 -33.74 0.8 (F) -34.96 0 -38.92
RF00021.10.seq 118 0 -45.24 0 -47.22 0 -51.78

RF00020.107.seq 119 2 (C) -31.2 2 (F) -37.08 2 (TO) -34.56
RF00016.15.seq 129 2 (C) -18.66 2 (F) -20.58 2 (TO) -21.66

RF00015.101.seq 140 0 -30.98 0 -31.64 0 -33.66
RF00022.1.seq 148 0 -39.5 0 -35.6 0 -46.52
RF00002.2.seq 151 0 -21.3 2 (F) -22.76 0 -22.78

RF00007.20.seq 154 0 -52.04 0 -52.88 0 -48.24
RF00003.94.seq 161 1.6 (C) -46.04 2 (F) -45.14 0.8 (TO) -40.56

RF00013.139.seq 185 0 -60.98 0 -59.56 0 -64.18
RF00004.126.seq 193 0 -55.66 0 -54.8 0 -53.78
RF00025.12.seq 210 0 -41.38 0.4 (F) -44.24 0 -44.24
RF00012.15.seq 215 0 -54.82 0 -49.5 0 -48.02
RF00017.90.seq 301 0 -126.14 0 -123.8 0 -118.14
RF00030.30.seq 340 0 -80.16 1.2 (F) -69.16 5.6 (TO) -79.06
RF00028.1.seq 344 0 -59.63 2.4 (F) -62.71 3.2 (TO) -64.45

RF00009.115.seq 348 0 -56.92 2 (F) -62.66 2.4 (TO) -65.284
RF00010.253.seq 357 4 (C) -127.74 9 (F) -123.86 12 (TO) -130.24

RF00018.2.seq 360 4 (C) -66.7 10 (F) -65.2 13.2 (TO) -71.3
RF00011.18.seq 382 3.6 (C) -112.06 8.8 (F) -110.14 14.2 (TO) -123.94
RF00024.16.seq 451 2 (C) -127.58 2.8 (F) -126.16 6.4 (TO) -129.52

Averages 191.86 0.66 -51.06 1.57 -50.99 2.13 -52.41




