
Dynamic programming operators for the

bi-objective Traveling Thief Problem

Roberto Santana

University of the Basque Country (UPV/EHU)

San Sebastian, Spain

Visitor Scholar EBTIC (Emirates ICT Innovation Center),

Khalifa University

Abu Dhabi, United Arab Emirates

roberto.santana@ehu.eus

Siddhartha Shakya

EBTIC (Emirates ICT Innovation Center),

Khalifa University

Abu Dhabi, United Arab Emirates

sid.shakya@ku.ac.ae

Abstract—The traveling thief problem (TTP) has emerged as
a realistic multi-component problem that poses a number of
challenges to traditional optimizers. In this paper we propose dif-
ferent ways to incorporate dynamic programming (DP) as a local
optimization operator of population-based approaches to the bi-
objective TTP. The DP operators use different characterizations
of the TTP instance to search for packing plans that improve the
best current solutions. We evaluate the efficiency of the DP-based
operators using TTP instances of up to 33810 cities and 338100

items, and compare the results of the DP operators with state-
of-the-art algorithms for these instances. Our results show that
DP-based approaches, applied individually and in combination
with other types of operators, can produce good approximations
of the Pareto sets for these problems.

Index Terms—traveling thief problem, evolutionary optimiza-
tion, MOEA, TSP, dynamic programming

I. INTRODUCTION

The traveling thief problem (TTP) [2] is a paradigmatic

example of multi-component optimization problems, which

try to fill the gap between traditional benchmark optimization

problems and more realistic ones. In the TTP, a thief has to

travel a set of n cities and go back to the origin. In each city

he may get one or more items for his knapsack, which has a

maximum capacity. Items add value to the bounty collected

by the thief but also add a weight which in turn reduces his

speed in moving from city to city.

The particular type of interaction between the traveling

salesman problem (TSP) and the knapsack problem (KS),

which are the two components of TTP, determines the quality

of a TTP solution. Therefore, it is not possible to compute

the optimal solution by solving each problem independently.

Given its suitability to model more realistic and intricate op-

timization scenarios, TTP has attracted considerable research

recently [5], [11], [15], [20].

TTP has also been extended to the multi-objective scenario.

For example, in [19], two different objectives are proposed,

maximizing the total reward and minimizing the total weight

of the collected items. Another bi-objective formulation is

R. Santana acknowledges the support of the Spanish Ministry of Science,
Innovation and Universities (Project TIN2016-78365-R), and the Basque
Government (IT1244-19 and ELKARTEK Programs).

presented in [1], where the first objective considered is to

maximize the value of the items in the knapsack, subject

to the maximum capacity constraint, and the second one is

minimizing the time spent travelling. Multi-objective variants

of TTP add a number of interesting and challenging research

questions, such as how to deal with interactions between the

problem objectives and the problem variables, or how to keep

a diverse sets of solutions when the dimensionality of the

problem grows.

In this paper we address the bi-objective TTP problem

introduced in [1]. We propose a fast TTP evaluation strategy

combined with the application of different heuristics that

incorporate dynamic programming. While DP approaches can

provide exact solutions for small instances of the knapsack

problem, they become unfeasible for larger instances. How-

ever, in this paper we show that, by making changes to the

way DP is used, it is possible to find sub-optimal or partial

solutions to TTP.

The goal of the paper is to develop effective strategies

for adding dynamic programming as an important element of

multi-objective approaches to multi-component problems. In

addition to investigating DP variants, we introduce an evalua-

tion strategy that allows us to simultaneously evaluate multiple

solutions contained within a single TTP representation.

The paper is organized as follows: In the next section, we

present the TTP single-objective and bi-objective formulations.

Section III reviews related work. Section IV introduces the

hybrid evolutionary-DP search algorithm to deal with the bi-

objective TTP. The different variants of DP operators are

presented and discussed in Section V. A number of operators

that can be used together with DP are discussed in Section VI.

Section VII introduces the problem benchmark, presents the

experimental framework and discusses the results of the ex-

periments. We conclude the paper in Section VIII.

II. TTP PROBLEM DEFINITION

In the classical formulation of TTP [2], the thief rents a

car for travel between cities, and after the tour is completed

he should have maximized the revenue which is calculated

adding the values of all stolen items and deducting the cost

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

of renting the car during the time taken to visit the cities.

Therefore, it is as important for the thief to collect the most

valuable set of items as it is to keep their weight reduced so as

to spend a shorter time traveling between the cities. To explain

our approach we use the TTP definition introduced in [15].

Let π = (π1 = 1, π2, . . . , πn) represent a tour such that

πi = j iff j is the ith visited city of the tour. We assume that

there are k items that could be taken in each city except the

departure city π1. The profit for taking object j in city i is

represented as pi,j . Similarly, the weight of object j in city i

is represented as wi,j .

The packing plan of the thief is represented as a bi-

nary decision vector ρ ∈ {0, 1}m where m is the number

of items that could be picked in any of the cities and

ρ = (ρ2,1 . . . ρ2,k, . . . , ρn,1 . . . ρn,k). ρi,l = 1 iff item l in

city i is chosen, and 0 otherwise.

A TTP solution is represented as a pair (π, ρ), as illustrated

in Figure 1, where for n = 8, k = 2 the packing plan has size

m = k ∗ (n− 1) = 14. Notice in the figure that items are not

available at the first (departure) city in the tour.

Other parameters that describe the problem are:

• Capacity of the knapsack: C

• Total weight of items sequentially selected in the cities

from π1 to πi: Wπi
=
∑i

j=1

∑k

l=1 wj,lρj,l.

• Velocity of the thief at the moment of quitting the ith

city: vπi
= vmax − νWπi

where ν = (vmax−vmin)
C

, and

vmax and vmin are the maximum and minimum velocity.

The two components in the original TTP objective function

are respectively represented by Equation (1) and Equation (2).

g(π, ρ) =

n∑

i=2

k∑

l=1

pi,lρi,l, st.

n∑

i=2

k∑

l=1

wj,lρl,k < C (1)

h(π, ρ) =

(
n−1∑

i=1

dπi,πi+1

vπi

)
+

dπn,π1

vπn

(2)

Equation (1) represents the gain obtained from the items

taken by the thief during the tour, constrained on the maximum

capacity of the knapsack. Equation (2) computes the time

spent on the tour. In the original formulation of the problem

these two objectives were combined as f(π, ρ) = g(π, ρ) −
Rh(π, ρ), being R the renting rate of a car paid for by the thief

to travel between the cities. In the bi-objective formulation

proposed in [1] these two objectives are independently opti-

mized. Since they are conflicting, the goal of the optimization

problem is to find the Pareto set of trade-off solutions.

III. RELATED WORK

Although the TTP problem is relatively new, an increasing

number of papers have investigated this problem from different

perspectives, and considering a number of variants. In this

section we review some of this previous work with a focus on

approaches and operators related to our proposal.

The most common approach to solve TTP is to separate the

tour improvement stage and the item packing stage. Examples

1 8 5 3 2 6 7 4

︸ ︷︷ ︸
TSP(π)

1, 0 0, 0 0, 1 0, 0 1, 0 0, 0 1, 0

︸ ︷︷ ︸
KS(ρ)

Fig. 1. Example of the TTP candidate solution representation for n = 8,
k = 2.

of previous algorithms that have organized the search of solu-

tions in this way include the CoSolver algorithm [3], the Co-

operative Co-evolution approach [13], the Two-Stage Memetic

Algorithm (TSMA) [12], and CS2SA [4]. In particular, the

CoSolver approach decomposes the complete problem into two

subproblems: The Traveling Salesman with Knapsack Problem

(TSKP) which consists of finding the best tour when the

packing plan is fixed, and the Knapsack on the Route Problem

(KRP) which, given a fixed tour tries to find the best packing

plan. This approach is extended in [4] by including complexity

reduction and performance enhancement techniques. While

decomposing the problem is the most common approach,

some research also addresses both sub-problems at the same

time [8]. The DP operators introduced in this paper modify

only the packing plan of the TTP solution. However, some

of these operators take into account the characteristics of the

TSP tour at the time of optimizing the packing plan.

The packing routine heuristic (PRH) was originally pro-

posed in [6], and has been acknowledged as an important

component of successful algorithms [18]. PRH first assigns

a score si,l to item ρi,l according to Equation (3).

si,l =
pαi,l

wα
i,ldπi,πn

(3)

where α is a parameter used to tune the influence of the profit

and weight parameters. The PRH as introduced in [6] sorts

the items according to si,l and then constructs a solution by

adding items until the capacity of the knapsack is reached.

In [15], a benchmark set of TTP problems is introduced

covering different characteristics of the instances. The bench-

mark is constructed combining TSP instances from the TSP

library [16] and knapsack instances introduced by Martello et

al [9]. We use a subset of these instances for evaluating the

performance of our algorithms. They are discussed in detail

in Section VII-A.

Bi-objective TTP variants have been investigated to a lesser

extent than their single-objective counterpart. The variant in-

vestigated in this paper was proposed by Blank et al. [1] which

compare a greedy approach, an independent sub-problem

algorithm, and NSGA-II for instances of up to 100 cities

and up to 10 items per city. They point to the advantages of

MOEAs in comparison to deterministic algorithms although

they acknowledge the need for improvement in the perfor-

mance of the variation operators.

Wu et al. [19] propose the combination of a dynamic

programming approach and evolutionary search for a class of

bi-objective TTP problems different to the one addressed in

this paper. The bi-objective problem investigated in [19] tries

to maximize the total reward by minimizing the accumulated

weight of the picked items. The DP method applied to that

bi-objective problem is the one introduced in [14].

There are important differences between our contribution

and the work described in [19]: their DP approach works on

the complete set of items, and depends on a given order of the

cities, while ours can be applied to any subset of cities selected

in an arbitrary order. We apply DP not only using the profit as

the input value but also using other metrics that incorporate

information about the quality of the TSP tour. Furthermore,

applying DP to the whole solution is only feasible for small

instances and consequently the problems addressed in [19]

have a relatively small number of cities, n ∈ {51, 76, 101}.

However, we are able to apply our DP approach on prob-

lems with n ∈ {280, 4461, 33810}. Despite the fact that

the differences between the DP-algorithms presented in this

paper and those reported in [19] are important, both works

corroborate the gains from the combination of DP techniques

and population-based search.

Although in-depth analysis of the behavior of problem

solvers for the bi-objective variant of TTP are scarce, in the

single-objective case such analyses have been reported. A

comparison of some of the most efficient TTP solvers for an

extensive set of instances is presented in [4]. An overview

and comparison of 21 algorithms, including EAs and other

heuristics, for the single-objective TTP is presented in [18].

IV. HYBRID EVOLUTIONARY-DP SEARCH

To evaluate the performance of the DP operators introduced

in the paper, we use a hybrid multi-objective evolutionary DP

algorithm (MO-DP) in which a set of non-dominated solutions

simultaneously serve as an archive of the best solutions found

so far and as a population from which solutions are selected

for local optimization. Algorithm 1 shows the pseudocode of

MO-DP.

Algorithm 1 Hybrid evolutionary-DP algorithm (MO-DP)

1: Initialize population of non TTP non-dominated solutions

(Pop)

2: for i = 1 to niter do

3: Select a solution x from Pop

4: Create solution x̄ applying DP operator to x

5: Create subset of non-dominated candidate solutions

from evaluating x

6: Add non-dominated solutions to Pop

7: Using a pre-defined criterion, remove solutions from

Pop so |Pop| = M

8: end for

A. MO-DP initialization

As is usually the case with TTP approaches, MO-DP

starts from TSP tours found using the very efficient Lin-

Kernighan method [7]. We use the Lin-Kernighan-Helsgaun

(LKH) solver1 to find a set of (not necessarily optimal)

solutions to the TSP problem. The number of TSP solutions

generated using LKH is equal to the population size M plus

one additional solution.

In order to create initial packing plan solutions, we com-

bined solutions generated by three different methods: 1) Sort-

ing ρi,k values according to profit, and selecting a number

of items according to that order up to a given maximum

capacity. 2) Similar to the previous method but sorting ρi,k
values according to the profit/gain ratios. 3) Using the best

ρi,l assignment as computed by a DP algorithm applied to

subsets of cities.

The first two initialization methods start by sorting all items

according to a given criterion, the first method sorts ρi,k values

according to profit, and the second according to profit/weight

values. Then both methods create a packing plan by adding

items according to the ordering computed, until a previously

defined maximum weight value for the knapsack is reached.

This maximum weight value is determined using a parameter

0 ≥ Rw ≤ 1 multiplied by the knapsack capacity.

By using different values of Rw, it is possible to design

packing plans with a varying number of time durations for the

final TTP solution. Notice that these initialization procedures

do not depend on the TSP tour. The third method we use to

initialize packing plans is an exact DP procedure commonly

used for solving small instances of the knapsack problem [10]

and which will be explained in more detail in Section V.

Given the initial best TSP tour and a set of candidate

packing plans, we pair them before evaluating them as candi-

dates to populate the population (P). Each pair of components

can generate different solutions identified during the fitness

evaluation process as explained in the following section.

B. Fitness evaluation, selection and archiving strategies

In the bi-objective TTP, some partial solutions of (π, ρ) can

be non-dominated and relevant for the search. We define a

partial solution of (π, ρ) as a pair (π, ρ′), where ρ′ is defined

according to a parameter r ∈ {1, . . . n} in the following way:

ρ′π(i),j =

{
ρπ(i),j , ∀j if i ≥ r

0, otherwise
(4)

Starting from a full solution it is possible to create TTP

partial solutions that require less time for the thief tour by

removing more items from ρ. The tour configuration is the

same for all solutions, but at each step i the packing plan

is changed, all items from city π(i) are removed. All these

solutions will have different values of the two objectives. They

will also be non-dominated among them since the addition of

one item necessarily increases the total profit but also increases

the total time.

We implement the fitness function evaluation so that multi-

ple partial solutions contained in the (π, ρ) could be evaluated.

Depending on the number of items included in the original ρ

1Available from http://www.akira.ruc.dk/∼keld/research/LKH/

configuration, we may obtain, as a result of the evaluation,

a varying number of solutions; with a maximum number

of n. For, large n, getting all possible solutions from one

single (π, ρ) evaluation can be inefficient. Therefore, we set a

parameter for the evaluation procedure that evaluates only µ

solutions. This is done by taking a subset of cities located

at regular intervals in the tour. For example, for a tour

π = (1, 8, 5, 3, 2, 6, 7, 4) we may take µ = 2 solutions, taking

solutions determined by starting positions i = 1 and i = 5.

For the first solution no item from the starting ρ is set to zero.

For i = 5, all items in cities {π2 = 8, π3 = 5, π4 = 3} are set

to zero.

In order to apply the variation operator, a solution is

randomly selected from the population and, as a result of the

evaluation, multiple non-dominated solutions can be generated

which are added to the archive. Selection implicitly occurs

every time the archive reaches its maximum size and non-

dominated solutions have to be removed from it. When this

occurs, non-dominated solutions are sorted in descending order

using the individual hypervolume, and added to the archive one

by one, recomputing the individual HV at each step, until the

maximum size is reached.

At each generation, MO-DP keeps a set of up to M

non-dominated solutions. To focus on the analysis of these

operators, MO-DP does not use recombination. The addition

of crossover operators is left for future research.

V. DYNAMIC PROGRAMMING OPERATORS FOR THE

BI-OBJECTIVE TTP

To discuss the DP algorithm, and to simplify the presenta-

tion, we use a notation slightly different from the one presented

for TTP in Section II.

Given a sequence s = (s1, s2, . . . , sm) of m items, we

represent any sub-sequence (s1, s2, . . . , sk) as s≤k. The clas-

sical DP approach to knapsack defines a method to recur-

sively compute which is the best possible profit P (m,w)
that can be obtained by selecting a subset of items from

s = (s1, s2, . . . , sm) whose accumulated weight does not

exceed w. The solution for subproblem s≤k is defined in terms

of the solution for subproblem s≤k−1 using the following

recursive formula.

P (k,w) =

{
P (k − 1, w), if wk > w

max(P (k − 1, w), P (k − 1, w − wk) + pk), else

(5)

where wk and pk respectively represent the weight and profit

for item k.

The equation captures the idea that the best subset of items

with total weight w is either:

1) The best subset of s≤k−1 with total weight w, or

2) The best subset of s≤k that has total weight w−wk plus

item k.

The DP approach uses memoization for an efficient storage

of partial computations. We used an efficient Python imple-

mentation2 of DP as the kernel for the DP variants investigated

in this paper.

A. Using DP for partially improving solutions

For a fixed TSP tour, DP can be used to find solutions to

the bi-objective variant of the TTP problem by applying the

algorithm for different values on a given maximum weight

(lower than or equal to the maximum capacity). For each value

of the total weight, the solution would be optimal in terms of

the items picked. On the other hand, solutions obtained in this

way would be non-dominated since less weight means that the

time spent to complete the tour is also smaller.

DP can find an optimal packing plan for small instances

of the problem (in our experiments up to 280 items) but

it requires a high computational time. Furthermore, as the

number of items is increased, the memory and computational

time requirements make the DP application infeasible. Nev-

ertheless, it is possible to use DP as a local optimizer if, for

a given set of candidate items, some of which are part of

the current selected packing plan, it is able to find a different

set of items with the same weight but a higher total profit.

Therefore, such a DP-based optimizer would first identify a

subset of candidate items, some of which are present in the

current solution, then would compute the weights of those

that are in the solution, and finally would apply DP for all

candidates using as maximum capacity that corresponding to

the sum of weights of those candidate items present in the

solution.

We used such a DP-based local optimizer in two phases of

the algorithm. 1) For the initialization of the packing plans,

and 2) During the evolution as a local optimizer.

When used for initialization, the initial packing plan is

empty and we cannot estimate the values of a maximum

capacity to optimize as previously explained. In this case we

use a variation of the DP algorithm. We split the number of

cities of the given solution (and their corresponding items) into

subsets of a manageable size. For example, let us suppose the

number of subsets to be q, then we apply DP to each of the

r =
⌊
n
q

⌋
problems, using as maximum capacity for each of

these problems c =
⌊
C
q

⌋
, where we guarantee that r and c are

integer numbers. The TTP solution obtained by combining

the partial solutions of all the q problems satisfies the general

constraint of
∑n

j=2

∑k
l=1 wj,lρj,l ≤ C.

When applied as a local optimizer, a packing plan for that

solution already exists and the key question is how to select

the candidate items to be optimized. We introduce two general

strategies for this purpose:

1) Methods based on item importance computation.

2) Methods based on item pre-selection.

B. DP methods based on item importance computation

There are four parameters that shape the application of the

method.

2Available from https://codereview.stackexchange.com/questions/20569/
dynamic-programming-knapsack-solution/20581#20581

Window size (WS): Number of items selected as candi-

dates.

Value metric (VM): This can be the profit or a distance-

based metric computed from the TSP tour.

Weight proportion (WP): Proportion of weight from the

original solution that is set as maximum capacity.

Intensity (In): Number of times DP is applied to the same

solution.

Given an input TTP solution defined by the pair (π, ρ),
the partial DP operator (PDP) starts by selecting from π a

random subset of cities πA, guaranteeing that there is at least

one selected item from any of these cities in ρ. The number

of selected cities multiplied by the number of items at each

city is equal to WS. All the items in cities from πA are taken

as candidates and the total weight Ŵ of those items that are

selected in ρ is computed.

For each of the items, a value metric VM is computed. In

the simplest variant, this corresponds to the profit associated

to the item. We also consider another metric:

rd(ρi,l) =
dπi,πn∑

j∈πA
dπj ,πn

(6)

The idea of rd(ρi,l) is to bias the selection of the items

taking into account the distance between the cities where items

are located and the last city of the tour. Since in a TTP solution

items from cities that are more distant from the end of the tour

will have to be carried on for a longer part of the tour, and

therefore their weight will have a higher impact on the time

spent by the thief, rd will prioritize taking items from cities

closer to the end. This prioritization is integrated with DP by

adjusting the profit of an item ρi,l according to Equation 7:

p̂i,l = ⌈pi,l · (1−Rd · rd(ρi,l))⌉ (7)

where the bias (0 < Rd < 1) indicates the strength of the

penalization to cities that are far from the last one. Rd is

randomly selected in each call to the operator to promote

diversity of the solutions in the Pareto set.

The weight proportion parameter WP is used to modify the

maximum weight that is passed as a parameter to the DP

procedure. We consider only two scenarios, when WP = 1,

the maximum capacity passed to DP is the same as in the

current solution. When WP = 2, this maximum capacity is

a random value between the weight of the current solution

and twice that weight value. The operator is described by

Equation 8 and Equation 9:

W =
∑

j∈π

∑

l∈{1,...,k}

ρj,lwj,l (8)

Ŵ = W · (1 +Rw) (9)

where the bias (0 < Rw < 1) indicates the amount of

expansion of the current weight.

The idea of allowing DP to use a weight above the current

weight of the partial solution is to allow the algorithm to

explore the addition of new items, increasing the profit of the

current solution. If the addition of new items causes the total

weight to exceed the maximum capacity, the corresponding

(overweighted) partial solutions are discarded in the fitness

evaluation step.

The last parameter used by DP is the number of times that

it is applied to a given solution. This means the repetition

of all previously described phases. Considering that some

TTP instances may have thousands of cities, and that WS is

necessarily constrained to relatively small values, the multiple

application of DP is needed to deal with large TTP instances.

C. Methods based on item pre-selection

Methods based on item pre-selection start by selecting an

item from ρ, and then selecting a number of “related” items

based on different criteria. For this set of candidate items, the

method will identify the items that are already part of the

current solution and their total weight. Finally, DP is called

with all the candidate items and the current total weight of

items in the solution is set as the maximum weight

Let i be the item selected from ρ, from a list of items sorted

according to some criterion, being si the position of item i in

this list, then candidates comprise those solutions in (max(si−
k
2 , 0) . . . , si, . . . ,min(si +

k
2 ,m)), that is, a maximum of k

items. As criteria to sort the solutions we used the weights,

profits, and ratios between profits and weights. We also used

the PRH values computed as explained in Section III. After

the set of candidate items has been determined, a DP variant

that receives the list of weights and profits for the selected

candidates as inputs is applied.

By using different criteria to select the candidate items, we

expect to substitute the current items by those more likely

to be good candidates for substitution. For example, items

with closer weights could be good candidates to substitute

the selected item.

VI. COMPLEMENTARY OPERATORS FOR THE DP

APPROACHES

Although some variants of DP take into account information

about the TSP structure, they only modify the packing plan

part of the solution. Furthermore, for the large TTP instances,

the application of DP operators will only modify a fraction of

the packing plan variables. Therefore, it is expected that, in

order to be competitive with other algorithms, DP operators

should be applied together with other operators. In this section,

we briefly introduce three operators that were used in order

to create TTP optimization approaches competitive with state-

of-the-art algorithms.

The PRH operator is defined as a variation of the PRH

technique, so each time the operator is called, a random

1 ≤ α ≤ 6 is selected and the candidate packing plan ρ is

constructed using Equation 3.

The rotation operator (PR) makes a rotation of l positions

in the sub-sequence comprised by π2, π3, . . . , πn. It can be

applied clockwise or anticlockwise. This operator exploits the

fact that only two neighbor distances will be affected as a

result of a rotation.

Given a solution to the bi-objective TTP, the profit improver

operator searches for a change to the packing plan component

that simultaneously improves the two objectives of the prob-

lem. This is done by first randomly selecting a pivot item, and

then identifying another item that could replace it and produce

an improvement in the objectives.

A. Algorithms based on combined operators

As the DP component, we selected DP methods based on

item importance computation, with fixed parameters VM = rd
and WP = 1. The particular configurations of the combined

operator were:

• DP20: In = 20.

• Rot PP DP10: First a rotation operator is applied. Then,

the packing routine heuristic is used to initialize the

packing plan. Finally, DP is applied, In = 20.

• Rot PP DP10 PI: First a rotation operator is applied.

Then, the packing routine heuristic is used to initialize

the packing plan. Subsequently DP is applied, In = 20.

Finally, a profit improver algorithm is applied.

• DP10 PI: DP is applied, In = 10. Then, a profit

improver algorithm is applied.

• DP 30 PI: DP is applied, In = 30. Then, a profit

improver algorithm is applied.

VII. EXPERIMENTS

The main goal of our experiments is to investigate the

impact that the proposed DP-based operators have on the

behavior of the MO-DP algorithm. To that end, we compare

the performance of the different methods. Although our goal

is not to propose a new state-of-the-art algorithm for the bi-

objective TTP, we do compare the results produced by the

best variants of the MO-DP with state-of-the-art methods and

analyze the differences in their behavior.

A. Function benchmark

We use the bi-objective function benchmark proposed for

the GECCO-2019 competition3. TTP instances in this bench-

mark were originally introduced, for the single-objective case,

in [15]. The benchmark comprises 9 problems whose char-

acteristics are described in Table I. There are three types of

knapsack instances according to their difficulty as investigated

in [9]: 1) uncorrelated, 2) uncorrelated with similar weights,

and 3) bound strongly correlated types. The description of the

knapsack type is given in columns bound, type corr., w and

corr. of Table I.

To compare the results of the algorithms we use the hy-

pervolume (HV) metric. A higher value of HV indicates that

the PF approximation produced by the algorithm is better.

The GECCO challenge established that algorithms should

produce a PF approximation of fixed size as output. The size

was specified for each group of instances as: (a280, 100),
(fnl4461, 50), (pla33810, 20).

3https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

TABLE I
TTP FUNCTION BENCHMARK, ORIGINALLY PROPOSED AS PART OF THE

GECCO-2019, AND USED IN THE EXPERIMENTS.

Instance n k bound type corr. w corr.

a280-n279 280 1 bd strong 0.1
a280-n1395 280 5 uncorr. ≈ 0.5
a280-n2790 280 10 uncorr. 1.0
fnl4461-n4460 4461 1 bd strong 0.1
fnl4461-n22300 4461 5 strong ≈ 0.5
fnl4461-n44600 4461 10 uncorr. 1.0
pla33810-n33809 33810 1 bd strong 0.1
pla33810-n169045 33810 5 strong ≈ 0.5
pla33810-n338090 33810 10 uncorr. 1.0

1) Parameters of the algorithm: There are a number of

general parameters used by the MO-DP algorithm. These

include:

• Population size: This was selected according to the PF

size defined for the GECCO-2019 challenge.

• Maximum number of generations: g = 1000.

• Window size for DP variants: w = 150.

B. Analysis of the DP operators

We compare different variants of DP operators, grouped in

the two classes introduced in Section V-A 1) Methods based

on item importance computation, and 2) Methods based on

item pre-selection. For the first class of algorithms, 8 pos-

sible configurations of the parameters: VM ∈ {profit, rd},

WP{1, 2}, In ∈ {1, 10} were evaluated. For the second class

of problems, we also evaluate 8 configurations, determined

by the parameters VM ∈ {weight, profit, ratio, PRH} and

In ∈ {1, 10}. The HV results produced by all the algorithms

are shown in Table II, where the best results for each class of

algorithms are highlighted.

It can be seen in Table II that, for each class of algorithms

there is a single configuration whose performance outperforms

the other. For the methods based on item importance compu-

tation, the best choice is to use a metric that scores the items

taking into account the distance from the end of the tour to the

the cities they belong to. This configuration keeps the original

weight of the solution being modified (WP = 1) and executes

10 repetitions of the DP operator. For the second class of

methods, the best combination includes the PRH metric, 10
repetitions of the DP operator, and in this case a maximum

capacity higher than that of the original solution. Considering

the two classes of algorithms, the best configuration of the

methods based on item importance computation is the absolute

winner for all instances, although in some cases the difference

between the HV of the first and second ranked algorithms is

small.

In general, the results indicate that scoring the items with

metrics that incorporate information about the distances be-

tween the cities is more effective that using the original profits

as the traditional DP operator does. Results also reveal that

more applications of the DP operator improve the quality of

the solutions. Finally, the effect of allowing DP to increase the

TABLE II
HV RESULTS FOR DIFFERENT VARIANTS OF DP OPERATORS.

VM In WP n279 n1395 n2790 n4460 n22300 n44600 n33809 n169045 n338090

rd 1 1 0.9175 0.8001 0.8676 0.8774 0.7866 0.8589 0.8145 0.7676 0.8512
rd 1 2 0.9012 0.7967 0.8664 0.8860 0.7851 0.8587 0.8303 0.7673 0.8510

profit 1 1 0.8527 0.7869 0.8630 0.8185 0.7835 0.8582 0.7911 0.7670 0.8510
profit 1 2 0.8785 0.7886 0.8637 0.8347 0.7838 0.8583 0.7950 0.7669 0.8509
rd 10 1 0.9177 0.8052 0.8759 0.9094 0.7988 0.8639 0.8769 0.7729 0.8527
rd 10 2 0.8985 0.8015 0.8716 0.9003 0.7933 0.8606 0.8714 0.7691 0.8518

profit 10 1 0.8236 0.7858 0.8636 0.8287 0.7836 0.8583 0.8051 0.7671 0.8509
profit 10 2 0.8570 0.7863 0.8632 0.8410 0.7840 0.8583 0.8099 0.7671 0.8509

weights 10 1 0.8638 0.7861 0.8635 0.8020 0.7842 0.8584 0.7893 0.7673 0.8510
weights 10 2 0.8726 0.7859 0.8632 0.8231 0.7841 0.8583 0.7938 0.7671 0.8509
profit 10 1 0.8532 0.7850 0.8631 0.8015 0.7832 0.8582 0.7873 0.7669 0.8509
profit 10 2 0.8560 0.7960 0.8635 0.8221 0.7849 0.8583 0.7913 0.7670 0.8510
ratios 10 1 0.8171 0.7852 0.8626 0.7995 0.7833 0.8582 0.7878 0.7669 0.8509
ratios 10 2 0.8691 0.7983 0.8650 0.8287 0.7850 0.8583 0.7952 0.7671 0.8509
PRH 10 1 0.8513 0.7858 0.8635 0.8094 0.7849 0.8584 0.8145 0.7680 0.8509
PRH 10 2 0.8862 0.8026 0.8689 0.8770 0.7839 0.8584 0.8479 0.7706 0.8522

total weight of the optimized solution depends on the type of

DP operator strategy selected.

C. Comparison with state-of-the-art algorithms

We compare the DP-based algorithms described in Sec-

tion VII-B with the three best contenders in an open challenge

held at GECCO-20194. Open challenges provide a unique

chance to test a variety of approaches. Each team had to submit

the Pareto sets found by their algorithm, where the number of

solutions in the Pareto set approximations were constrained

as done in this paper. Algorithms HPI, Jomar, and NTGA,

identified by the names of the teams that submitted them to

the challenge, reached the first, second and third places of the

challenge, respectively.

Due to the complexity of the problems, there were no

particular restrictions in terms of the computational time or

number of evaluations used by each team or in the number of

runs of the algorithms used to find the best PS approximation.

Therefore, our comparison focuses on the quality of the

obtained solutions.

For each of the DP-based algorithms, we ran 5 executions

of the algorithm with a maximum of 1500 evaluations. Each

algorithm produces an output of exactly l ∈ {100, 50, 20}
solutions. We then compute the set of non-dominated solutions

from the joint set of l × 5 outputs, and further refine this set

to only l solutions by removing those with lower individual

HV contribution. This is the set of solutions which is com-

pared to the state-of-the-art algorithms. Following the GECCO

challenge evaluation pipeline, the HV of all algorithms was

computed. The results are shown in Table III.

The analysis of Table III reveals that among the DP-based

algorithms, the best contender, for 7 of the 9 instances, is

Algorithm DP 30 PI, although the differences with algorithm

DP20, which does not incorporate any non DP-based op-

erator, are very small. For instances pla33810-n169045 and

pla33810-n338090, the best DP-based contender is Algorithm

4https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

Rot PP DP10 PI. These results suggest that for this large

instance, a component that modifies the TSP tour is indeed

important. Another remarkable observation is that algorithms

DP 30 PI, DP20, and Rot PP DP10 PI outperform algo-

rithms Jomar and NTGA for all pla33810 instances. Only

algorithm HPI beats them for this class of high-dimensional

problems.

To obtain a general assessment of the performance for the

complete set of instances, a ranking of all algorithms was

computed by assigning three points to the algorithm with the

best HV for each of the instances, 2 points to the second

ranked algorithm and 1 to the one ranked third. This ranking is

shown in Table IV. The first position in the rank is HPI, which

is the top performing method for all instances. In the second

position is Jomar. The best DP-based variant, DP 30 PI, ranks

third, above NTGA, the algorithm that was the third contender

for the GECCO competition. In summary, the algorithms are

competitive with jomar and NTGA, particularly for the hardest

instances, although they are not able to beat the best algorithm.

VIII. CONCLUSIONS

In this paper we have investigated the use of dynamic

programming for designing variation operators for the bi-

objective TTP problem. We have also presented a way to

implement an efficient evaluation of multiple TTP solutions.

The introduced variants of DP incorporate more information

about the TTP characteristics. Some of the introduced DP

variants exploit information about the TSP tour, effectively

combining information about the two TTP components. Our

results show that the use of DP as a variation operator can

lead to more accurate approximations of the Pareto front. The

comparison with state-of-the-art results has shown that some

of the DP variants are competitive with the best contenders.

However, this comparison can not be taken as definitive

since information about the number of evaluations or the

computational resources used to compute the best contenders

is not available. While our emphasis has been on the knapsack

component of TTP, further improvements are expected from

TABLE III
RESULTS OF THE COMPARISON BETWEEN ALGORITHMS THAT INCORPORATE THE DP VARIANTS AND THE STATE-OF-THE-ART ALGORITHMS

Algorithm n279 n1395 n2790 n4460 n22300 n44600 n33809 n169045 n338090

HPI 0.9404 0.8284 0.8860 0.9339 0.8229 0.8825 0.9229 0.8107 0.8748
Jomar 0.9387 0.8241 0.8864 0.9327 0.8187 0.8743 0.8356 0.7279 0.8521
NTGA 0.9307 0.8141 0.8809 0.9140 0.8076 0.8242 0.8819 0.7638 0.7788

DP20 0.9257 0.8064 0.8785 0.9150 0.8064 0.8697 0.8960 0.7795 0.8575
Rot PP DP10 0.9201 0.7949 0.8682 0.8348 0.7831 0.8581 0.8458 0.7949 0.8664

Rot PP DP10 PI 0.9205 0.7967 0.8682 0.8356 0.7831 0.8581 0.8464 0.7954 0.8671

DP10 PI 0.9262 0.8061 0.8780 0.9130 0.8038 0.8663 0.8896 0.7762 0.8556
DP 30 PI 0.9256 0.8065 0.8787 0.9153 0.8079 0.8716 0.8984 0.7831 0.8594

TABLE IV
JOINT RANKING OF THE DP-BASED AND THE STATE-OF-THE-ART

ALGORITHMS.

Algorithm

HPI 26
Jomar 13

DP 30 PI 5
Rot PP DP10 PI 4

NTGA 3
%hline Rot PP DP10 2

DP20 1
DP10 PI 0

exploring other ways to combine information from the two

TTP components.

A. Future work

There are several ways in which the work presented in

this paper could be extended. We have provided evidence that

different DP operators have different impact on the solution

of different instances, opening the door for their combined

application, a path that we intend to follow in the future.

Therefore, adapting the application of the operators to the

characteristics of the solutions seems a promising approach

since different areas of the Pareto set may require different

ways to explore them. Similarly, use of probabilistic modeling

strategies especially suited for permutation representations

[17], [21] could lead to more effective search operators for

the TSP component. Another possibility would be to design

TSP operators that, when applied together with the introduced

DP operators, could amplify their effect.

REFERENCES

[1] J. Blank, K. Deb, and S. Mostaghim. Solving the bi-objective traveling
thief problem with multi-objective evolutionary algorithms. In Interna-

tional Conference on Evolutionary Multi-Criterion Optimization, pages
46–60. Springer, 2017.

[2] M. R. Bonyadi, Z. Michalewicz, and L. Barone. The travelling thief
problem: the first step in the transition from theoretical problems to
realistic problems. In Evolutionary Computation (CEC), 2013 IEEE

Congress on, pages 1037–1044. IEEE, 2013.
[3] M. R. Bonyadi, Z. Michalewicz, M. R. Przybylek, and A. Wierzbicki.

Socially inspired algorithms for the travelling thief problem. In Pro-

ceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 421–428. ACM, 2014.
[4] M. El Yafrani and B. Ahiod. Population-based vs. single-solution

heuristics for the travelling thief problem. In Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2016), pages 317–
324. ACM, 2016.

[5] M. El-Yafrani and B. Ahiod. Efficiently solving the traveling thief
problem using hill climbing and simulated annealing. Information

Sciences, 432:231–244, 2018.
[6] H. Faulkner, S. Polyakovskiy, T. Schultz, and M. Wagner. Approximate

approaches to the traveling thief problem. In Proceedings of the 2015

Annual Conference on Genetic and Evolutionary Computation, pages
385–392. ACM, 2015.

[7] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research, 21(2):498–516, 1973.

[8] N. Lourenço, F. B. Pereira, and E. Costa. An evolutionary approach to
the full optimization of the traveling thief problem. In Evolutionary

Computation in Combinatorial Optimization, pages 34–45. Springer,
2016.

[9] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science, 45(3):414–
424, 1999.

[10] S. Martello and P. Toth. Knapsack problems: Algorithms and Computer

Implementations. John Wiley & Sons Ltd., 1990.
[11] Y. Mei, X. Li, F. Salim, and X. Yao. Heuristic evolution with genetic

programming for traveling thief problem. In 2015 IEEE Congress on

Evolutionary Computation (CEC), pages 2753–2760. IEEE, 2015.
[12] Y. Mei, X. Li, and X. Yao. Improving efficiency of heuristics for

the large scale traveling thief problem. In Asia-Pacific Conference on

Simulated Evolution and Learning, pages 631–643. Springer, 2014.
[13] Y. Mei, X. Li, and X. Yao. On investigation of interdependence

between sub-problems of the travelling thief problem. Soft Computing,
20(1):157–172, 2016.

[14] F. Neumann, S. Polyakovskiy, M. Skutella, L. Stougie, and J. Wu.
A fully polynomial time approximation scheme for packing while
traveling. CoRR, abs/1702.05217, 2017.

[15] S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and
F. Neumann. A comprehensive benchmark set and heuristics for the
traveling thief problem. In Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, pages 477–484. ACM, 2014.
[16] G. Reinelt. TSPLIB-A traveling salesman problem library. ORSA

Journal on Computing, 3(4):376–384, 1991.
[17] R. Santana, G. Sirbiladze, B. Ghvaberidze, and B. Matsaberidze. A

comparison of probabilistic-based optimization approaches for vehicle
routing problems. In 2017 IEEE Congress on Evolutionary Computation

(CEC), pages 2606–2613. IEEE, 2017.
[18] M. Wagner, M. Lindauer, M. Mısır, S. Nallaperuma, and F. Hutter. A

case study of algorithm selection for the traveling thief problem. Journal

of Heuristics, 24(3):295–320, 2018.
[19] J. Wu, S. Polyakovskiy, M. Wagner, and F. Neumann. Evolutionary com-

putation plus dynamic programming for the bi-objective travelling thief
problem. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 777–784. ACM, 2018.
[20] M. E. Yafrani, M. S. Martins, M. E. Krari, M. Wagner, M. R. Delgado,

B. Ahiod, and R. Lüders. A fitness landscape analysis of the travel-
ling thief problem. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 277–284. ACM, 2018.
[21] M. Zangari-de Souza, A. Mendiburu, R. Santana, and A. Pozo. Multiob-

jective decomposition-based Mallows models estimation of distribution
algorithm. A case of study for permutation flowshop scheduling problem.
Information Sciences, 397–398:137–154, 2017.

