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Abstract—This study presents an offline learning Simulated
Annealing approach to generate a constructive hyper-heuristic
evaluated through training and testing on a set of instances for
solving the Job-Shop Scheduling problem. The generated hyper-
heuristic uses a range of state features to control a set of low-level
constructive heuristics. A hyper-heuristic is represented in terms
of a set of rules, where each rule contains a fixed set of values
for the features in consideration and the low level heuristic to be
invoked. At each constructive step, the ‘closest’ rule is selected
and then the corresponding constructive low level heuristic is
applied. Our distance metric is the Euclidean distance between
the values within the rule and the state features characterising the
partial schedule along with the remaining jobs to be scheduled
for the partial solution. In this paper, we study a set of features
computed with various well-known metrics and different feature
transformation methods for improving the characterization of
the problem instances and solutions to Job-Shop Scheduling as a
part of our approach. Eight different scenarios are evaluated on
a set of randomly generated problem instances. Each scenario
represents a distinct approach combining a different feature
transformation applied during the training and testing phases.
The empirical results show that transformations can improve
the spread of feature values and the choice of the transformation
methods is influential on the performance of the overall approach.
A particular choice generates a slightly better performance when
compared to the standard approach, which uses the original
features at all times, indicating the potential of the proposed
approach for the future studies.

Index Terms—Hyper-heuristics, Job-Shop Scheduling Problem,
Feature transformation, Combinatorial optimization

I. INTRODUCTION

A Job-Shop scheduling problem (JSSP) is a challenging
combinatorial optimization problem studied by many re-
searchers and practitioners due to its many industrial and
practical applications. Solving a JSSP involves searching for
an arrangement of all jobs on a set of machines, subject to
two constraints: each machine must handle at most one job
at a time, and each job must respect a specified processing
order. At the same time, the solution must minimize the time
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needed to complete all jobs, that is, the makespan. Although
easily described, JSSP is an NP-hard problem.

There is a variety of approaches for solving a JSSP. Some
of the previous related works include metaheuristics such as
Simulated Annealing [1], Tabu Search [2], [3], and Genetic
Algorithms [4], [5]. Heuristics, also known as ‘“dispatching
rules”, represent another class of solution methods. They are
computationally cheap construction rules making decisions
throughout the search process to build a solution for a given
instance. Hence, through them, a problem instance can be
solved quite rapidly, but the solutions produced are likely to be
suboptimal [6]. Some examples of heuristics were presented
in the studies from Blackstone et al. [7], and Adams et al. [8].

Unfortunately, heuristics are often sensitive to the character-
istics of the problem instance. Their performance could change
dramatically from one instance to another. This variability
in their performance represents one major drawback that has
been the focus of attention in various works. One of the most
important ideas used to tackle this drawback is that, when
solving a given problem instance, the search incorporates a
learning module (e.g., a metaheuristic). Then, the learning
module applies heuristics in tandem, in such a way that the
search is conducted by combining their strengths. This high-
level method mixing low-level heuristics is broadly known
as a hyper-heuristic (HH) [9]. The term hyper-heuristic was
first used in 2000 to describe “heuristics to choose heuris-
tics” [10]. A more recent definition proposes that a HH is an
“automated methodology for selecting or generating heuristics
to solve computational problems” [11]. We usually classify
hyper-heuristics into constructive and perturbative [12], where
both types of hyper-heuristics have been employed in differ-
ent fields with promising results. For example, constructive
hyper-heuristics have been applied to bin packing [13], [14],
timetabling [15], and Job-Shop Scheduling [16] problems.
Similarly, perturbative hyper-heuristics have been applied to
packaging [17] and logistics [18] problems.

There are online and offline learning hyper-heuristics. This
study focuses on the latter, where a hyper-heuristic gets trained
on a set of sample instances. Furthermore, the model we



selected uses a set of features for mapping instances into
actions. After the model is trained, it can be applied to
unseen (i.e. test) instances. There is a vast number of works
on hyper-heuristics, where some of them deal with different
models, while others analyze diverse problems and ideas.

One of such ideas relates to transforming features. This
approach aims at enhancing the ‘readability’ of the instance
by separating conflicting regions while compressing the others.
An example of such conflict is a region in the feature space
where several rules interact, leading to small regions that
are prone to errors throughout the training phase. So, if
the evolution of a rule does not lead to the specific set of
required values, then the hyper-heuristic may perform poorly.
Hence, the model is sensitive to errors whenever training is
‘placing’ rules in the feature domain. However, when features
are transformed, the conflicting regions are expanded, and it
became less sensitive to the ‘placement’ error.

Despite the benefits that transforming features may have,
only a few studies have investigated its effect in offline
learning hyper-heuristics. A recent study targeted the do-
mains of constraint satisfaction and knapsack problems [19].
However, we are unaware of previous work targeting feature
transformations for solving JSSPs using an offline learning
constructive hyper-heuristic.

The remainder of this document is as follows. Section. II
presents the fundamentals that revolve around our proposal.
Afterward, Sect. III summarizes our hyper-heuristic model and
the way to carry out feature transformations for the JSSP. The
experiments are presented in Sect. IV, whilst Sect. V discusses
the results obtained from those experiments. Finally, we wrap
up the work with the most relevant conclusions and some ideas
for future work (Sect. VI).

II. BACKGROUND AND RELATED WORK

This section presents the fundamental concepts required for
understanding our approach.

A. The Job-Shop Scheduling Problem (JSSP)

Consider a set of n jobs J = {j1, ja, ..., jn } to be processed
individually and sequentially on one or more machines from
a set of m machines M = {my, ms, ..., m,, }. Naturally, each
processing time varies case-by-case. It is also assumed that the
sequence of the ¢-th job on the k-th machine is given by a set of
activities A; = {a; 1, ai2, ..., 4;.m} € A with a corresponding
set of processing times T; = {t4, ,, %, 5 ---s ta, ., }- Therefore,
a JSSP consists in generating a timetable that minimizes
the makespan and ensures that all jobs are completed. The
makespan corresponds to the time at which the last activity of
the whole schedule finishes. Also, a solution of the JSSP is
only valid if it complies with the following constraints [20]:

1) Precedence—An activity can only be scheduled after the

preceding ones have ended.

2) Capacity—Each machine can only process an activity at

any given time.

3) Non-preemption—An activity cannot be interrupted

when it has been scheduled into a machine.

B. Selection hyper-heuristics

Selection hyper-heuristics are general approaches that com-
bine heuristics into a single solver. In this work, we use a
constructive selection hyper-heuristic model (cf. Sect. III-A).
Bear in mind that the role of a HH is to provide a heuristic h to
use at each state S; of a JSSP instance. Every S; is represented
as a set of predefined features. How the HH determines A is
a topic of high research interest [12], [21], [22].

The main drawback of hyper-heuristics, when compared
against heuristics, is that they are computationally more expen-
sive since they usually require an iterative process for training
the model. For example, Tabu Search [23] and Evolutionary
Algorithms [24] have been used in the past. In this work, we
consider another approach based on the Simulated Anneal-
ing (SA) algorithm [25]. Literature evidences its successful
application in perturbative selection hyper-heuristics [26]-
[28]. Also, this approach includes a stochastic acceptance
criterion that has proven useful in the context of hyper-
heuristic development and testing [29].

C. Feature Transformations

Transforming features is an idea that has already been
explored in other disciplines, such as data mining [30]. The
idea is to improve the ‘shape’ of the problem domain when
mapped through the set of features so that a learning algorithm
can differentiate states more easily and, thus, can be better
trained. So, feature transformations represent a data pre-
processing step aimed at reshaping feature values. The goal:
aid a learning algorithm throughout the training phase. An
illustrative example rests in the work of Yu et al. [31], where
the authors studied people recognition from photographs taken
with several camera views. They transformed features to
account for feature distortions that arise from each camera.

Regarding hyper-heuristics, the incorporation of feature
transformations has been scarce, as it began recently. Authors
have mainly focused their efforts on the CSP and knapsack
problem domains [19], [24]. Here, the idea of using such trans-
formations has been to better differentiate among heuristics.
This is achieved by changing features for their transformed
versions. In doing so, the feature domain (i.e. what the hyper-
heuristic ‘sees’) shifts and specific regions can be targeted. So,
a sigmoid-based transformation can be used for prioritizing
a given region by enhancing differences within the region
of interest and tuning out values outside it. This way, the
effect of altering the hyper-heuristic model (during training)
can be more easily perceived. Hence, the process becomes less
sensitive to differences between the ideal location of rules and
values found at each training iteration. Furthermore, this also
allows for higher flexibility as the resolution is increased over
the region of interest. This, in turn, provides an opportunity
for refining rules in such a way that better decisions are made,
which may delay training stagnation.

The effect of feature selection on HHs has also been studied
in the literature. However, we do not delve into it due to space
restrictions. The interested readers are referred to [32], [33].



D. Simulated Annealing (SA)

Simulated Annealing (SA) was among the first meta-
heuristics to appear in the world. This approach was proposed
by Kirkpatrick, Gelatt and Vecchi back in 1983 [25]. SA stands
as one of the simplest and most general techniques available
in the literature. This algorithm was inspired by the crystal-
lization process of cooling a material. It begins by repeatedly
suggesting random modifications to the current solution but
progressively begins keeping only those that improve it. The
algorithm uses a probabilistic rule to decide whether a new
solution is accepted. Such a rule involves the change in fitness
(i.e., the value of the objective function) by measuring how
much it improves. It also includes a “temperature” parameter
that reflects simulation progress.

Dueck and Scheuer presented a deterministic acceptance
rule for SA [34]. They suggested accepting any random modi-
fication that does not worsen the solution by more than a given
threshold. But, the threshold decreases as iterations progress.
This variation of SA is known as Threshold Accepting (TA).
Nonetheless, both versions of SA have some parameters that
may be tuned. Among the most relevant ones is the cooling
schedule, which determines how temperature is updated. More
details on the different applications of SA can be consulted
in [35], [36].

Simulated Annealing has been applied to many optimization
problems, including combinatorial ones. Recent examples in-
clude the work of Karagul et al., where the authors tackled the
Green Vehicle Routing Problem with Fuel Consumption [37].
Also, Wei et al. worked on the Capacitated Vehicle Routing
Problem with two-dimensional loading constraints [38]. Other
works have focused on studying different SA variants [39].

III. OUR PROPOSED APPROACH

This section describes the tools that we used for studying
feature transformation on JSSPs.

A. Selected hyper-heuristic model

In this work, we employed the hyper-heuristic (HH) model
presented in [40], which is based on [13]. This model can
be represented as an array of blocks (Fig. 1). Each block is
defined by a set of features {fi 1, fi2,..., fiq} and a solver
(i.e., an action) to be used. Such a couple portrays a rule.

At each step of the solution, the HH calculates the current
state of the problem S; and compares it to each block. The
comparison finds the closest block, in terms of Euclidean
distance, and it returns the corresponding action. Note that
the number of features on each rule may differ and that more
than one rule may target the same action. Nonetheless, for this
research, we used a fixed number of features on every rule.

B. Features considered in this work

Features can be defined from two perspectives. One relates
to the state of the solution (i.e., schedule) and the other
one to the state of the problem (i.e., what remains of the
problem instance). We selected some features of both kinds,
as described next.

« Solution features:

1) Average processing time (APT)—Ratio between the
summation of processing times of scheduled activi-
ties, and total processing time. This feature provides
a rough progress estimate.

2) Dispersion of processing time index for scheduled
activities (DPT)—Ratio between the standard devia-
tion of processing times and the mean of processing
times, considering only the scheduled activities.

3) Makespan slack ratio (SLACK)—Ratio between the
amount of unused machine time (slack) in the whole
schedule and the current makespan of the schedule.
A higher slack indicates that activities are more
spread out, though it also represents space that could
be used to schedule smaller activities.

o Problem features:

4) Average pending time (NAPT)—Complement of
APT. It represents the ratio between the summation
of processing times of pending activities, and total
processing time.

5) Dispersion of processing time index for pending
activities (DNPT)—Equivalent to DPT, but consid-
ering only the pending activities.

6) Average pending processing time per job (NJT)—
Ratio of the average pending processing times per
job and the total processing time.

C. Heuristics considered in this work

A heuristic is a simple rule that specifies which activity to
schedule next. We selected them based on their performance,
striving for variety, and both good and bad results. So, let
A, C A be a list of activities to be scheduled. Recall the
definitions of a;  and Z,, , from Sect. II-A. Besides, let p; ;. be
the time it takes to complete activity a; ;. Hence, the following
heuristics can be defined:

1) Shortest Processing Time (SPT)—Select the activity

from A, with the shortest p; .

2) Largest Processing Time (LPT)—Select the activity from
A, with the largest p; .

3) Maximum Job Remaining Time (MRT)—Sum the pro-
cessing time of all pending activities for each job. Then,
select the job with the highest value and return its
upcoming activity (considering precedence).

4) Most Loaded Machine (MLM)—Find the machine with
the maximum total processing time my,,. Return the
feasible activity a; x,, with the lowest ., , . If no activity
is feasible, ignore this machine and repeat the process.

5) Least Loaded Machine (LLM)—Similar to MLM, but
considers the machine with the minimum total process-
ing time my, .

6) Earliest Start Time (EST)—Select the activity from A,
that has the earliest possible starting time.

D. Training of the hyper-heuristic model

Training a suitable hyper-heuristic for solving the JSSP
implies finding appropriate features and action values for each
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Fig. 1: Example of a hyper-heuristic with three rules (HH) and possible ways to generate a neighboring one. Each rule is
formed by a set of features f; ,, and a corresponding action 7;, which represents a call to a specific heuristic.

rule. There are many ways to carry out this process. How-
ever, we chose the Simulated Annealing (SA) algorithm, as
mentioned above. Hence, SA minimizes the objective function
(cf. Sect. III-E) following Algorithm 1 over a set of training
instances. Note that a neighbor HH (line 5) is generated by
mutating the current HH with one of the following approaches
(Fig. 1):

1) Add new rule—The hyper-heuristic grows by one block
with random values.

2) Remove rule—The hyper-heuristic shrinks by losing a
randomly selected block. This process is omitted if the
hyper-heuristic only has one block.

3) Perturbate feature—A random block and feature are
selected and replaced by random values.

Algorithm 1 Hyper-heuristic training with SA

Set initial parameters: temperature € and cooling rate ¢
Generate an initial random hyper-heuristic HH
Set the best hyper-heuristic as HH* = HH
while System is not cool (# > threshold) do
Create a neighbor hyper-heuristic HH,,
Calculate fitness function for HH and for HH,,
If ACCEPTANCE(HH, HH,,) < rand then HH = HH,,
if fitness of HH < fitness of HH* then HH* = HH
Update temperature 6 = 6(1 — ¢)

return HH".
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E. Objective function used in this work

We measure the hyper-heuristic performance by comparing
its makespan (CfI") with the one given by the best heuristic
(Ch,), i.e., the Oracle. Bear in mind that negative values are
allowed and desired. This implies that the hyper-heuristic out-
performed all heuristics. Since several instances are analyzed
at every training iteration, the objective function must consider
an accumulated value. Hence, d(HH) : H — R represents a
feasible objective function such as:

N
1 <X CHH _
dHH:—E I 1

where HH is the hyper-heuristic, N; is the number of instances
that it solves.

F. Instances used in this work

We used two kinds of instances. They both relate to the
work of Taillard [41]. One set of instances is used for training
purposes and was created by us following the proposal laid
out by Taillard. The other one is used for testing purposes and
corresponds directly with instances published by the author.
According to him, the latter represents the most difficult ones.
All the instances have the following nature: fixed processing
times, no set-up times, no due dates nor release dates, and
processing times for each activity between 1 and 99.

G. Feature transformations used in this work

Many transformations can be applied to the features of
a JSSP. Some of them have already been applied to other
problem domains [19]. However, the main goal remains the
same: to separate regions of influence for each heuristic. In
this work, we analyzed two of such ideas, but for JSSPs: the
linear (1) and the s-shaped (®g) transformations. They are
defined in (2) and (3). M; and W; are the mid-point and half-
width of the transformation, respectively. These parameters
are defined in terms of a transformation range, bounded by
lower (a) and upper (b) values, as shown in (4). Such a
definition allows analyzing the effects of different ranges
on each feature. Moreover, it enables exploring how hyper-
heuristic performance changes under such ranges.

“"M’*Wi}}, @)

6M; [ x; -1
Og (i, My, W) =1 — (1 +e'i (Mi_l)) ) 3)
a)/2. 4)

To apply the transformations, the original feature value must
be calculated and then mapped through the corresponding
equation. Afterward, the hyper-heuristic model operates, as
usual, measuring Euclidean distances and selecting the closest
rule, as mentioned in Sect. III-A.

D (2, M;, W;) = max {O,min {1,

M;=(a+0)/2, and W;= (b—

IV. METHODOLOGY

Throughout this work, we followed a dual-stage methodol-
ogy. The idea was to determine how feature transformations
may affect hyper-heuristic performance when tackling Job-
Shop Scheduling Problems. So, we began by analyzing how



feature values change and then focused on hyper-heuristic
performance.

A. Effect of transformations in feature values

Recall that the transformations used in this work
(Sect. III-G) can be tailored. Through this stage, we focused
on the dispersion across heuristics, seeking to differentiate the
feature path followed by each solver.

The features considered in this work (cf. Sect. III-B) are
associated with the problem or to the solution, respectively.
Considering that only the initial values of the former change
from one instance to the other (i.e., the initial solution is
always empty), we began by analyzing said effect through
the NJT and DNPT features. To do so, we applied the s-
shaped transformation (ST) in such a way that it covered the
whole [0, 1] range. The linear transformation was disregarded
as it represents a direct mapping and thus had no effect over
the data. We then analyzed the effect of the ST across the
solution process. So, we gathered data about the original and
transformed values at every step and for all features and
heuristics. This was done to detect whether paths converge
after some point, even if initially spread out by the ST.

B. Effect of combining transformations

As a second stage, we analyzed the effect of using trans-
formed features when training hyper-heuristics. Although the
set of features comprises six elements, it is convenient to select
a pair of them for studying interactions more efficiently. Since
NIJT and DNPT can be studied without solving the problem,
they were selected for testing. In particular, we aimed to
assess the effect of assigning a different transformation to each
feature. Thus, we analyzed all combinations of transformations
for these two features, as shown in TABLE 1. It is important
to highlight that, for all tests, the transformation range was
defined as [0.4, 0.7], based on the data that will be shown in
Sect. V-A. Moreover, the four remaining features were con-
sidered in their original domain (i.e., without transformations).
Each one of these experiments was repeated 30 times. Also,
30 instances of size 5 x 5 were used during training, whilst
five instances of size 15 x 15 were used for testing.

TABLE I: Experiments for analyzing the effect of combining
transformations in the [0.4, 0.7] range. O: Original feature
value. S: S-shaped transformation. L: Linear transformation.
In all cases, the remaining features were used in their original
domain (i.e., without transformations).

EO1 E02 EO03 E04 EO5 E06 EO07 EO08 E09

NJT O O L L L S S O S
DNPT O L O L S L S S O

Feature

V. RESULTS
A. Effect of transformations in feature values

Fig. 2 shows the effect of using the s-shaped transforma-
tion (ST) over the NJT and DNPT features. As can be seen,
the transformed values cover a wider range than the original

+ Original x Transformed
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0.600 . X
0.575 1 X
05501 , xx
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DNPT
Fig. 2: Original (blue dots) and transformed (red crosses) fea-
ture values for 30 instances of size 15 x 15, when considering
an s-shaped transformation covering the [0, 1] range.

NJT
L4
x

ones. In fact, both ranges are almost doubled due to the
transformation. Nonetheless, distribution shape is preserved.
It is also important to diversify paths that the features
follow when solving an instance. Fig. 3 compares the original
and transformed paths for each feature and heuristic, for a
15 x 15 instance. Because of the size of the instance, there
are 225 actions to schedule, so 225 steps are required (each
step schedules an action). Although separation among paths is
not quite evident in all cases, the spread for NJT, DPT, and
SLACK is clear. Such a separation is measured at each step of
the solution. A higher separation means that heuristics yield
partial solutions that are more different among them. Thus, the
effect of using one or the other should be easier to identify.
This, in turn, may be fruitful when training hyper-heuristics.

Consider the NJT feature as an example. The variation
range of original values was below 0.1 units for most of
the solution process. However, by implementing the s-shaped
transformation, such a range grew to over 0.2 units. A similar
effect occurred with the DNPT feature, though this time, the
whole feature values also shifted upwards. In the case of the
SLACK feature, the transformed feature can achieve a spread
of about half the range for most of the solution process. The
original feature, instead, was never able to achieve such a
feature spread.

Despite feature diversity, it is interesting to analyze whether
the distribution of features is affected by the transformation.
Even though values change, in most cases, the general behav-
ior of the feature holds. The only exceptions are for features
with an approximately linear behavior. That is, features APT
and NAPT. The reason: The mathematical model of the
transformation maps a straight line between [0, 1] into a
line that follows an s-shape in the same range. Hence, linear
relationships for small ranges should be mapped into similar
relationships with higher slopes. Please note that such an effect
becomes stronger as the range grows smaller and as long as it
does not belong to extreme values of the transformation. So,
this kind of transformation provides the right way of enhancing
feature diversity without compromising feature behavior.

As it was mentioned in the Methodology, using the linear
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Fig. 3: Original (blue) and transformed (red) feature values for
all heuristics when solving an instance of size 15 x 15, and
considering an s-shaped transformation in the [0, 1] range.
Horizontal axis: Step number. Vertical axis: Feature values.
Lines: Path of feature values generated by each heuristic. Each
subplot represents a different feature: (a) APT, (b) NJT, (c¢)
DPT, (d) SLACK, (e) DNPT, and (f) NAPT.

transformation (LT) has no effect whatsoever. Nevertheless,
this does not imply that such a transformation is useless.
Consider, for example, Fig. 4, where the original and trans-
formed values of the APT feature are shown. Here, using a
LT with a range between [0,0.1] seems to improve the spread
for the lower region. Although, it worsens the spread after the
feature reaches the value of one. This indicates that additional
tuning should be done for each transformation to detect the
best parameters for each feature and transformation.

Since we will now move on to analyze the HH performance,
it is necessary to define a range for the transformations. For
this work, the only features that will be transformed are NJT
and DNPT (cf. TABLE I). It is essential to consider not
only the initial feature values (Fig. 2), but also the values
that could be selected throughout the search. Even though
Fig. 3 provides such a variation, it is important to remark
that these values are only valid when using the same heuristic
to solve the whole instance. Nevertheless, Fig. 3 allows us
to glimpse at the feature range that could be expected. Both
features begin slightly over the 0.5 mark. Afterward, the NJT
remain virtually stable for some heuristics, while it diminishes
for others, nearing the 0.4 mark. After half the problem has

1.0

APT
[w]
[

|

0.0 +

T T T

0 100 200

Fig. 4: Original (blue) and transformed (red) values of the
APT feature for all heuristics when solving an instance of
size 15 x 15, and considering a linear transformation in the

[0, 0.01] range.

been solved, all heuristics begin providing increasingly higher
feature values. When the problem is nearing completion,
features oscillate and reach both higher and lower values. In
the case of the DNPT feature, the effect is slightly different.
Only a couple heuristics remain stable while the others begin
increasing the feature value, reaching values around the 0.7
mark. The only time when the feature falls below 0.5 is at the
last steps of the solution and for only one heuristic. Because
of this, the transformation range [0.4, 0.7] is defined for both
features.

B. Effect of combining transformations

Fig. 5(a) shows the training data for each combination of
feature transformation. Here, experiment E02 (O, L) seems
to be the best result. Even though the numeric difference
across scenarios seems small, the gain in stability is evident.
In fact, the range of hyper-heuristic performance diminished
by almost 50%. Moreover, the mean performance improved
by almost 0.01 units. Nonetheless, the median performance
did not improve as much, implying that data is skewed.
However, another set of transformations performed well. Our
data showed that linearly transforming NJT and using an
s-shaped transformation for DNPT also improves performance.
Actually, under these conditions, both median and mean are
quite close. They also represent a similar improvement to
the already mentioned scenario (almost 0.01 units). Also, this
combination of transformations did not improve stability. Be-
sides, there was not a single hyper-heuristic (for any scenario)
that outperformed the Oracle.

Fig. 5(b) shows performance data over the testing set. This
time, however, another scenario reigned. The (L, O) com-
bination (E03) yielded the best hyper-heuristic performance.
Nonetheless, once again, there was no significant improvement
concerning the other cases. No combination of transformation
allowed shrinking the variance of hyper-heuristic performance.
Even so, the best performing hyper-heuristic when linearly
transforming NJT was about 0.25 units better than the best
traditional hyper-heuristic. A similar effect also happened to
the mean and median performing hyper-heuristics. Although,
to a lower degree. In the first case, a difference of only about



0.03 units was achieved. In the second one, however, the gain
raised to about 0.12 units.

It is important to highlight that all testing scenarios con-
tained hyper-heuristics that outperform the Oracle. This is
rather interesting since this feat was impossible at the training
phase when HHs were being optimized to solve the instances.
A possible explanation for such a behavior relates to the
difficulty of instances. Bear in mind that, although all instances
were generated with the same approach, the ones used for
testing are those Taillard found to be most challenging.

VI. CONCLUSION AND FUTURE WORK

In this study, we explored the influence of feature trans-
formations on the performance of an offline learning con-
structive hyper-heuristic (HH) for Job Shop Scheduling Prob-
lems (JSSPs). We began by analyzing how feature spread
changes when solving the problem with different heuristics and
transformation models. Then, we observed the hyper-heuristic
performance under different transformation conditions.

Our tests revealed that transformations can, indeed, signifi-
cantly change the feature paths traversed by each heuristic (cf.
Fig. 3). Even so, this does not seem to alter the shape of the
path beyond the own shape of the transformation. For example,
in the case of the s-shaped transformation (Fig. 3) only features
APT and NAPT changed shape. The reason for this was the
linear behavior of the original feature, which entailed a change
into the s-shaped behavior of the transformation. However,
all other features preserved their behavior. Nonetheless, they
changed by expanding the differences at a single solution step.
For example, in the case of the NJT feature, spread became
about twice as big.

Even though this should have improved hyper-heuristic
performance, something different happened. We detected that
transformations mainly seem to increase hyper-heuristic stabil-
ity. It means that the performance of two HHs trained under
the same conditions will be more similar when using a proper
transformation than when using the original feature values.
Hence, a lower number of repetitions may be required for
representing adequate behavior when using hyper-heuristics.
In the case of the training set, linearly transforming DNPT
with the [0.4, 0.7] range yielded the most stable results. It
yielded a performance range of about 50% smaller than the
base case. Despite this, our data revealed that transformations
tend to worsen the hyper-heuristic stability in the test set.
Such behavior may rest on the noise provided by features that
remained in their original state. These may have a stronger
effect than the transformed features, thus biasing conclusions.
Even so, an interesting behavior arose. No hyper-heuristic
(with or without transformation) was able to outperform the
Oracle in the training set. However, in all testing scenarios, at
least 25% of the HHs outperformed the Oracle. This may be
due to instance difficulty or, to instance likeliness. We plan on
further exploring such elements in upcoming studies.

In summary, even though feature transformations increased
feature dispersion across heuristics in a clear way, the hyper-
heuristic performance was not as strongly influenced. We

believe that this behavior is, in part, due to the effect of the
features that remained in their original state. However, it may
also be due to the need to use more specific ranges for each
feature. Thus, coming up with a methodology that automati-
cally tunes a transformation range may benefit hyper-heuristic
performance. Such an approach will be explored in future
work. We plan on using a pre-processing step for analyzing
instances and determine the most convenient transformation
range for each feature. Another avenue for future work lies
in analyzing the effect of other transformations. This may be
as simple as using other mathematical models or as complex
as using approaches such as Fuzzy logic. Finally, this work
only considered a rule-based selection hyper-heuristic due to
its exploratory nature. So, we plan on extending this work to
other HH models as well as to other problem domains.
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