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Abstract—One of the main issues in the control system is the
online tuning of its gains. The use of bio-inspired algorithms
(BA) is gaining more attention in the control tuning task because
they are less sensible to system uncertainties. Nevertheless, the
computational time of BA must be reduced to be used in
practice. In this work, an event condition is stated to reduce
the computational cost of the optimization process in the online
bio-inspired tuning approach. This condition activates the tuning
approach only when it is required, i.e., when the regulation error
tends to increase. Also, in this approach, an identification process
and a predictive strategy are simultaneously optimized to find
the more suitable control parameters that handle more efficient
the parametric uncertainties. The proposed online Asynchronous
Bio-inspired Tuning Approach with Simultaneous Identification
and Prediction (ABioTASIP) is validated in the study case of
the velocity regulation of a DC motor considering dynamic
parametric uncertainties. The comparative analysis with an
approach where the control parameters are periodically tuned
indicates that the proposal decreases the tuning process without
considerably increase the regulation error.

Index Terms—Optimum tuning, DC motor, Event based tun-
ing, bio-inspired algorithms

I. INTRODUCTION

The DC motor is one of the most used electro-mechanical
actuators in the industry. Since the control theory emerges in
the 1940s [1], one of the main issues is to provide an efficient
control system under parametric uncertainties. The proposal on
a new control system that guarantees the closed-loop control
system stabilization has been addressed for many decades [2],
[3]. Nevertheless, satisfying a set of control specifications
and requirements is the other important issue in industrial
applications. This issue is handled by using controller tuning
methods since the Proportional-Integral-Derivative (PID) con-
troller tuning rules were introduced by Ziegler and Nichols in
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1942 [4]. Since that time, several tuning strategies have been
proposed for linear systems [5].

However, for nonlinear systems with uncertainties, the adap-
tive tuning methods [6] are the most effective approach to
handle uncertainties [7]. These methods periodically update
the control parameters at each fixed period. One proposal is to
find such parameters based on the solution of an optimization
problem to accomplish a desired control design trade-off.
Recently, controller tuning is one of the most crucial problems
in Intelligent Control [8], which integrates the computational
intelligence and soft computing to formulate methodologies
based on the knowledge and rules.

Among computational intelligence techniques, evolutionary
algorithms have been widely accepted in the tuning methods
which require an optimization process to find the most suitable
control gains [9]–[11]. The above because they are robust, find
solutions near the global one in non-convex and discontinuous
design space, and do not require specific problem charac-
teristics such as the continuity in the performance functions
and constraints. For instance, the type-1 fuzzy logic controller
for the water tank regulation control and the mobile robot
trajectory tracking (benchmark control problems) is tuned
in [12] by adopting the Bee Colony Optimization (BCO)
algorithm with a fuzzy dynamic adaptation of the BCO
parameters. With a similar idea but with the use of Firefly
Algorithm (FA) is investigated in [13]. The results statistically
indicate that the fuzzy dynamic adaptation of the bio-inspired
algorithms improves the exploitation and exploration of the
search mechanism and then, provides an outstanding design in
the fuzzy controller. In [14], the PID control gains are designed
by considering robustness in the obtained solution. The design
is done by including sensitivity function constraints into the
optimal tuning problem and solving by the Particle Swarm
Optimization (PSO). The simulation results indicate that the
unmodeled dynamics or uncertainties, which are not taken
into account into the optimal tuning process, can significantly
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affect the controller performance. Still, with the proposal, this
is reduced.

Another controller tuning procedure which includes the
robustness specification is given in [15], where the fractional
order proportional integral speed controller for a Permanent
Magnet Synchronous Motor (PMSM) is tuned by using Dif-
ferential Evolution (DE) algorithm. Different types of electric
motors have utilized the Proportional-Integral (PI) controller
tuning for improving speed regulation. The obtain controller
parameters is based on the use of different optimization
techniques such as Bacteria Foraging Optimization Algorithm
(BFOA) and the FA in [16], the Ant Colony Optimization
(ACO) in [17], the Imperialist Competitive Algorithm (ICA) in
[18] and the Differential Evolution (DE) algorithm [7]. Other
control tuning proposals as in [19]–[24] relate the diverse set
of trade-off among several indicators of control performance
to provide a collection of alternatives to the designer. Then,
multi-objective optimization problems are stated and solved
by using different Multi-Objective algorithms such as Non-
dominated Sorting Genetic Algorithm II and III (NSGA-II
and NSGA-III), Multi-objective Particle Swarm Optimization
(MOPSO), Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D), the third evolution step of Gen-
eralized Differential Evolution (GDE3), Strength Pareto Evo-
lutionary Algorithm II (SPEA-II) among other multi-objective
optimizers. In [25] the PI control gains of a linear induction
motor are dynamically tuning by using Genetic Algorithms. In
[26], the use of diverse bio-inspired algorithms such as Dif-
ferential Evolution (DE), Particle Swarm Optimization (PSO),
Bat Algorithm (BAT), Firefly Algorithm (FFA), Wolf Search
Algorithm (WSA) and Genetic Algorithm (GA) are studied
for the optimal tuning of the DC motor speed controller.
The (1+1)-Dynamic Evolution Strategy is used in [27] for
tuning PI controller in a real single-degree-of-freedom robotic
mechanism. The study of different Pareto-front approximation
search approaches in multi-objective evolutionary algorithms
in the controller tuning of the four-bar mechanism is presented
in [28].

The main characteristics of the previous works are 1) The
optimum tuning process is based on bio-inspired algorithms.
2) In the control tuning approaches given in [7], [13]–[24],
the optimum control gains remains fixed through the dynamic
simulation of the closed-loop system i.e., the control gain
parameters do not change through the time, and then, those
works do not adequately handle uncertainties that are not
considered in the control optimal tuning formulation. 3) The
optimum tuning process is executed online (adaptive bio-
inspired tuning approach) in [25]–[28] and hence, the control
gain parameters are changed through time (dynamics control
gains) which provide more robustness under the effects of
uncertainties than those where optimum control gains remain
fixed all the time. 4) Identification and predictive strategies
are not simultaneously used in the adaptive bio-inspired tuning
approach.

Consequently, the adaptive bio-inspired tuning approach
results in a high computational cost due to the high compu-

tational complexity in the optimization process or the plant.
Then, the experimental evaluation in a real system or a
Hardware in the Loop (HiL) platform or embedded devices
may be prohibitive [29] because of the requirement of high-
performance computational resources. This periodic compu-
tation of the control gains is a waste of system resources,
computational power, and even of network bandwidth and
energy in the data broadcast when the tuning process is in a
network as in Industry 4.0. Then new methodologies must be
proposed to reduce the computational burden in the controller
tuning, and to the best author knowledge, this is an unexplored
area.

In this paper, an online Asynchronous Bio-inspired Tuning
Approach with Simultaneous Identification and Prediction
(ABioTASIP) is proposed to reduce the computational cost
of the tuning process. The execution of the tuning strategy
is based on an event function proposal which provides an
asynchronous update of the controller gain parameters. The
proposed event function is derived from the rate of change
of the Lyapunov function [30], [31]. Besides, the proposed
ABioTASIP is based on the simultaneous identification and
predictive processes when the event function is activated. It
concurrently estimates the system parameters and predicts the
future system behavior at the current time to provide the
suitable control gains to the next time intervals. The proposal
is numerically validated in the speed regulation of the Direct
Current (DC) motor under static and dynamic uncertainties.
Simulation results show that the proposal reduces the com-
putational time and provides a suitable regulation control
performance concerning the adaptive tuning approach where
periodic activation of the tuning process is considered, and
also the identification and predictive strategies are considered
in separated stages.

The rest of the paper is organized as follows: Section II
described the design of the event function for the activation
of the DC motor controller tuning. The description of the
ABioTASIP is detailed in Section III. The comparative anal-
ysis between the proposal with a Synchronous Bio-inspired
Tuning Approach with Independent Identification and Pre-
diction (SBioTAIIP) is discussed in Section IV. Finally, the
conclusions are drawn in Section V.

II. DESIGN OF THE EVENT FUNCTION

Let’s consider the null stabilization and the system dynamics
(1) in the state vector x(t) ∈ Rn with the input vector u ∈ R,
where A ∈ Rn×n and B,C(t) ∈ Rn are constant matrix and
vectors, respectively.

ẋ(t) = Ax(t) +Bu(t) + C(t) (1)

As the proposed controller tuning process requieres the
update of the controller parameters only when is needed,
an event function ē(x(t), x(t − ∆t)) : Rn × Rn → R is
proposed to inform about the suddenly changes in the current
state vector x(t) (changes where the system stabilization is
perturbed), where t ∈ R+ is the current time, t − ∆t is the



previous time and x(t−∆t) is the state vector in a previous
sampling time ∆. This event function ē(x(t), x(t−∆t)) must
be computed at each sampling time ∆t > 0 in order to monitor
if the controller parameters needs to be updated (ē ≤ 0) with
the ABioTASIP or continue as in the last update.

To apply the proposed event function ē, the assumption
that the controller u asymptotically stabilize the closed-loop
system to the origin must be considered. Then, there will be
a Lyapunov function V (x(t)) where the definite negative of
the derivative of V is guaranteed. Considering this fact, the
difference of the rate of change of the Lyapunov function at
the current time t and the previous one t−∆t is proposed as
the event function ē (2).

ē(x(t), x(t−∆t)) = V̇ (x(t))− V̇ (x(t−∆t)) (2)

Consider a system expressed in the form (1) with the control
strategy u as in (3) and the control gain vector K ∈ Rn,

u = −Kx− BTC(t)

‖B‖
(3)

and the function V : Rn → R given by

V (x(t)) = xTPx (4)

Then, a sufficient condition for using V̇ (x(t)) in the event
function is that there exist two symmetric positive definite
matrices P ∈ Rn×n and Q ∈ Rn×n [32], such that the matrix
ATP + PA+Q is negative definite.

III. ABIOTASIP IN THE DC MOTOR

The dynamic model of the brushed DC motor is provided in
(5)-(6) [3], where the involved variables describe the angle q,
the angular speed q̇ and the angular acceleration q̈ of the shaft ,
the armature current ia, the rotor inertia moment J0, the torque
constant km, the viscous friction coefficient b0, the load torque
τL, the armature resistance Ra, the armature inductance La,
the back-electromotive force constant ke and the input voltage
Vin.

La
dia
dt

+Raia + keq̇ = Vin (5)

J0q̈ + b0q̇ = km

(
ia −

τL
km

)
(6)

Using the transformed dynamics of the DC motor z =
[q̇, q̈]T given in [7] and considering the load torque as τL = 0,
the motor dynamics in the error state x = z − x̄T is
provided in (7), where x̄ = [x̄1, 0]T represents the velocity and
acceleration desired reference, and the DC motor parameters
are grouped in θ0 = ke+ Rab0

km
, θ1 = J0Ra

km
+ Lab0

km
, θ2 = J0La

km
.

ẋ2 =
1

θ2
u− θ0

θ2
x1 −

θ1

θ2
x2 +

θ0

θ2
x̄1 (7)

According to Section II, the controller u in (8) asymptoti-
cally regulates the speed of the DC motor whether θ̃0 = θ0.

u = −Kx+ θ̃0z̄1 (8)

Then, considering the matrix P as an identity matrix, the
event function ē is proposed as in (9).

ē =
∑

(ni=1x
2
i (t−∆t))︸ ︷︷ ︸ −

−V̇ (x(t−∆t))

∑
(ni=1x

2
i (t))︸ ︷︷ ︸

−V̇ (x(t))

(9)

It is important to point out that the controller parameters
includes the control gain vector K = [k1, k2] ∈ R1×2 and the
parameter θ̃0 which results of the estimation of the DC motor
parameter θ0.

With the event function, the proposed Asynchronous Bio-
inspired Tuning Approach with Simultaneous Identification
and Prediction (ABioTASIP) can be implemented. In Fig. 1
such approach is schematically represented. In the ABioTASIP,
an emulation approach [33] is adopted to apply the ABio-
TASIP into a computer, and the procedure is given next:

1) Divide the continuous time t ∈ R+ into the discrete time
sequence {tl}l∈N with N := {1, 2, ...} and tl=0 = 0. The
interval between two discrete-time sequences is referred
to as the sampling time ∆t = tl−tl−1 > 0. On the other
hand, the sequence of time related to the event activation
(when ē ≤ 0) is specified by Σe = {tk}k∈Ñ⊆N, where
ns∆t = tk+1− tk > 0 and ns ≥ 1 are the time interval
and the number of sampling instants ∆t elapsed between
two events, respectively.

2) Regulate the motor velocity with the controller u (8) and
arbitrarily choose the parameters K(t) = K(tk=0 = 0)
and θ̃0(t) = θ̃0(tk=0 = 0) ∀ t ∈ [0,∆w]s. The term
∆w = nw∆t is related to the time horizon with nw >
1 samples. The time horizon ∆w is used next for the
simultaneous estimation and prediction stages.

3) Compute the event function ē (9) at each sampling time
∆t once t > ∆w.

4) Verify the event function ē:
• If ē ≤ 0 (event activation), then update the con-

troller parameters K(t) = K∗(tk) and θ̃0(t) =
θ̃∗0(tk) with the obtained parameters given by the
adaptive controller tuning approach which considers
simultaneous identification and prediction.

• On the contrary, if the event function is not acti-
vated (ē > 0), the controller parameters are not
changed. Then, the controller is computed according
to the parameters obtained in the last time when
the controller parameter tuning was performed, i.e.,
K(t) = K∗(tk−1) and θ̃0(t) = θ̃∗0(tk−1).

The adaptive controller tuning approach requires simultane-
ous stages in the identification and also in the prediction to
find the most suitable control parameters and hence, to reduce
the regulation velocity error. The two-objective optimization
problem (identification and prediction) is formulated as a
weighted sum approach. In this, one objective is related to the
fulfilment of the parameter identification to provide a more
realistic estimated motor behavior and the other involves the
predictive strategy to know its future behavior. The identifica-
tion objective (first term in (10)) minimizes the error among
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Fig. 1. Schematic diagram of the proposed Asynchronous Adaptive Controller Tuning

the current states z(t) and the estimated ones z̃(t) in the time
interval Ω1 ∈ [t − 4w, t], i.e., the time horizon ∆w is used
as a backward time window. The prediction objective (second
term in (10)) minimizes the velocity error of the state predictor
x̂. The state predictor computes the future system behavior in
the time interval Ω2 ∈ [t, t+4w], i.e., the time horizon ∆w is
used as a forward time window. With the simultaneous min-
imization of both objective functions, the optimal estimated
DC motor parameter vector θ̃∗(tk) = [θ̃∗0(tk), θ̃∗1(tk), θ̃∗2(tk)]T

and the optimal control gains K∗(tk) are obtained to the next
time interval ∆t. The constraints related to the optimization
problem are the dynamics of the estimated DC motor (11)
with its initial condition (12), the dynamics of the predictor
x̂ (13) with the corresponding initial condition (14), and the
lower lb ∈ R5 and upper ub ∈ R5 bounds in the design
variable vector (15). The mathematical programming problem
is formally stated in (10)-(15).

min

[θ̃∗,K∗]T ∈ R5 J =

∫
t̃∈Ω1

(
z(t̃)− z̃(t̃)

)T (
z(t̃)− z̃(t̃)

)
dt̃

+

∫
t̃∈Ω2

x̂T x̂ dt (10)

Subject to :

·
z̃ =

1

θ̃2

u(t̃)− θ̃0

θ̃2

z̃1 −
θ̃1

θ̃2

z̃2 (11)

z̃(t̃0) = z(t̃0) (12)
·
x̂2 =

1

θ̃2

u(x̂,K)− θ̃0

θ̃2

x̂1 −
θ̃1

θ̃2

x̂2 +
θ̃0

θ̃2

x̄1

(13)

x̂(t̃0) = x(t̃0) (14)

lb ≤ [θ̃, K]T ≤ ub (15)

The solution of the above optimization problem is provided
by the Differential Evolution (DE) algorithm [34]. This finds
the optimal parameters [θ̃∗(tk),K∗(tk)]T at each event acti-
vation. Hence, once the event function is activated (ē ≤ 0)
and the tuning process is done, the optimum controller gains
K∗(tk) with the optimum parameter θ̃∗0(tk) are set in the
controller (8) for the next time tl+1.

IV. RESULTS

This section presents the behavior of the proposed Asyn-
chronous Bio-inspired Tuning Approach with Simultaneous
Identification and Prediction (ABioTASIP) through two test



TABLE I
BOUNDS OF THE CONTROL PARAMETERS USED FOR THE OPTIMIZATION.

Parameter Lower Bound lb Upper Bound ub
θ̃0 0.1 5.0

θ̃1 1.0e−3 5.0e−2

θ̃2 1.0e−5 5.0e−4
k1 5.0e−2 0.5
k2 1.0e−3 1.0e−2

scenarios. As a reminder, ABioTASIP updates the control
parameters asynchronously depending on the value of the
activation function in (9). Only when necessary, ABioTASIP
calculates the control parameters through a single optimization
process through Differential Evolution (DE) that simultane-
ously performs an identification, to obtain the model parame-
ters of the DC motor, and a prediction, to estimate the most
appropriate control gains.

A Synchronous Bio-inspired Tuning Approach with In-
dependent Identification and Prediction (SBioTAIIP) is also
considered to perform comparisons. Unlike ABioTASIP, SBio-
TAIIP lacks an asynchronous activation mechanism, and then,
updates the control parameters periodically, i.e., the tuning is
carried out at each sampling interval ∆t. Additionally, SBio-
TAIIP obtains the control parameters through two sequential
and independent optimization processes, the first for estimation
and the second for prediction.

The rand/1/bin variant of Differential Evolution (DE) is
adopted in both tuning approaches. The chosen DE parameters
are: the number of generations Gmax = 200, the population
size NP = 25, the crossover rate CR = 0.5, and the scaling
factor F = 0.5. Regarding the search space for DE, Table I
shows the upper and lower bounds of the control parameters.

The test scenarios require the DC motor to track the profile
x̄ = [52.35, 0]T during the time interval t ∈ [0, 15]. For both
scenarios, the sampling interval is ∆t = 0.005 (s), the initial
condition is z(0) = [0, 0]T , and the backward/forward time
window for identification/prediction is ∆ω = 0.05 (s). Each
of the scenarios, from now on referred to as T1 and T2,
considers different operation conditions of the DC motor. For
T1, the motor parameters do not vary from the nominal ones
as is given in the first column of Table II. In the case of T2,
variations up to 10% from the nominal values are injected in
the motor parameters, and a disturbance load is included in a
given interval, as observed in the second column of Table II.

Thirty independent runs of ABioTASIP and SBioTAIIP
are carried out under the conditions of T1 and T2. The
performance of each approach is studied in this work.

Table III summarizes the performance of ABioTASIP and
SBioTAIIP for the tests T1 and T2, through the results of each
set of runs. The test and the name of the tuning approach
are shown in the first and second columns, respectively. The
mean Integral Square Error (ISE) can be observed in the third
column. For each run, ISE is obtained from the settling time
of 0.5 (s). The fourth column presents the mean number of
activations, i.e., the mean of times that the control parameters

TABLE II
MOTOR PARAMETERS.

Nominal parameters Disturbed parameters
R̄a = 9.665 (Ω) Ra(t) = R̄a

(
1 + 1

10
sin(2πt)

)
L̄a = 102.44e−3 (H) La(t) = L̄a

(
1 + 1

10
sin(3πt)

)
k̄m = 0.3946 (Nm/A) km(t) = k̄m

(
1 + 1

10
sin( 3

2
πt)

)
k̄e = 0.4133 (V s/rad) ke(t) = k̄e

(
1 + 1

10
sin(2πt)

)
b̄0 = 5.85e−4 (Nms) b0(t) = b̄0

(
1 + 1

10
sin( 5

3
πt)

)
J̄0 = 3.45e−4 (Nms2) J0(t) = J̄0

(
1 + 1

10
sin( 7

5
πt)

)
τ̄L = 0 (Nm) τL(t) =

{
0.15, when 5 ≤ t ≤ 10

τ̄L, otherwise

are updated through the optimization process. Finally, the last
column indicates the mean complexity of the tuning approach
regarding the times that DE performs the optimization of the
control parameters. Results in boldface denote the best values
of the performance indicators for each test.

According to the ISE in Table III, SBioTAIIP has a better
performance than ABioTASIP when regulating the desired
profile for both test scenarios, i.e., in cases when the motor
parameters present or not uncertainties or disturbances. The
above is attributed to the lack of an asynchronous activation
mechanism in SBioTAIIP, which consequently always opti-
mizes the control parameters that achieve a lower value of
ISE. Nevertheless, the cost of this improvement in ISE for
SBioTAIIP is a higher computational complexity compared
to the one of ABioTASIP. Since ABioTAIIP activates the
parameter tuning only when necessary, and also performs the
parameter identification and prediction in a single optimization
process, the number of computations is reduced.

Due to the above, there is a trade-off between the tracking
performance and the computational complexity. Depending
on the application, the designer must determine a suitable
preference level of both performance indicators (ISE and
complexity). If a high-precision task is performed and the
available equipment can handle the computational complexity,
SBioTAIIP can be a suitable alternative. Otherwise, if some
precision loss is allowed for a given task or the computational
resources are limited (or distributed among other important
computational tasks such as communication, estimation, data
acquisition, and general processing), ABioTASIP can be the
best choice.

Table IV shows the improvement rates between the perfor-
mance indicators of ABioTASIP and SBioTAIIP. The symbol
↑ indicates that the performance of the tuning approach
overcomes the performance of the other one, and the symbol
↓ indicates the opposite.

If an equitable trade-off between the performance indica-
tors is taken into account, the rates in Table IV show that
SBioTAIIP is the best alternative for the T1 test. Although the
number of activations for SBioTAIIP is considerably larger
than the one of ABioTASIP, the error is huger in ABioTASIP.
In the T2 test, the gap between the tracking performance
is significantly reduced, and the number of activations for
ABioTASIP is still under the half of the activations for



TABLE III
RESULTS IN SIMULATION OF THE ABIOTASIP AND SBIOTAIIP STRATEGIES FOR THE TESTS T1 AND T2.

test Control strategy ISE Activations Complexity
T1 SBioTAIIP 7.1894e−7 2990 5980

ABioTASIP 5.0328e−5 184.9 369.8
T2 SBioTAIIP 7.6105 2990 5980

ABioTASIP 12.8641 1235.33 2470.66

TABLE IV
PERFORMANCE RATES OF THE ABIOTASIP AND SBIOTAIIP STRATEGIES FOR THE TESTS T1 AND T2.

test Control strategy ISE Activations Complexity
T1 SBioTAIIP 98.57% (↑) 1517.09% (↓) 1517.09% (↓)

ABioTASIP 6900.30% (↓) 93.81% (↑) 93.81% (↑)
T2 SBioTAIIP 40.83% (↑) 142.04% (↓) 142.04% (↓)

ABioTASIP 69.03% (↓) 58.6% (↑) 58.6% (↑)

SBioTAIIP. Then, ABioTASIP has a better performance trade-
off for the T2 test.

Figures 2 and 3 show the behavior of both tuning approaches
for the tests T1 and T2. For both figures, the plots at the left
show the speed response (outer plot) and the response error
(inner plot). In the plots at the right, the activation of the tuning
process during the task execution is represented by ones, while
the zero value describes a state of no activation.

Considering the speed responses of both alternatives in
Figures 2 and 3, they have a similar behavior from the settling
time of 0.5 (s) for T1 and T2. Although the error level
of ABioTASIP is higher than the one of SBioTAIIP, the
differences between their speed profiles are quite imperceptible
for the current task, so they are very close to the reference
signal. The above must also be considered to select the correct
alternative. It is important to highlight that for T2 test, both
tuning approaches can successfully compensate the uncertain-
ties and disturbances included in the motor parameters. The
above is attributed to the online optimization of the control
parameters in the identification and predictive stages.

The activation responses in Figures 2 and 3 highlight the
different features of the tuning approaches. For SBioTAIIP,
it is observed that new control parameters are calculated at
every sampling instant after the backward time window 4ω
required for identification in T1 and T2 tests. On the other
hand, ABioTASIP performs optimization when necessary. In
the T1 test, ABioTASIP updates the parameters several times
after 4ω, and they remain fixed when the speed response
is stabilized. For T2, ABioTASIP performs the parameter
optimization more frequently due to the continuous changes
of the motor pa

V. CONCLUSIONS

In this work, an Asynchronous Adaptive Controller Tuning
approach based on the bio-inspired algorithm of Differential
Evolution is proposed where the identification and the predic-
tive processes are simultaneously carried out. The proposal is
compared with a periodic tuning approach where the tuning
process is carried out at each sampling time and also, the

identification and the predictive processes are sequentially
optimized (in two optimization stages). The proposed event
function can detect changes in the velocity regulation, and
then, the proposal can be implemented when it is required.
The comparative simulation results indicate that the proposal
can significantly reduce the computational time. However, the
asynchronous activation slightly impacts the control perfor-
mance. Besides, the simultaneous optimization of the control
gains and the DC motor parameters based on both the iden-
tification process and the predictive strategy also reduces the
computational time. Hence, the reduction of the computational
resources indicates that it can be used in an embedded system
for a real application. The authors consider that the control
performance can be improved by the correct setting of the bio-
inspired algorithm parameters included in the ABioTASIP, but
this is regarded as a future research direction.
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