
Pyramid: A Hierarchical Approach to Scaling Down
Population Size in Genetic Algorithms

Conor Ryan
BDS Lab

Department of Computer Science
and Information Systems

University of Limerick
Limerick, Ireland
conor.ryan@ul.ie

Atif Rafiq
BDS Lab

Department of Computer Science
and Information Systems

University of Limerick
Limerick, Ireland

atif.atif@ul.ie

Enrique Naredo
BDS Lab

Department of Computer Science
and Information Systems

University of Limerick
Limerick, Ireland

enrique.naredo@ul.ie

Abstract—We present Pyramid, a Hierarchical Genetic Algo-
rithm that decomposes problems by first tackling simpler versions
of them, before automatically scaling up to more difficult versions
while also reducing the population size. Pyramid takes its name
from the architectural phenomenon of the Mayan pyramid in
Chichen-Itza, which, although constructed from the bottom up,
operates in a top down manner through interactions with the
sun. This gives a two stage approach: initially we create our
pyramid of experiments, with the most complex fitness functions
at the bottom, and with increasingly more simplified/decomposed
version as we move up through the pyramid. Runs start at the top
of the pyramid and populations descend through it, decreasing
in size, being exposed to increasingly complex fitness functions,
until, at the bottom layer, we have small populations with the
original full fitness function. We conduct experiments comparing
the performance of Pyramid for a suite of difficult unimodal and
multimodal functions. The experimental results show that in three
of four cases, Pyramid achieves the same or better fitness scores
as standard algorithms, with substantially fewer evaluations, and
that in two cases it actually performs statistically significantly
better.

Index Terms—Hierarchical GAs, Incremental Evolution, Lay-
ered Learning, Individuals processed

I. INTRODUCTION

There have been many investigations into decomposition of
problems for EAs, such as Automatically Defined Functions
(ADFs) by Koza [1], Module Acquisition (MA) [2], Hierarchy
Locally Defined Modules (HLDM) [3], macro-evolutionary
algorithm [4] and Multi-Objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) [5]. Problem decomposi-
tion in GAs is often not as clear as with Genetic Programming
(GP), however, due to the general unavailability of reuse.
This has led to some work, see Section II, that focuses on
decomposing the fitness function rather than on the research
task. That is, a modified, easier version of the fitness function
is first tackled, after which successful individuals are then
tested on the actual fitness function.

GP-focused decomposition techniques succeed essentially
by changing the solution representation. While there are many
approaches to this, for example PolyGP [6] and LLGP [7],

This work is supported by Lero, the Irish Software Research Centre, and
the Science Foundation of Ireland.

they all essentially reduce the complexity of the problem by
encapsulating useful information and making them available
on later runs or generations.

We introduce Pyramid, which takes inspiration from GP-
style techniques of decomposition by iteratively changing the
representation of individuals in a Genetic Algorithm (GA).
The change in representation is characterised by starting with
relatively small individuals, up to five times shorter than the
actual desired solution, and, at regular intervals, increasing
their size, until they are the desired length.

An interesting side effect of this process is that Pyramid
permits us to reduce the population size each time we increase
the length of the individuals. In this work, we reduce the
population to 20% of its size with each step in the hierarchy,
with a result that, by the time the individuals are full length,
the population size can be reduced a factor of up to 16 from
its original size.

We compare Pyramid on a selection of GA Benchmark
problems, including multi-modal function optimization and
show that, on this set of benchmarks, Pyramid always achieves
at least the same performance in terms of solution quality, but
does so at a reduced cost ranging from 55% to 99% in terms
of the number of individuals evaluated, meaning that with just
only 2% of the evaluations Pyramid gets competitive results.

In the next section, we highlight the existing hierarchical
techniques in EC and explain how they are different from each
other. We then present Pyramid (Section III). Section IV is
concerned with the methodology used for this study and the
benchmark problems. Experimental results are discussed in
section V. Finally, section VI concludes the paper with the
conclusion and future work.

II. BACKGROUND AND RELATED WORK

While one inspiration behind this work is the way in which
GP can effectively simplify a problem with machinery for
module acquisition, we focus here on hierarchical methods
that are generally applicable to all EAs.

Generally, all these methods attempt to overcome the boot-
strapping problem, by having a population start with an easier

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



Fig. 1. HGA represented as a binary tree with three levels by [8]. Each level
has a different fitness function and each node is a separate GA.

version of the problem before slowly exposing it to more
complex versions.

Based on the concept of hierarchy, researchers have ex-
perimented with different approaches in order to overcome
the bootstrapping problem and to enable the evolution of
behaviours for complex tasks. We break up the approaches into
three as Hierarchical Genetic Algorithm (HGA), Incremental
Evolution (IE) and Layered Learning (LL).

A. Hierarchical Genetic Algorithms (HGAs)

HGAs consist of hierarchies of GAs that generally employ
different fitness functions. Individuals can migrate up (and
occasionally down) through the various levels. For example, a
HGA in [8] is presented in the form of binary tree spawning
three levels (shown in Fig. 1). Three different fitness functions
were employed, ranging from coarse through intermediate and
precise. The coarse model was used at the lowest level, and
they found that HGA obtained the same results as classic GA
but three times faster.

A similar structure has been presented by [9] but with the
same fitness function at each level. The execution starts at
the leaf nodes, with each population evolving separately until
some termination criteria is met (300 generations, in their case)
after which nodes with the same parent are merged together,
and thus the population size increased at each upper-level.
The procedure is then repeated until the root node is reached,
and the best solution is extracted from the top in the same
way as it would normally be. They found that sub-populations
with hierarchical structure outperformed traditional one and
described several hierarchies with varying numbers of levels
and branches, although only reported on the performance of a
hierarchy with three levels and a branching factor of two.

Later work [10] examined more complex hierarchies and
used two additional multi-model functions for benchmarking.
They reported best results with higher numbers of branches
and levels, although did not investigate at what point the
overhead becomes too expensive.

Another form of HGA is provided in [11] that can solve
hierarchical problems. This incrementally forms a set of mod-
ules that are used to adapt the representation of the search,
and can thereby gradually restrict the search space without
excluding optimal solutions. They investigated the condition
under which HGAs can efficiently solve hierarchical problems.

Fig. 2. IE requires an evolved population to start, where the difficulty of the
population is increased by using a hard fitness function i.e., FIE or changing
the environment for the population i.e., EIE.

According to their results, the identification of effective sam-
pling methods is an important factor in the development of
efficient hierarchical algorithms.

B. Incremental Evolution (IE)

IE starts with a population that is already trained on a
simpler but related task, rather than starting from initial
random population. The difficulty can be increased using
different fitness function, known as Functional Incremental
Evolution (FIE), or using different program parameters, known
as Environmental Incremental Evolution (EIE). Fig. 2 shows
a conceptual diagram of IE.

In [12], navigation controllers have been evolved for Un-
manned Aerial Vehicle (UAV) using Multi-Objective GP. Both
types of IE (FIE and EIE) were used. The goals of the UAV
were to reach towards the radar and circle around it, with the
path taken as efficient as possible with as few turns as possible.
Four types of radars (two stationary and two mobile) were
used. IE produced more successful runs and more successful
controllers than direct evolution.

GP was applied to a tracking task which attempts to keep
a moving object centered in the field of view of a camera
mounted on a pan-tilt unit, in [13], where they employed a
form of IE technique. The initial population is first trained to
position the camera when velocity and object depth are held
constant, before the resulting population is trained for various
initial positions and object depths while velocity remains con-
stant. Finally, the resulting population may be trained on the
complete problem. Another control problem [14] used IE to
divide the goal task in into several sub-tasks so that a controller
for each task could be easily evolved. The sub-controllers
were then combined through an additional evolutionary step
to create a hierarchy of the single goal controller.

C. Layered Learning (LL)

A bottom-up approach is employed by LL, where learning
achieved at the lower layers helps facilitate learning required



Precise

F
it

n
e
s
s

F
u
n
c
ti

o
n

H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

Genome Decomposition Population Decomposition 

g3

g5

p2

p4

Fig. 3. Graphical representation of the Pyramid approach. On the left side
we see the population size decreasing, while on the right, the genome length
increases. The fitness function gets increasingly more precise as we descend.

at upper layers. Individuals at each layer have different capa-
bilities. [15]

Soccer players were evolved by [16] using a two layer
approach. Initially, agents had to learn to control the ball
effectively, after which they were moved to the higher level
that involved interacting with other players in a team.

A two layer GP system was proposed by [17]. In the first
layer, the solutions of the sub-problems are found then using
these solutions, the solution of the original problem is found
in the second layer. The results of the two layer GP system is
compared against Multi Gene Genetic Programming (MGGP)
and Fast Function Extraction (FFX). However, the proposed
method outperforms FFX in only 1 and MGGP in 2 out of 6
benchmarks, respectively.

Conventionally, LL necessitates the understanding of prob-
lem knowledge and how it can be decomposed into sub-tasks,
but [18] investigated two approaches that do not require such
knowledge and explored the use of LL in the context of GP.

Rather than using a single GP run, Wave [19] employed a
sequence of heterogeneous GP runs collaborate to produce
a joint solution. Each period (short GP run) produced an
individual that was used to update the target values of the
subsequent period, thus reducing the difficulty of the problem
faced by later periods.

III. PYRAMID

Pyramid takes inspiration from several systems, as it uses
increasingly more complex individuals as in [17] and increas-
ingly more precise fitness functions as in [8]. Note that in
its current form as shown in Fig. 3, Pyramid essentially gets
increasingly more precise fitness functions for free, because
the longer the individuals are, the more precise the fitness
function is. Many hierarchies take a pyramidal form, as does
ours. However, unlike most, in which the lower levels of the
pyramid feed into the higher levels, we instead start at the top
of the pyramid and work our way down, inspired in part by
the Mayan Pyramid of Chichen-Itza in Mexico, which has the
unique property that on each equinoxe, sun light creates the
illusion of a snake slowly meandering down the staircase.

Thus, we initially construct our Pyramid, deciding the
number of levels and how the population and genome sizes
will vary, in such a way that the smallest genome, largest
population and simplest fitness function are at the top, and the

largest genome, smallest population and most complex fitness
function are at the bottom. With each step in the Pyramid, we
adjust the population size down and the genome size up.

Algorithm 1: Pyramid
Input: The given problem and the solution representation.
Output: Problem decomposition and scaling down population size.
/* The solution representation: */

1 genome = [g1, g2, ..., gn]
/* Decompose the genome into k blocks */

2 B1 ← [g1, g2, ..., gm]
3 Bk ← [gm+1, gm+2, ..., gn]
4 genome← [B1, ..., Bk]
/* Initial population using first block */

5 Ii ← rand(B1) // i = 1, ..., p, and p = popsize
/* Loop to add each Bj block in the genome */

6 while j < k // j = 1, ..., k do
/* Assign fitness to each individual */

7 Fi ← fitness(Ii)
/* If full genome, then get best individual

*/
8 if j=k // full genome then
9 Ibest ← max(fitness(Ii))

10 break // If stop condition is met

/* Otherwise, keep scaling up genome */
11 else

/* Average fitness from pop */
12 F̄ ← mean(F )

/* Count how many individuals get top
fitness */

13 if F (Ii) ≥ α · F̄
// α is a fitness threshold then

14 c← c+ 1 // c is a counter

/* Promote top individuals to next level
*/

15 if c ≥ β · p // β is a pop threshold then
/* update genome adding random genes

at the end */
16 Ii ← [Bj , rand(Bj+1)]

Even though this approach can be used in most of the
population-based algorithms, in this work a GA is used to
automatically evolve more complex solutions. The solution
representation is given by the genome, which is a set of
genes: g1, g2, ..., gn, with n the total number of genes in the
genome. Pseudocode for Pyramid is given in Algorithm 1 and
graphical representation of the Pyramid approach resembling
the ancient Mayan one, is shown in Fig. 3. Steps on the
the Pyramid staircase are labelled H-LX, where X stands for
the hierarchical level. In Pyramid, we consider two means
to address problem decomposition: genome and population
decomposition, at the right and left sides respectively.

Pyramid decomposes the genome onto k subsets of genes,
named blocks: B1, ..., Bk. For instance, B1 = [g1, g2, ..., gm],
which is used for the initial population using first block.
Then, each individual Ii in the initial population is randomly
initialized corresponding to the first block Ii = rand(B1).

The next step, as with GA conventional approaches, is
to evaluate the population, assigning a fitness score to each
individual Fi = fitness(Ii), and getting new populations
through standard genetic operations (crossover and mutation).



H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

H-L1 

H-L2 

H-L3 

H-L1 

H-L2 

H-L3 H-L1 H-L1 

Fig. 4. Different approaches to decomposing a problem with Pyramid. On the
left side, the conventional approach with just one level, in the middle, H-L3,
which splits the solution representation into three levels, and on the right, a
H-L5 Pyramid.

H-L1 

H-L2 

H-L3 

H-L4 

H-L5

H-L1 

H-L2 

H-L3 

H-L4 

H-L5

H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

H-L1 

H-L2 

H-L3 

H-L4 

H-L5 

Fig. 5. A five level hierarhcy (H-L5) using different thresholds. The Pyramid
on the left uses a threshold which considers more individuals, while at the
far right, fewer are considered. It can be noted that by changing the threshold
changes the Pyramid slope: the greater the slope, the faster the algorithm.

In the learning process using Pyramid, each time an indi-
vidual scores α (see below for details) times better than the
average fitness F̄ of the current population, it is promoted
to belong to the next population of individuals. When this
set reaches a pre-specified number, β (detailed below), of
individuals, then the current population is deleted and replaced
with the promoted set.

The genomes for this smaller population are scaled up, by
adding next block B to deal with a more difficult version of
the problem. Although, there are several strategies to join this
new block to the current genome, in this work this block is
joined by adding randomly choosing features at the end.

Finally, when each individual in the population contains a
complete genome B1, ..., Bk, the population is evolved until
the evolutionary process meets the stopping criteria. Notice
that the population as this point can be substantially smaller
than the initial population; experiment in this paper reduce the
population to just 20% of its size each step.

Pyramids can be designed with different shapes, considering
height and width as shown in Fig. 4, this would correspond to
different numbers of levels and thus steps in the algorithm.
Fewer steps means less scaling and higher populations at
the end. Depending on the threshold used we can build
Pyramids with different slopes as shown in Fig. 5. Moreover,
Fig. 6 shows how the population decreases and genome length
increases.

IV. EXPERIMENTAL SET UP

Pyramid faces several set up questions, which we refer to
here as Research Questions (RQs) due to the fact that we had
to establish answers to these for the first time. These include:
how many levels should be employed (RQ1) and when should
individuals be promoted to lower levels (RQ2); this is the α
value mentioned above. In addition, we needed to establish
how many individuals should be promoted (RQ3); this is the
β value mentioned above, and how we should assign values
to the new parts of these individuals (RQ4).

For RQ1, i.e., how many levels to use, we experimented
with a range of levels from 2 to 5, and decided that the trigger

Fig. 6. A two level example of Pyramid: At each upper-level, population size
reduces and the genome length increases.

point for promotion was that the top 20% of the population
is five times better than the average fitness of the population.
This was a somewhat arbitrary choice and future work will
explore different values as well as strategies for setting this
dynamically. Note that once the trigger point is reached, the
levels stop evolving.

The trigger point chosen for RQ2 answered RQ3 for
us, as our new population is made up of all the promoted
individuals, which leaves us with RQ4, that is, what values
should be chosen for the new parts of the genomes? We chose
the simplest possible approach and randomly choose values,
although, as noted in Section VI there are other approaches,
particularly those that use information from previous runs.
The lower-most layer is the most important because it returns
the solution of the original problem. Therefore, its stopping
criteria is different from other layers as it does not have to
promote individuals to next-level. The lower most layer stops
when the average fitness in the population doesn’t improve for
10 generations.

We used OpenGA [20], an open source c++ library for GAs
to implement the Pyramid.

A. Problems

Four mathematical functions, two uni-modal (Sphere and
Rosenbrock) and two multi-modal (Rastrigin and Griewank),
as shown in Table I, were chosen to test the performance of
our algorithm. These functions are well-known optimization
problems [21] and have been frequently used in other hierar-
chical studies [9] [10]. The optimal value for all these function
is 0.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiments

Using the set up from Table II, a baseline experiment was
initially run using a standard GA, followed by four variants
of our algorithm, each with varying levels. These are referred



TABLE I
CHOOSEN BENCHMARK FUNCTIONS

Name Function

Sphere
∑n

i=1 x
2
i

Rosenbrock
∑n−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2]

Rastrigin 10n+
∑n

i=1(x2i − 10cos(2πxi))

Griewank 1 +
∑n

i=1
x2
i

4000
−

∏n
i=1 cos(

xi√
i
)

TABLE II
PARAMETERS FOR PYRAMID: THE TARGET GENOME LENGTH FOR EACH

H-LX IS 30, WHICH IS DIVIDED INTO DIFFERENT VALUES ACCORDING TO
SPECIFIC EXPERIMENT. THE VALUES FOR CHROMOSOME LENGTH THAT

SHOW A CALCULATION REFER TO THE PREVIOUS LENGTH PLUS THE
ADDITIONAL LENGTH, E.G. 20+10=30 MEANS THE PREVIOUS LENGTH

WAS 20 AND WE ARE ADDING 10 MORE TO GIVE A LENGTH OF 30.

Level Chrom-length Pop-size Max-Gener

Baseline 30 5,000 3,000

H-L2 L1 15 5,000 1,500
L2 15+15=30 1,000 1,500

H-L3
L1 10 5,000 1,000
L2 10+10=20 1,000 1,000
L3 20+10=30 200 1,000

H-L4

L1 7 5,000 700
L2 7+8=15 1,000 800
L3 15+7=22 200 700
L4 22+8=30 40 800

H-L5

L1 6 5,000 600
L2 6+6=12 1,000 600
L3 12+6=18 200 600
L4 18+6=24 40 600
L5 24+6=30 8 600

to as H-LX where X is the number of levels in the hierarchy.

Crossover (One Point) and mutation (Uniform) rates were
set to 0.8 and 0.005, respectively, and, in addition, an elitism
level is set to 5% of the population size. We used a proportion
because the population size changes over time. Each experi-
ment was repeated 50 times.

B. Results

The correlation between best fitness and number of indi-
viduals processed was tested. Figures 7, 8, 9 and 10 show
the resulting graphs for Sphere, Rosenbrock, Rastrigin and
Griewank respectively.

Tables III, IV, V and VI are their statistical comparison.
In all but the Griewank problem, Pyramid performs either
the same or statistically significantly better with dramatically
fewer evaluations. Each table lists down the results in two
groups, i.e., Individuals Processed and Best Fitness.

In the first group, we show the maximum number of indi-
viduals that could be processed (and hence the upper bound
on cost) and the actual number of individuals being processed
(when the population converged). In the second group, the
average (Avg), the standard deviation (std) and the p-value of

TABLE III
RESULTS FROM THE RASTRIGIN FUNCTION. + INDICATES PYRAMID

PERFORMED STATISTICALLY SIGNIFICANTLY BETTER, - THAT PYRAMID
PERFORMED STATISTICALLY SIGNIFICANTLY WORSE, AND * THAT THERE

IS NO STATISTICALLY SIGNIFICANT DIFFERENCE.

Individuals Processed Best Fitness
Maximum Actual Avg std p-value

Baseline 15000000 1397227 0.0183 0.0032 - - -
H-L2 900000 460469 0.0068 + 0.0015 <0.01
H-L3 6200000 119372 0.0184 * 0.0061 0.9193
H-L4 4472000 51021 0.1026 - 0.0303 <0.01
H-L5 3964800 44356 0.1756 - 0.0581 <0.01

TABLE IV
RESULTS FROM THE GRIEWANK FUNCTION. IN THIS CASE, THE RESULTS

PERFORM STATISTICALLY SIGNIFICANTLY WORSE.

Individuals Processed Best Fitness
Maximum Actual Avg std p-value

Baseline 15000000 6517491 1.0012 0.0784 - - -
H-L2 900000 1369560 1.8770 - 0.5976 <0.01
H-L3 6200000 176310 6.3616 - 1.9758 <0.01
H-L4 4472000 30946 23.0932 - 0.0784 <0.01
H-L5 3964800 91126 37.9472 - 12.6262 <0.01

TABLE V
RESULTS FROM THE SPHERE FUNCTION. AS WITH TABLE III, +

INDICATES PYRAMID PERFORMED STATISTICALLY SIGNIFICANTLY
BETTER, - THAT PYRAMID PERFORMED STATISTICALLY SIGNIFICANTLY

WORSE, AND * THAT THERE IS NO STATISTICALLY SIGNIFICANT
DIFFERENCE.

Individuals Processed Best Fitness
Maximum Actual Avg std p-value

Baseline 15000000 150242 1.7937 0.1458 - - -
H-L2 900000 37049 0.5644 + 0.0523 <0.01
H-L3 6200000 36680 0.3547 + 0.0867 <0.01
H-L4 4472000 34892 5.8534 - 2.7289 <0.01
H-L5 3964800 30375 15.9313 - 5.6826 <0.01

TABLE VI
RESULTS FROM THE ROSENBROCK FUNCTION. - THAT PYRAMID

PERFORMED STATISTICALLY SIGNIFICANTLY WORSE WHILE * THAT THERE
IS NO STATISTICALLY SIGNIFICANT DIFFERENCE.

Individuals Processed Best Fitness
Maximum Actual Avg std p-value

Baseline 15000000 134592 1.224 0.5709 - - -
H-L2 900000 59874 1.241 * 0.1234 0.21
H-L3 6200000 43915 1.453 - 0.2006 <0.01
H-L4 4472000 30946 1.644 - 0.3936 <0.01
H-L5 3964800 34201 2.089 - 0.5815 <0.01

the best fitness are listed. In cases where Pyramid performed
statistically significantly better, results are indicated with a +,
where it is worse, we use a - and, where there is no statistically
significant difference, we use a *. In all cases, Pyramid uses
dramatically fewer individuals; typically, for HL-2, the best
performing version of Pyramid, we use approximately 25% of
the total individuals used by the baseline. In cases where HL-3
outperformed the baseline (Rastrigin and Sphere) the number
of individuals is smaller again.

In general, the improvement in performance doesn’t extend



(a) Baseline vs. H-L2 and H-L3 (b) Baseline vs. H-L4 and H-L5

Fig. 7. Sphere Results: Comparison of Baseline with each H-LX. Clearly, Pyramid can the same fitness but with fewer individuals processed.

(a) Baseline vs. H-L2 and H-L3 (b) Baseline vs. H-L4 and H-L5

Fig. 8. Rosenbrock Results: Comparison of Baseline with each H-LX. H-L2 can produce individuals with the same fitness as the baselines, but with less
than half the individuals produced.

(a) Baseline vs. H-L2 and H-L3 (b) Baseline vs. H-L4 and H-L5

Fig. 9. Rastrigin Results: Comparison of Baseline with each H-LX. Both H-L2 and HL-3 outperform the baseline with fewer individuals processed, with
H-L3 processing 91.5% individuals less.

beyond HL-4 for any of the experiments.

For this reason, we did not build the Pyramid with more
than 5 levels, although if the population didn’t reduce by
quite so much each time, this may not always hold true, as

we discuss in the future work section. The only problem in
which Pyramid didn’t perform either better or the same was the
Griewank problem, but recall that no effort was put into trying
to optimize the α and β values to control when individuals



(a) Baseline vs. H-L2 and H-L3 (b) Baseline vs. H-L4 and H-L5

Fig. 10. Griewank Results: Comparison of Baseline with each H-LX. In this case, the baseline does perform better, indicating there is scope for modifying
the 20% figure used for triggering the next level.

(a) Sphere

(b) Rastrigin (c) Griewank (d) Rosenbrock

Fig. 11. Individuals processed for each Level Experiment. There is clearly a significant reduction in number of individuals processed. For Sphere, we have
zoomed in the H-L4 and H-L5 in order to make it more clear, as the individuals processed are too low that it is hard to see them. For Griewank, at H-L4,
and H-L5, very low number of individuals are processed that the bar graph seems invisible.

move to the next level; clearly there is scope to optimize this.

A summary of the individual evaluations is shown in Ta-
ble VII, where the baseline is 100% and A% stands for the
actual percentage of evaluation of the current level H-LX, and
R% stands for the percentage of reduction.

Figures 11 shows the number of individuals for each prob-
lem.

Overall, these results indicate that Pyramid finds the fitness
as good or better than the baseline in all but one case, and
does so with remarkably fewer individuals processed.

An interesting feature of Pyramid is its ability to scale
down the population size, thus reducing the computational
effort while still getting competitive results in most cases.
Nevertheless, this reduction come at a cost as, in a small



TABLE VII
INDIVIDUALS EVALUATION REDUCTION. FIGURES IN BOLD REPRESENT

RUNS IN WHICH PYRAMID WAS PRODUCED EITHER THE SAME OR BETTER
RESULTS THAN THE BASELINE.

Function H-L2 H-L3 H-L4 H-L5
A% R% A% R% A% R% A% R%

Sphere 24.6 75.3 24.4 75.6 23.2 76.8 20.2 79.8

Rosenbrock 44.5 55.5 32.6 67.4 23.0 77.0 25.4 74.6

Rastrigin 32.9 67.1 8.5 91.5 3.6 96.4 3.1 96.9

Griewank 21.0 79.0 2.7 97.3 0.5 99.5 1.4 98.6

number of cases when the population size is too low, then
the method may no longer have any significant improvements.
This issue will be studied in a future work. In general,
however, for the problem domains addressed in this work, this
problem did not manifest itself.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a Pyramid, a hierarchical system that
reduces the population size at each lower level with increasing
the genome length. We conducted our experiments using four
mathematical functions (two unimodal and two multimodal)
and show that on three of these problems Pyramid performs
either better (two) or the same, but with reductions of between
55% and 90% in the number of individuals processed.

There are some parameters related to this approach we need
to analyse to find what are the best values, such as the number
of levels and the rate at which the population size decreases
need to be examined, in addition to automatically determine
the number of levels and the task of each level.

The Griewank problem in particular indicates that higher
values of α are likely to be useful in some cases.

Future work will analyse how the Pyramid parameters
should be set according to the problem addressed to obtain
reasonable and competitive solutions while using smaller
populations.

ACKNOWLEDGMENT

This work is supported by the Science Foundation of Ireland
(SF) research grant 16/IA/4605. The authors would like to
thank Aidan Murphy, Sheraz Anjum and Michael Tetteh for
their help with the statistically comparing results and detecting
some bugs from the code.

REFERENCES

[1] J. R. Koza and J. R. Koza, Genetic programming: on the programming
of computers by means of natural selection. MIT press, 1992, vol. 1.

[2] P. J. Angeline and J. Pollack, “Evolutionary module acquisition,”
in Proceedings of the second annual conference on evolutionary
programming. Citeseer, 1993, pp. 154–163.

[3] W. Banzhaf, D. Banscherus, and P. Dittrich, Hierarchical genetic
programming using local modules. Secretary of the SFB 531, 1999.

[4] T. X. Chen, “Problem decomposition-based scalable macro-evolutionary
algorithms,” in Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No. 01TH8546), vol. 1. IEEE, 2001, pp.
223–231.

[5] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Transactions on evolutionary
computation, vol. 11, no. 6, pp. 712–731, 2007.

[6] T. Yu and C. Clack, “Polygp: A polymorphic genetic programming
system in haskell,” Genetic Programming, vol. 98, 1998.

[7] S. M. Gustafson and W. H. Hsu, “Layered learning in genetic program-
ming for a cooperative robot soccer problem,” in European Conference
on Genetic Programming. Springer, 2001, pp. 291–301.

[8] M. Sefrioui and J. Périaux, “A hierarchical genetic algorithm using mul-
tiple models for optimization,” in International Conference on Parallel
Problem Solving from Nature. Springer, 2000, pp. 879–888.

[9] T.-P. Hong, Y.-C. Peng, and W.-Y. Lin, “Multi-population genetic
algorithm with hierarchical execution,” in 2016 International Conference
on Fuzzy Theory and Its Applications (iFuzzy). IEEE, 2016, pp. 1–4.

[10] T.-P. Hong, Y.-C. Peng, W.-Y. Lin, and S.-L. Wang, “Empirical com-
parison of level-wise hierarchical multi-population genetic algorithm,”
Journal of Information and Telecommunication, vol. 1, no. 1, pp. 66–78,
2017.

[11] E. D. de Jong, D. Thierens, and R. A. Watson, “Hierarchical genetic
algorithms,” in International Conference on Parallel Problem Solving
from Nature. Springer, 2004, pp. 232–241.

[12] G. J. Barlow, C. K. Oh, and E. Grant, “Incremental evolution of au-
tonomous controllers for unmanned aerial vehicles using multi-objective
genetic programming,” in Cybernetics and Intelligent Systems, 2004
IEEE Conference on, vol. 2. IEEE, 2004, pp. 689–694.

[13] J. F. Winkeler and B. Manjunath, “Incremental evolution in genetic
programming,” Genetic Programming, pp. 403–411, 1998.

[14] M. Duarte, S. Oliveira, and A. L. Christensen, “Hierarchical evolution
of robotic controllers for complex tasks,” in 2012 IEEE International
Conference on Development and Learning and Epigenetic Robotics
(ICDL). IEEE, 2012, pp. 1–6.

[15] P. Stone and M. Veloso, “Layered learning,” in European Conference
on Machine Learning. Springer, 2000, pp. 369–381.

[16] ——, “A layered approach to learning client behaviors in the robocup
soccer server,” Computer Science, vol. 412, pp. 268–7123, 1997.

[17] S. S. M. Astarabadi and M. M. Ebadzadeh, “A decomposition method
for symbolic regression problems,” Applied Soft Computing, vol. 62,
pp. 514–523, 2018.

[18] D. Jackson and A. P. Gibbons, “Layered learning in boolean gp
problems,” in European Conference on Genetic Programming. Springer,
2007, pp. 148–159.

[19] D. Medernach, J. Fitzgerald, R. Azad, and C. Ryan, “Wave: Incre-
mental erosion of residual error,” in Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2015, pp. 1285–1292.

[20] A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi,
“openga, a c++ genetic algorithm library,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017,
pp. 2051–2056.

[21] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for
global optimization problems,” arXiv preprint arXiv:1308.4008, 2013.




