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Abstract—Geometric Semantic Genetic Programming (GSGP)
is a method that exploits the geometric properties describing the
spatial relationship between possible solutions to a problem in an
n-dimensional semantic space. In symbolic regression problems,
n is equal to the number of training instances. Although very
effective, the GSGP semantic space can become excessively big
in most real applications, where the value of n is high, having a
negative impact on the effectiveness of the GSGP search process.
This paper tackles this problem by reducing the dimensionality
of GSGP semantic space in symbolic regression problems using
instance selection methods. Our approach relies on weighting
functions—to estimate the relative importance of each instance
based on its position with respect to its nearest neighbours—and
on dimensionality reduction techniques—to improve the notion of
closeness between instances, generating datasets with simplified
input spaces. Experiments were performed on a set of 15 datasets
and our experimental analysis shows that using instance selection
by instance weighting and dimensionality reduction does improve
the effectiveness of the search with almost no impact on root mean
square error results.

Index Terms—geometric semantic genetic programming, in-
stance selection, semantic space, symbolic regression

I. INTRODUCTION

Data regression is among the most popular machine learning
tasks [1]. Given a set of training cases, each of them described
by a set of inputs and a scalar output, the task of regression
induces a model capable of mapping inputs to outputs. Within
the field of evolutionary computation, methods for symbolic
regression have been extensively studied and overall successful
in solving a great variety of problems [2]. In contrast with
other regression models, in which the shape of the function to
be induced is previously defined (e.g. linear) and its parameters
optimized, symbolic regression defines simultaneously the
shape of the function and its parameters.

As any other regression method, symbolic regression re-
quires as input a set of examples to learn the regression
function from, named the training set. Usually people believe
that the larger the training set, the better will be the model
induced by the regression method. But this is not always
true. In some datasets, certain regions of the input space
may be excessively well-covered, while others may lack
representativeness. This can bias regression models induced
by learning methods to perform well only on these over-
represented regions, decreasing their generalization capability.
In this scenario, removing instances from these dense regions
can improve the induced model by leading the regression
model to consider the entire input space with similar interest

[3]. In addition, making the training set smaller by removing
instances can reduce the computational effort employed to
induce the regression model, helping applications in which
the computational time spent during the learning process has
crucial importance.

Following this idea of instance selection, this paper explores
its use and advantages in another scenario: to reduce the
number of dimensions of the semantic space in Geometric
Semantic Genetic Programming (GSGP) [4] for symbolic
regression. GSGP is a Genetic Programming (GP) framework
that introduces geometric semantic operators capable of induc-
ing a known semantic effect through syntactic manipulation.
The semantics of a candidate solution in GSGP captures
its behavior considering the problem context. In symbolic
regression problems the semantics of a given solution is
defined as the output vector generated when the function it
represents is applied to the training set [5].

This definition allows the semantics of a solution to be
represented in a n-dimensional space, called semantic space, in
which n corresponds to the size of the training set. The genetic
operators employed by GSGP use the geometry of this space to
search for solutions that minimize the fitness function, defined
with respect to a given metric. The fitness value is proportional
to the distance between the solution and the target output
vector—also represented in the semantic space—according to
the adopted metric. Thus, by reducing the size of the training
set, the number of dimensions of the semantic space is also
decreased, leading to a smaller search space, which can be
simpler to be explored.

The main goal of this paper is to assess if, by decreasing
the number of training cases and, consequently, the number
of dimensions of the semantic space, we can improve the
search performed by GSGP, making that search simpler and
more efficient. In an initial analysis performed in [6] we
applied instance selection methods adapted from the data
classification literature, and showed that the reduction of the
size of the search space can bring beneficial impacts to the
search performed by GSGP.

Following this same line, this paper proposes a different
approach for instance selection: to weight data instances.
We propose to use four weighting functions to estimate the
relative importance of each instance based on its position
with respect to its k nearest neighbours. These weighting
function are combined with four dimensionality reduction
techniques, which we show are important to improve the
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notion of closeness between instances, generating datasets with
simplified input spaces. Results show this approach results in
the construction of instances subsets capable of capturing the
underlying structure of the datasets, allowing GSGP to induce
regression models with similar quality faster.

The remainder of this paper is organized as follows. Section
II introduces the main concepts of GSGP. Section III reviews
related work, while Section IV describes and evaluates our
strategies for reducing the size of the search space in GSGP.
Finally, Section V presents experimental results, and Section
VI draws conclusions and presents directions for future work.

II. GEOMETRIC SEMANTIC GENETIC PROGRAMMING

Recent works in GP have shown that the semantics of
the programs can play a crucial role during the evolutionary
process [7]. Exploring this scenario, researchers have proposed
a variety of methods that employ semantically-aware operators
capable of guiding the search towards more promising regions
of the search space, improving the chances of reaching better
solutions. In contrast with syntax, which defines the structure
of the program represented by an individual, semantics de-
scribes the behaviour of this structure.

Following the concept of semantic space, Moraglio and
colleagues [4] presented a new GP framework, capable of
manipulating the syntax of the individuals with geometric
implications on their disposition in the semantic space. The
framework, called Geometric Semantic GP (GSGP), searches
directly the space of the underlying semantics of the pro-
grams, inducing a unimodal fitness landscape—which can be
optimized by evolutionary algorithms with good results for
virtually any metric [8]. The geometric semantic crossover
and mutation operators presented by GSGP exploit seman-
tic awareness and geometric shapes to describe the spatial
relationship between parents and offspring, inducing precise
geometric properties in the semantic space.

The semantics of a GSGP individual is defined as a point
in a space with dimensionality equivalent to the number
of training instances, which implies that geometric semantic
operators are affected by the growth of the dimensionality of
the semantic space [6]. Therefore, by reducing the number of
instances we automatically reduce the number of dimensions
of the semantic space, which in turn reduces the complexity
of the search space. The smaller the complexity of the search
space, the smaller the number of possible combinations, which
may increase the speed of convergence to the optimum.

III. RELATED WORK

Although the importance of Instance Selection (IS) methods
is recognized in both classification and regression tasks, the
number of works applying IS to regression problems is still
much smaller than those applying IS to classification (see [9]
for a comprehensive survey of these techniques or [10] for
a study on how IS can improve classification accuracy on
imbalanced datasets).

The CNN for Regression (RegCNN) and ENN for Regres-
sion (RegENN) [11] adapt the Condensed Nearest Neighbour

(CNN) and Edited Nearest Neighbour (ENN) methods for
instance selection in classification problems to the regression
domain. Both methods estimate the importance of each in-
stance by analyzing how they compare to their neighbours.
RegCNN and RegENN replace the label comparison used
in their classification versions by an error-based comparison.
Instead of comparing the label predicted by a k-NN classifier
and the expected label to make a decision, RegCNN and
RegENN compare the error between the output predicted by a
regression method and the expected output to a threshold, in
order to make the decisions of removing (RegENN) or keeping
(RegCNN) an instance. The RegCNN and RegENN methods
were renamed Threshold ENN (TENN) and Threshold CNN
(TCNN) in [12] and compared with a discretization approach,
which converts the continuous outputs of the instances into
discrete values representing their labels and then applies the
original ENN and CNN to select the instances.

In [6], we evaluated methods used during data pre-
processing (namely TENN and TCNN) for instance selection
in GSGP, and also proposed the Probabilistic instance Selec-
tion based on the Error (PSE), a method integrated to GSGP
evolution that selects a subset of instances from the original
training set—with a user-defined frequency—with probability
proportional to the median absolute error of the instance over
the current population. Results showed that TENN and TCNN
had inferior performance in terms of RMSE in this task when
compared to PSE. However, the main drawback of PSE is that
it further increases the computational time required by GSGP
to induce the regression models. Therefore, it is still relevant
to investigate other pre-processing strategies with a smaller
impact on the computational time of regression methods.

In this direction, the approach presented in this paper is
based on instance weighting. We took as inspiration the work
of [13], in which the authors introduced a framework to auto-
matically assign weights to instances that takes into account
the relative importance of the instance. However, instead of
using a canonical version of the GP algorithm, we analyse
the impact of these weights on the semantic space in which
the search performed by GSGP takes place. They evaluated
the framework using four weighting schemes, defining the
importance of an instance relative to proximity, surrounding,
remoteness, and nonlinear deviation from k nearest-in-the-
input-space neighbours. They explored their framework in two
different ways: (i) by using the weights within the fitness
function of a canonical GP, giving different importance to
each instance on the final fitness value and (ii) by selecting
a subset from the training set, composed by the instances
with the highest metric value. Regarding the former approach,
they developed a simple procedure for partitioning data into
balanced nested subsets of arbitrary size, called Simple Mul-
tidimensional Iterative Technique for Subsampling (SMITS).
The pre-processing instance selection strategy presented in this
paper is based on the former approach and Section IV provides
further details on that.
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Fig. 1: Example of an unbalanced dataset and the impact of a
instance selection method on the regression.

IV. STRATEGIES FOR REDUCING THE SIZE OF THE
SEARCH SPACE

This section presents the proposed approach to deal with
instance selection: it assigns weights to each instance ac-
cording to their importance in the definition of the search
space, then selects a subset of these instances according to
their weight. We first introduce the four weighting metrics we
apply: proximity, surrounding, non-linearity and remoteness
[13]. Given that these metrics are calculated in a very high-
dimensional space, we also investigate the use of four dimen-
sionality reduction techniques in the original space of features
of each instance to improve the way the weights are calculated.
These techniques are: Principal Component Analysis (PCA),
Isomap Mapping, Multi-Dimensional Scaling (MDS) and t-
distributed Stochastic Neighbour Embedding (t-SNE).

The idea of using instance weights to select instances is
based on the hypothesis that the level of concentration of
instances in the input space has a crucial impact on the training
stage performed by regression methods, including GP-based
ones. This hypothesis comes from the fact that error metrics
used to guide the search performed by GP give the same
weight to every instance. Consequently, regions of the input
space with a higher concentration of instances bias the search,
in the sense that the fitness function gives a better reward to
individuals with good performance on these dense regions.

Fig. 1 gives an example of such behavior. Consider a
training set T composed by 60 points evenly distributed in
the input space in [−1.5, 4.5], represented as circles (filled
and empty) in the figure. Notice that the intervals [−1.5,−0.5]
and [1, 4.5], although with the same distribution of instances in
the input space, have a denser distribution in the output space
when compared to the interval (−0.5, 1). In order to make the
distribution in the output space more balanced, we selected the
subset S from T , represented by filled circles. The red and
blue curves represent functions induced by a GP using T and
S as training sets, respectively. The red curve converges to a
constant that minimizes the error in the dense region, while
the blue curve is able to capture the tendency of the original
function.

In such cases, instance selection methods can be useful, as
they can prevent the creation of a model that is inclined to
perform well only on regions with a higher instance density
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Fig. 2: Weights obtained by applying the surrounding function
to the training set from Fig. 1.

and, in addition, they have the potential to reduce running
time without reducing accuracy. We are interested in a method
capable of identifying instances with low variation in the
output space w.r.t. cases in the same region. These instances
could be removed from the training set, resulting in a smaller
set in which the distribution of the instances in the input space
better reflects the variations in the output space.

A. Weighting Process

We first introduce the notation used in the remainder of
this work. Given the input training set T = {I1, I2, . . . , In}—
with Ii = (xi, yi) ∈ Rd × R and xi = [xi1, xi2, . . . , xid], for
i = {1, 2, . . . , n}, where n is the size of the training set and
d is the number of dimensions in the input space. The p-norm
in the input space of a given vector u ∈ Rd, defined as:

‖u‖p =

(
d∑
i=1

|ui|p
)1/p

, (1)

is used to compute the subset of T corresponding to
the k nearest neighbours of a given instance Ii—Ni =
{Ni1, Ni2, . . . , Nik}—and its set of associates Ai = {Ij |Ii ∈
Nj for j ∈ {1, 2, . . . , n} and i 6= j}—i.e., instances that have
Ii among their k-nearest neighbours. We used p = 2 in all
experiments performed.

The proximity function γ, introduced by the authors in [14],
tries to estimate how isolated an instance is by measuring the
average distance to its k nearest neighbours:

γ(Ii,Ni, k) =
1

k

∑
(xj ,yj)∈Ni

‖xi − xj‖p . (2)

However, the proximity function does not take into account
the relative directions between an instance and its neighbours.
Therefore, a situation like the one depicted in Fig. 3 would
be indistinguishable by this metric. This kind of information
can be captured using the surrounding function δ, which
tries to identify instances on the border of the response
surface—i.e., instances that are not uniformly surrounded by
its neighbours—by measuring the average length of the vectors
pointing from Ii to its k nearest neighbours:
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Fig. 3: Since the surrounding function also takes the directions
to the neighbours into account, it assigns higher weight values
when the neighbours are located in the same direction.

δ(Ii,Ni, k) =

∥∥∥∥∥∥1

k

∑
(xj ,yj)∈Ni

(xi − xj)

∥∥∥∥∥∥
p

. (3)

The choice of k influences the perception of the data:
smaller values for k increase the local impact on the metrics
while larger values lead to a more global influence. When
determining the neighbours and associates of the instances,
only the input space is considered.

To illustrate how the surrounding function works, we apply
it to the set of instances presented in Fig. 1. The result is shown
in Fig. 2, in which the size of each instance is proportional to
its weight.

The nonlinearity function ν tries to emphasize areas of
nonlinear changes and is defined as the distance from an
instance Ii to the least-squares hyperplane passing through
its k nearest neighbours:

ν(Ii,Ni, k) = ‖xi − xΠi)‖p , (4)

where xΠi is the orthogonal projection of xi on the hyperplane
Πi passing through the k neighbours of Ii in the input space.

The last weighting function, remoteness (ρ), defines the
weight of an instance Ii as the rank of the average value of
its proximity and the surrounding weights:

ρ(γ, δ, Ii,Ni, k) =
R

(γ)
i +R

(δ)
i

2
. (5)

The weighting functions presented above allow us to
rank the instances according to their inferred importance.
Let w be one of these weighting functions. The vector
[w(I1,N1, k), w(I2,N2, k), . . . , w(In,Nn, k)]T results from
the application of w to each instance from T considering its
k nearest neighbours. By ordering the instances according to
their weights we induce a ranking R(w), with R

(w)
i as the

index of instance Ii in this ranking.

B. Input Space Dimensionality Reduction

Most datasets used in real-world applications—and in our
experiments—represent a complex high dimensional input
space. The weighting functions presented in the last section
rely heavily on the notion of closeness between each instance
and their nearest neighbours, which can be deceiving in high
dimensional spaces. As an attempt to mitigate this potential
problem, as well as gain some insight about the datasets, we
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Fig. 4: Embedding created by applying the t-SNE technique
on the dataset energy-heating (for two components).

applied dimensionality reduction techniques before performing
the instance selection process.

Dimensionality reduction methods allow us to convert a
high-dimensional dataset into a two or three-dimensional
space, with the distances between instances in the low-
dimensional representation reflecting, as much as possible, the
similarities between instances in the high-dimensional dataset.

By incorporating dimensionality reduction methods in our
instance selection process we expect to enhance the perception
of adjacency between instances, eventually improving the
significance of the values produced by the weighting functions.
We embedded the input attributes of all datasets containing
four or more attributes into a two dimensional input space
using the following dimensionality reduction techniques:
• Principal Component Analysis (PCA) [15]: uses an or-

thogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components.

• Isomap Mapping [16]: seeks a lower-dimensional embed-
ding maintaining geodesic distances between all points.

• Multi-Dimensional Scaling (MDS) [17]: seeks a low-
dimensional representation of the data in which the
distances respect well the distances in the original high-
dimensional space.

• t-distributed Stochastic Neighbour Embedding (t-SNE)
[18]: converts affinities of data points to probabilities. The
affinities in the original space are represented by Gaussian
joint probabilities and the affinities in the embedded
space are represented by Student’s t-distributions. Fig. 4
shows one of the ways the energy-cooling dataset can be
represented after applying the t-SNE technique, in which
the method was able to create a clear distinction between
the instances, considering their output values.

C. Selection Process

We adopted the instance selection method presented in
Algorithm 1, which is based on the SMITS procedure [13]. It
takes a training set T , a weighting function and five control
variables as arguments and outputs a set of instances S,
selected according to the amount of new information the



Algorithm 1: Instance selection
Input: training set (T ), number of neighbours (k),

distance metric (L), weighting function (w),
selection factor (s)

Output: instance set S ⊆ T
1 D ← distBetweenInstances(T , L);
2 Ai ← ∅, for i ∈ {1, 2, . . . , n} ; // Associates
3 foreach Ii = (xi, yi) ∈ T do
4 Ni ← k nearest neighbours of Ii;
5 foreach Nij ∈ Ni do
6 Aj ← Aj ∪ {Ii}; // Find associates

7 W ← calculateWeights(T , D,w, L);
8 Let R[|T | − k] be a new array; // Ranking
9 for i← 1 to |T | − k do

10 Il ← instance with the lowest weight;
11 R[i]← Il;
12 Wl ←∞ ; // Ignore Il thereafter
13 updateAssociatesWeights(D,W,Al, l);

14 Randomly assign ranks from |T | − k + 1 to |T | to the
last k instances;

15 S ← selectInstances(T , R, s);
16 return S;

instances bring to the selected subset. The algorithm starts
by creating, in line 1, a matrix D containing the distance
between each pair of instances in T . Note that the distances
are calculated considering only the input space, since the
closeness between them can be misleading if we also include
the output space. In lines 3-6, the algorithm builds, for each
instance, its initial sets of neighbours and associates (i.e., those
instances that have the instance as one of their k nearest
neighbours). In lines 9-13, the algorithm iteratively ranks all
instances according to the given weighting function w, the
distance metric L and the number of neighbours k. It starts
each iteration by finding the instance with the lowest weight
and registering it in a ranking array. That instance has to be
ignored thereafter, which is forced by setting its weight to ∞.
After that, the algorithm updates the weights of the instances
that had Il among its k nearest neighbours (line 13). The
algorithm terminates after creating, in line 15, the set S with
the selected instances, which is done by selecting a subset of
instances from T based on the ranking created. The size of
the subset is defined by the parameter s.

The time taken by Algorithm 1 depends on the number
of instances n, the number of dimensions d, and the number
of neighbours k of each instance. In line 2 of Algorithm
1, we compute the distance matrix, which requires O(n2d)
operations. The proximity and surrounding functions require
all k neighbours, which can be found in O(kn) (using k
times selection in expected linear time) or O(n log n) if we
sort the neighbours. In our implementation, we opted for the
latter approach for considering that large values of k will
often be used. Therefore, the complexity of the proximity and

TABLE I: Datasets used in the experiments.

Dataset Attrs Inst. Nature Src Exp. estrategy

airfoil (air) 6 1503 Real [19], [21] 10 × 5-CV
ccn 123 1994 Real [19] 10 × 5-CV
ccun 125 1994 Real [19] 10 × 5-CV
concrete (con) 9 1030 Real [19], [21] 10 × 5-CV
energyCooling (eneC) 9 768 Real [19], [21] 10 × 5-CV
energyHeating (eneH) 9 768 Real [19], [21] 10 × 5-CV
keijzer-6 (kei6) 2 50 Synthetic [23] 50 × D
keijzer-7 (kei7) 2 100 Synthetic [23] 50 × D
parkinsons (par) 19 5875 Real [19] 10 × 5-CV
ppb 627 131 Real [21] 10 × 5-CV
towerData (tow) 26 4999 Real [21] 10 × 5-CV
vladislavleva-1 (vla1) 3 100 Synthetic [24] 10 × 5-ND
wineRed (winR) 12 1599 Real [19], [21] 10 × 5-CV
wineWhite (winW) 12 4898 Real [19], [21] 10 × 5-CV
yacht (yac) 7 308 Real [19], [21] 10 × 5-CV

surrounding functions is O(n2d+ n2max(k, log n)).
For the nonlinearity function, the process of determining the

plane approximating k neighbours requires solving a system
of k linear equations, which makes the complexity of the
nonlinearity function equals to O(nk3).

V. EXPERIMENTAL ANALYSIS

We carried out the experiments using a group of 15 datasets
selected from the UCI machine learning repository [19], GP
benchmarks [20], and GP studies from the literature [21], [22],
as presented in Table I 1. For real datasets, we randomly
partitioned the data into 5 disjoint sets of the same size
and executed the methods 10 times with a 5-fold cross-
validations (10 × 5-CV). For the synthetic ones, we used
two different strategies according to the way the dataset
was defined in its original work: datasets generated by non-
deterministic sampling functions were resampled 5 times and
the experiments were repeated ten times for each sampling (10
× 5-ND); experiments with datasets deterministically sampled
were repeated 50 times with the same data folds (50 × D).
Training and test sets were sampled with the same strategy.
In the end, all methods were executed 50 times. The sets
of selected instances used were kept fixed throughout all
executions.

All executions used a population of 1,000 individuals
evolved for 250 generations and a tournament selection size of
10. The grow method [25] was adopted to generate the random
functions inside the geometric semantic operators, while the
ramped half-and-half method [25] was used to generate the
initial population, both with maximum individual depth equal
to 6. The terminal set included the input variables of each
dataset and constant values randomly picked from the interval
[−1, 1]. The function set included three binary arithmetic
operators (+,−,×) and the analytic quotient (AQ) [26].

We employed the crossover for Manhattan-based fitness
function and mutation operators, both with probability 0.5. The
mutation step required by the mutation operator was defined
as 10% of the standard deviation of the outputs given by the

1The code used in our experimental analysis is freely available for download
on GitHub at https://github.com/laic-ufmg/ISR.



training data. We used the root mean squared error (RMSE)
as the fitness function.

To avoid that the difference between the range of attribute
values bias the data weighting process towards high range at-
tributes, we scaled the input and output values of all datasets in
our test bed to the interval [0, 1]. Note, however, that although
these scaled values were used by the instance selection method
to decide which instances should be kept, the resulting subset
is always formed by the original training instances.

A. Results of Weighting Functions

In this section, we focus on the impact the instance selection
process has in the search performed by GSGP. To quantify
this impact, we employ two metrics: test RMSE—to measure
the error associated with the regression models produced—
and execution time—aiming to assess if the selection process
actually reduces computational complexity.

For each dataset, we fed the algorithm with the same set
of parameters, with exception of the number of instances
removed from the training set, resulting in training sets of
sizes ranging from 75% to 99% relative to their original sizes.

We carried out experiments using subsets built with the four
weighting functions previously introduced. However, since the
ppb dataset has more attributes than instances, the nonlinearity
function could not be applied. In order to identify significant
differences between the overall accuracy obtained by them,
we adopted the Friedman with Nemenyi post-hoc test. We
performed a Friedman test under the null hypothesis that the
performances of the weighting functions are equal. Neverthe-
less, considering a confidence level of 95%, the resulting p-
value (0.18) implies that we cannot discard the null hypothesis,
and hence no weighting function can be considered better than
the others. Therefore, we present in this section only the results
regarding the surrounding function, which obtained the best
overall results. The corresponding median test RMSE values
for the experiment are presented in Table II, in which values
highlighted in bold correspond to results better than the ones
obtained by GSGP with the complete set of instances.

In order to get a visual overview of the results, we analyzed
the percentage variation in the test RMSE value as the number
of removed instances increases, shown in Fig. 5. Observe
that most lines are within the 5% variation, which means
that, for most datasets, the selection process does not have a
strong impact on the regression performed by GSGP. In other
words, the compressed training sets successfully capture the
underlying structure of the data. More precisely, for 12 out
of 15 datasets, the test RMSE values reveal no substantial
quality changes when compared to the models built using the
original and the compressed datasets, since, for any selection
level, the corresponding RMSE variations are confined to the
range [−5%, 5%]. Furthermore, we observed negative RMSE
variation after removing 25% of the training instances when
compared to the original dataset in 9 out of 15 datasets.

We observed poor or inconclusive results—in which the
error value seems to grow or shift arbitrarily as we increase
the selection level—for the synthetic datasets. For the keijzer-6

TABLE II: Test RMSE obtained by GSGP on a training set
reduced using the surrounding function.

Training instances removed (%)

Dataset 0 1 5 10 15 20 25

air 27.083 27.213 27.073 27.142 27.013 26.993 26.969
ccn 0.139 0.138 0.139 0.139 0.139 0.139 0.140
ccun 382.00 385.84 380.98 382.71 383.36 381.17 382.00
con 6.871 6.806 6.795 6.828 6.862 6.854 6.851
eneC 2.422 2.414 2.389 2.368 2.330 2.337 2.315
eneH 1.913 1.843 1.878 1.847 1.845 1.844 1.872
kei6 0.454 0.422 0.458 0.468 0.489 0.500 0.477
kei7 0.025 0.027 0.025 0.024 0.026 0.027 0.027
par 9.805 9.804 9.816 9.823 9.839 9.840 9.836
ppb 29.697 28.805 28.367 28.615 29.549 29.057 28.738
tow 33.799 33.797 33.579 33.675 33.573 33.779 33.790
vla1 0.061 0.064 0.061 0.057 0.058 0.056 0.056
winR 0.629 0.631 0.630 0.628 0.630 0.632 0.633
winW 0.719 0.719 0.720 0.720 0.721 0.721 0.722
yac 6.251 6.213 6.135 6.070 6.177 6.085 5.956
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Fig. 5: Evolution of the RMSE values obtained by GSGP
according to the number of instances removed using the
surrounding function. Each line corresponds to a dataset,
and the outer dashed blue lines represent RMSE variations
corresponding to −5% and 5%, delimiting a range in which
the results can be seen as stable.

and keijzer-7 datasets, this behavior could be explained by the
fact that we used an odd neighbourhood size (5) in order to
assign a weight value to instances with only one input attribute,
with values equally distributed along a single dimension. In
such cases, the initial weights assigned to instances that are
not on the edge of the input space are certainly flawed. As
the selection progresses, this problem tends to be reduced,
but not mitigated. However, if the neighbourhood size was,
in fact, the only reason behind these results, the behavior of
these two datasets should change when we use the nonlinearity
function, since for them we used k = 2. What we see, however,
is a reduction in the level of randomness of the results, but
with error values still indicating poor results when compared
to those obtained in the other datasets.

It is also interesting to point out that the three datasets with
poor results are also those with the lowest number of input
attributes (one and two). This may indicate that using a low
neighbourhood size—close to the number of input attributes—
impairs the selection process. In conclusion, considering the
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Fig. 6: Variation of the median execution time for GSGP runs
using the proximity function, for each dataset. The reduction
in the execution time is expected to be linear according to the
number of instances removed.

results of RMSE obtained and the stability of the datasets
as we increase the number of instances removed (considering
that an instance is stable if its RMSE variation is not greater
than 5% as we change the number of instances removed),
the surrounding function would be the more appropriate to
consider. However, notice that if we make our definition of
stability tighter, and consider an error variation of at most 1%,
both the surrounding, remoteness and nonlinearity functions
present similar results.

In order to verify how the time complexity of GSGP is
affected by the selection process, we analyze the median
execution time required by GSGP to create the regression
models for each dataset. This analysis for the proximity
function is shown in Fig. 6 and considers both training and test
phases. Overall, the results agree with our expectations albeit
in a less pronounced way than it was expected. The synthetic
datasets once again exhibited a contradictory behavior, with
execution times essentially constant regardless of the number
of instances removed. The time spent in the selection process
is relatively small (corresponding, on average, for only 1.8%
of the time spent by GSGP to induce its regression models).

B. Results considering Dimensionality Reduction Methods

In this section, we analyze if the application of input
space dimensionality reduction methods as the first step in
the selection process improved the error values. We used the
four methods—Isomap, MDS, PCA, and t-SNE with number
of dimensions equals to two—to the training instances of all
datasets with dimensionality ≥ 3. The resulting embeddings
were used to decide which instances to remove during the
selection process. However, GSGP was run with the selected
instances with their original number of input attributes, given
the results from preliminary experiments showed that the space
reduction has a negative impact on its accuracy.

All methods performed similarly and, due to space lim-
itations, we restrict ourselves to the method with the best
results (t-SNE, using the proximity function) in terms of
RMSE improvement. Table III presents the median RMSE

TABLE III: Test RMSE obtained by GSGP on a training set
embedded using the t-SNE method and reduced using the
proximity function.

Training instances removed (%)

Dataset 0 1 5 10 15 20 25

air 27.083 27.139 27.066 27.086 27.140 27.296 27.202
ccn 0.139 0.138 0.138 0.138 0.138 0.138 0.137
ccun 382.00 380.17 380.51 381.74 386.63 383.92 386.10
con 6.871 6.783 6.944 6.800 6.803 6.815 7.031
eneC 2.422 2.375 2.365 2.354 2.323 2.293 2.329
eneH 1.913 1.938 1.902 1.853 1.869 1.846 1.806
par 9.805 9.805 9.835 9.837 9.837 9.851 9.864
ppb 29.222 28.848 29.157 27.498 29.148 29.449 29.618
tow 33.799 34.066 34.211 34.070 33.691 34.006 34.278
winR 0.629 0.629 0.630 0.631 0.633 0.633 0.636
winW 0.719 0.720 0.719 0.720 0.722 0.724 0.725
yac 6.251 6.243 6.176 6.230 6.137 6.182 6.215

# of wins - 8 8 7 7 5 4
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Fig. 7: Evolution of the RMSE values obtained by GSGP
combined with t-SNE, according to the number of instances
removed. Each line corresponds to a dataset, and the outer
dashed blue lines represent RMSE variations corresponding
to −5% and 5%, delimiting a range where results are stable.

in the test sets, according to 50 executions, and results are
visualized in Fig. 7. In order to identify significant differences
between the weighting functions, we performed a Friedman
test in the same way as presented in the preceding section. The
resulting p-value, 5.7 × 10−4, implies in discarding the null
hypothesis (that the performances of the weighting functions
are equal) with a confidence level of 95%, leading us to
analyse the output of the Nemenyi post-hoc test, presented by
the critical difference diagram from Figure 8. The proximity
and surrounding functions are significantly better than the
nonlinearity function and present no statistical difference to
the remoteness function. All the other pairwise comparisons
present no statistical significant differences.

After the results of the experiments performed in this
section, we recommend the use of instance selection methods
with GSGP, using embedding during the instance selection to
minimize the impact of the curse of the dimensionality when
calculating the distances between two examples. With respect
to the functions, we recommend the proximity or surrounding.
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Fig. 8: Critical difference diagrams for the Nemenyi post-hoc
tests. For each metric, the mean rank is shown (being rank
1 the best result). Horizontal line segments group together
methods with ranks that are not significantly different. The
critical difference (CD) for each task is shown in the upper
left of each diagram.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented an analysis regarding the im-
pact of instances selection methods on the search process
performed by GSGP. After a series of experiments with
different combinations of metrics and dimensionality reduction
methods, we showed that by decreasing the number of training
cases and, consequently, the number of dimensions of the
semantic space, we can improve the search process performed
by GSGP, making that search simpler and more efficient,
which, in turns, allows it to induce regression models faster
with similar quality.

From all methods and metrics tested, we recommend the
use of feature selection during the instance selection process
to minimize the impact of the curse of the dimensionality when
calculating the distances between two examples. With respect
to the weighting functions, we recommend the proximity or
surrounding functions.

Potential future works include investigating techniques to
identify the noisy instances in order to remove or minimize
their importance during the search, and then insert this in-
formation into the instance selection process, and analyzing
the effect of fitness functions that weight semantic space
dimensions, among others.
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