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Abstract—Opponent Modelling tries to predict the future
actions of opponents, and is required to perform well in multi-
player games. There is a deep literature on learning an opponent
model, but much less on how accurate such models must be to be
useful. We investigate the sensitivity of Monte Carlo Tree Search
(MCTS) and a Rolling Horizon Evolutionary Algorithm (RHEA)
to the accuracy of their modelling of the opponent in a simple
Real-Time Strategy game. We find that in this domain RHEA is
much more sensitive to the accuracy of an opponent model than
MCTS. MCTS generally does better even with an inaccurate
model, while this will degrade RHEA’s performance. We show
that faced with an unknown opponent and a low computational
budget it is better not to use any explicit model with RHEA, and
to model the opponent’s actions within the tree as part of the
MCTS algorithm.

Index Terms—Opponent Modelling, Real-Time Strategy, Sta-
tistical Forward Planning, Evolutionary Algorithms, Monte Carlo
Tree Search

I. INTRODUCTION

When playing a game, or acting in any environment in
which other players are present, we would intuitively expect
that knowing what the other players are going to do will be
helpful in deciding what actions to take. This is true whether
their actions are taken in response to our actions, or simply
as they interact with the environment regardless of what we
decide to do. We need an opponent model.

It is also intuitive that if our opponent model is inaccurate,
we will do less well. For example if we think our opponent will
attack if they have a 3:1 advantage, but in fact they will only
attack at 10:1 odds then we will likely play more defensively
than optimal. Conversely, if they will actually attack at 2:1
odds then the defences we expect to inhibit an assault will
fail to do so.

In a 2-player zero sum game we can theoretically fall-
back on the concept of a Nash Equilibrium, which assumes a
perfectly rational opponent, although this also reduces our po-
tential to exploit a sub-rational agent. Calculating a Nash Equi-
librium strategy may be straightforward in a simple normal-
form game, but usually becomes intractable in an extensive
form one [13]. Although there have been major successes here,
as with the Counterfactual Regret Minimisation algorithms that
approximate a Nash Equilibrium strategy in Texas Hold’em

poker, these require very large amounts of pre-processing and
domain-specific reductions of the state-space [16].

Real Time Strategy (RTS) games have very large branching
factors and the potential for simultaneous actions by both
players and also by different units of one player. This makes
calculation of a Nash Equilibrium for every move infeasible.
Any opponent model also requires some computational time.
The more sophisticated our model, the less time we have
to make our own decision. On the assumption that in most
applications there will only be a limited computational budget
available, we also need to trade-off between these. It may be
that an inaccurate but cheap opponent model provides better
results in actual play than a perfectly accurate but expensive
one. At the lowest computational limit we have a ‘DoNothing’
opponent model that never does anything. This computational
consideration is important in commercial games, in which we
generally cannot leave the human player(s) waiting while the
AI calculates its move, and CPU cycles have to be shared with
such distractions as graphics, sound and physics engines.

In this paper we investigate the impact of varying the
opponent model in a simple RTS-style game, Ground War,
developed as a test-bed for ground-based military simula-
tions. We investigate two popular Statistical Forward Planning
algorithms that make use of a forward model to plan the
next action; Monte Carlo Tree Search (MCTS) and Rolling
Horizon Evolutionary Algorithms (RHEA). In each case we
ask whether a simple opponent model with minimal compu-
tational budget can robustly improve the quality of play, and
hence the verisimilitude of simulation results. By ‘robustly’ we
specifically mean that the opponent model should be helpful
against a variety of different actual opponents, and not just
those for which the model is perfectly accurate. Work with
statistical forward planning using a learned model in the Game
of Life and Sokoban has shown that the learned environmental
model need to be quite accurate to be at all useful [10],
[20]. On the other hand recent work emphasised that learned
forward models could lead to better outcomes if the model
was trained to model what was relevant to gaining reward as
opposed to trying to model the full state transitions [30].

We wish to determine how opponent model fidelity affects
the game playing performance of statistical forward planning
algorithms. We show that MCTS is more robust to using an
incorrect opponent model than RHEA.

000-0-0000-0000-0/00/$0.00 c©2020 IEEE

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



II. BACKGROUND

A. Opponent Modelling

Opponent Modelling is where an agent A models what other
agents in the environment will do in response to stimuli, where
such stimuli include A’s own actions. While in this work it is
accurate to refer to ‘opponent’ models, more generally these
are ‘other agent’ models, and are just as important in co-
operative and semi-cooperative domains.

A few broad categories of opponent model can be distin-
guished, and see [1], [35] for more detailed surveys:

1) Game Theoretic. One approach is to assume the op-
ponent is perfectly rational, and seek to find a Nash
Equilibrium strategy (or approximation to), for example
using counterfactual regret in Poker [16], [37]. This
guarantees that we cannot be exploited by the other side,
but can be very computationally demanding even when
tractable.

2) Theory of Mind. Broadly this covers any approach which
assumes that the other agents are also modelling us, and
that to model their actions successfully it is necessary to
also model their model of us (with a theoretically infinite
recursion). Examples are the nested cognitive hierarchy
of [3], [32], or the Recursive Modelling Method of [14]

3) Own policy. We assume the other agent is using the
same algorithm that we are. A good example is MCTS
where we model the other player’s actions in the tree
[2]. Classic minimax-search through the game-tree is
another. In this case we can also use an estimate of the
evaluation function that the opponent is using, which
may be different to the one we use, especially if the
game is asymmetric in any way [4], [35].

4) Heuristic. A hand-crafted ‘expert’ policy that specifies
the action to take in any situation has the advantage of
reducing computational overhead, but requires domain
knowledge and will likely be able to represent a less flex-
ible policy-space compared to the previous categories,
especially if the heuristic is kept simple, both in terms
of coding investment and time to execute. For example
a heuristic policy used as a correctly-specified opponent
model is found to significantly improve performance
in MCTS [36]. This Heuristic can also be learned off-
line from play-traces of human games, and/or be used
to augment another approach, for example as a leaf
evaluation function in tree search [23], [29].

5) Adaptive Model. A policy can be learned/adapted from
an opponents observed moves as the game progresses.
Approaches include Fictitious Play, or Bayesian updates
over distinct heuristics [1], [31].

6) Environmental. In Multi-agent Reinforcement Learning
the policy of actions taken by agents is subsumed as part
of the environment [34]. This is not quite the same as
no opponent model, as the opponent does act, but this
is seen as a change to the environment and implicitly
incorporated into the resultant learned policy.

As our objective here is to model our opponent with
minimal computational overhead we use a Heuristic approach
here, plus in the case of MCTS we use an ‘Own Policy’
approach that assumes the opponent is also using MCTS and
model their actions in the same tree used for our own actions.

There is a deep literature learning an opponent model, but
much less on the impact of getting this model wrong, or even
slightly inaccurate [1]. In adaptive approaches this should be
mitigated as the opponent model learns during play from actual
opponent moves. In approaches that use a fixed heuristic or
an off-line learned policy, then this risk of poor performance
is greater.

Similar work to ours was considered when looking for
robust play against unknown opponents in the game of Spades
[33]. That found that a correct opponent model (using three
exemplars on trick-play) is best, but can lead to major losses if
mis-specified. A soft-max combination of the three exemplars
was more robust against an unknown opponent. Their results
also show that an incorrect model can sometimes help if it
confuses the opponent by causing you to play contrary to what
their correct model of you predicts.

B. Statistical Forward Planning

Monte Carlo Tree Search (MCTS) [2], [5], [9] has been used
successfully in many games and other planning environments.
It is an anytime algorithm that uses an available time budget
to search the forward game tree from the current state. On
each iteration four steps are followed:

1) Selection. Select an action to take from the current state.
If all actions have been selected at least once then the
best one is picked using the Upper Confidence for Trees
equation [17]: J(a) = Q(a) + C

√
log(N)
n(a) The action

a with largest J(a) is selected at state. N is the total
number of visits (iterations through) the state; n(a) is
the number of those visits that then took actiona; Q(a)
is the mean score for all visits to the state that took
action a; C is a parameter that controls the trade-off
between exploitation, and exploration choosing actions
with few visits so far. This step is repeated down the tree
of game states until a state is reached with previously
untried actions.

2) Expansion. Pick one of the untried actions at random,
and expand this, creating a new state in the game tree.

3) Simulation. From the expanded state, complete a simu-
lation to obtain a final score. In Ground Wars this does
not run to the end of the game, but for 100 time-steps.

4) Back-propagation. Back-propagate this final score up the
tree. Each state records the mean score of all iterations
that take a given action from that state as Q(a) that will
affect future Selection steps. Once the available time
budget has been used up the action at the root state
with either the highest score or most visits is executed
in the actual game environment.

A transposition-table approach is used in the tree with the node
defined by the full visible state [7], rather than an Open Loop



Fig. 1. Illustration of a Ground War game in progress between Blue and Red
forces. The green node is neutral and not yet occupied by either side. Note
the full Blue force of strength 100 is moving from Node 2 to Node 12 (node
numbers in white).

approach in which the current state is defined by the action
sequence taken to reach it [28].

Rolling Horizon Evolutionary Algorithms (RHEA) [27]
evolve a sequence of actions (i.e. a plan) by iterating until the
available time budget is exhausted (like MCTS it is anytime):

1) Generate a starting plan.
2) Randomly mutate the current ‘best’ plan.
3) Execute the mutated plan using the forward model and

calculate a final score for the end state achieved.
4) If this is better than the previous ‘best’ plan, then replace

the ‘best’ plan and repeat from step 2.
Once the time budget is exhausted, the first action in the
current best plan is executed in the real environment. In all
cases the score used in Ground War is the material advantage
over the other side calculated as 5 points per occupied node,
and 1 point per surviving force unit (see Section III).

III. GROUND WAR

The digital simulation used for this project is ‘Ground War’
(developed on the foundations of the pre-existing ‘Planet Wars’
[19]). This aims to provide a simple, abstract simulation of
ground combat with an arc and node map, and with forces
able to move from node to node only along connecting arcs
as shown in Figure 1. Key abstractions are:

1) No modelling of specific units. Each force has a size,
being a simple numeric value. Each side (Blue and Red)
has distinct attributes which apply to all forces of that
colour.

2) Combat is resolved instantaneously by Lanchester’s
Laws, with one force removed in any battle [11], [15].

3) Once an order has been issued it cannot be cancelled
and must be executed in full.

On top of these abstractions, additional functionality has
been built of specific potential interest for wargame simula-
tions to model the impact of fatigue, Command and Control

(C2) constraints, Fog of War and Rules of Engagement. Only
part of the C2 constraints are relevant to this study, and the
remaining functionality is switched off for these experiments.

To represent the cognitive capacity of a human commander
and the need to propagate orders to the units concerned a C2
parameter controls a minimum time (in game ticks) that must
elapse between orders.

At any point in time (subject to these C2 constraints) either
side may give an order to a force at any node to move to any
connected node, and they will then start moving at their speed
along the relevant arc. This may be for any percentage of the
force currently in the node. For example if Blue has a force of
size 45 in a node, then any number up to 45 may be ordered
to move. This will split the force, with the remainder staying
in the node as a ‘garrison’.

The Ground War environment is similar in some respects to
µRTS research environment for RTS games [26]. It does not
have specific unit types, or economic aspects, but has many
units that may be given orders simultaneously, and runs in
continuous time. These both require adaptations for statistical
forward planning from previous work which often has a single
agent choosing a single action from a relatively small list at
each time step [12], [21], [27].

A. Continuous Time

An order can be issued at any time with constraints imposed
by the C2 parameterisation. Discrete time steps, or ‘ticks’, still
exist in the simulation, but there is no requirement for an order
to be selected for each one. This speeds up the simulation, as
the computational overhead of planning is only required on a
small subset of ticks. An order can be one of the following:

• LaunchExpedition(X, A, B). Send a force of size X from
node A to node B.

• Wait(T). Wait for T ticks. The game forces this if no
action may currently be taken due to the C2 constraints.

If the visible situation changes, then a Wait will be interrupted.
For example if Red starts moving a force visible to Blue
while Blue is Waiting, then Blue will immediately make a new
decision in reaction (subject to the C2 constraint). This enables
Blue to take a long Wait action until their currently moving
forces reach their destinations without losing the ability to
react to Red.

B. Action Space

RHEA evolves a genome that is then translated into a
sequence of actions that can be taken in the environment. In
contrast MCTS requires a list of actions that are valid in the
current state. For RHEA a genome is a random number in
base 10 (for example 35190438313924). This is converted to
an action sequence as follows:

1) The first digits define A, the node from which an
expedition should be launched. If there are fewer than
10 nodes only the first digit is used; if between 10 and
99 then the first two digits are used, and so on. If A is
invalid due to this node not being under the control of



the player, or having no garrison, then a Wait order is
the default.

2) The next digit defines B, the destination. ‘0’ will use the
first arc from A, ‘1’ will use the second arc, and so on.
(If a map has more than 10 arcs from any node, then
two digits will be used here.)

3) The next digit defines the proportion of the current
garrison force to be sent. This is defined in increments
of 10%, with ‘0’ being 10% and ‘9’ being 100%.

4) The next digit defines how long to wait after taking the
action. This is equal to d2 ticks, where d is the digit
value. The C2 constraints apply to set a minimum wait.

5) The above steps are then repeated for the next digits in
the genome to generate the following action.

For MCTS we select 20 random actions at each node as the
action space when the node is first visited. These are generated
from random numeric sequences as above for RHEA until
20 distinct actions are found. This is a crude form of Action
Abstraction [8], [24], reducing a very large number of possible
actions to a small set tractable for forward planning.

There are more sophisticated methods by which the avail-
able actions for MCTS could be obtained, such as progressive
unpruning or combinatorial multi-armed bandits (CMAB) [6],
[25]. This approach is used to keep the action space as close
as possible to that used for RHEA, and is sufficient to enable
the comparison of opponent model behaviour that is our focus.

IV. EXPERIMENTS

We investigate two types of opponent model here:
• Own Policy. In the case of MCTS we can model the

opponent’s actions using the same algorithm. For each
forward simulation in planning we construct a tree for
the opponent at the same time, and make their decisions
using this. For each simulation we add one node to
each tree. For RHEA no ‘Own Policy’ variant is tried; a
Rolling Horizon Coevolutionary Algorithm [18] would be
possible, but was found to perform poorly in preliminary
experiments.

• Heuristic. A simple heuristic agent was hand-written
which took three parameters:

– Offence between 1 and 10. The numerical odds
required for any Attack to be launched on a node.

– Defence between 0 and 5. The numerical odds re-
quired to not Withdraw when Attacked.

– Actions. An ordered list of Attack, Withdraw, Rein-
force and Redeploy actions (in any order, including
omissions). When considering a move, the Heuristic
will run through this list and execute the first action
that is valid.
Attack is valid if a LaunchExpedition order against
an enemy node exists that meets or exceeds the
‘Offence’ parameter odds.
Withdraw is valid if an enemy attack is inbound on
an owned node with fewer defenders than the ‘De-
fence’ parameter dictates, and a LaunchExpedition
will retreat the defenders to an unthreatened node.

Reinforce is valid if the enemy could launch an
attack on a node that would provoke a Withdraw
action. A LaunchExpedition will be executed to send
reinforcements from an unthreatened node.
Redeploy is valid if an unthreatened node can
send reinforcements to another node that could then
launch an Attack action (i.e. an offensive version of
‘Reinforce’).

A set of potentially useful Heuristic agents were obtained
using the NTBEA optimisation algorithm [22] over these three
parameters. H0 was handcrafted as a starting point. H1 was
then optimised to be able to beat H0. H2 was optimised to
play well against RHEA and then H4 against RHEA that
used H2 as an opponent model; H3 against MCTS and H5
against MCTS that used H3 as an opponent model. The
attributes of the resultant Heuristics are listed in Table I. H1
is a very aggressive player, attacking as long as it has any
numerical advantage, while H2-4 will only attack if they have
a 10:1 superiority. There is little difference between H2 and
H3, optimised against RHEA and MCTS respectively; but
surprisingly large differences between H4 and H5, optimised
against RHEA+H2 and MCTS+H3.

In all cases RHEA and MCTS were given a budget of 50
generations/iterations per decision. RHEA used a (1+1) EA
with one genome generated per generation with a mutation
probability of 0.5, a length of up to 4 actions lasting 100 ticks
and a discount factor of 0.999. MCTS used a C of 3, a discount
factor of 0.999 and a rollout length of up to 100 ticks. These
parameters were found using NTBEA optimisation with equal
time allocated to RHEA and MCTS [22].

With 50 iterations RHEA takes an average of 0.8ms per
decision and MCTS twice as long at 1.6ms. When an opponent
model of any type is used by an algorithm these times approxi-
mately double. This is because the Ground War forward model
does not calculate for each ‘tick’ in turn, but recalculates
the game state only in a tick where an action is executed;
either at initiation or when a two Forces meet in battle. As a
result the computational time required is roughly proportional
to the number of player decisions taken and not the number
of game ticks that elapse. The Heuristics take about 800ns
to make a decision, so do not impact on the time. It should
be stressed that we are not comparing the performance of
RHEA and MCTS as such, but how each algorithm makes
use of an (in)accurate opponent model. The net play level
of these algorithms with 50 iterations and 1-2ms per move
is subjectively at a ‘good novice’ level appropriate for a
simple Game AI; a human player can defeat them once they
understand the game. Two sets of experiments were conducted
using these RHEA, MCTS and Heuristic agents.

A. OM Accuracy experiments

RHEA and MCTS were tested against a fixed H3 opponent,
with an opponent model based on H3 but Offence varied over
all integers between 1 and 10, and Defence varied over the
range 0.5 to 5.0 at 0.5 intervals. This gives 100 different



Name Against Offence Defence Actions
H0 3 1.2 W, A
H1 H0 1 0.5 RD, A, W, RF
H2 RHEA 10 1.5 RD, A, W, RF
H3 MCTS 10 1.0 RD, W, A, RF
H4 RHEA+H2 10 1.2 A, W, RF, RD
H5 MCTS+H3 3 0.5 W, RD, A, RF

TABLE I
HEURISTIC AGENTS USED. ‘AGAINST’ IS THE TARGET AGAINST WHICH
EACH WAS OPTIMISED. THE ACTIONS ARE LISTED IN ORDER; ATTACK,
WITHDRAW, REINFORCE AND REDEPLOY. RHEA+H? MEANS RHEA
USED WITH AN OPPONENT MODEL OF H?, WHERE ? ∈ {0, 1, 2, 3, 4, 5}

Heuristic opponents for each match-up, and 2000 games on
random maps were run against each.

These experiments were then reversed with a fixed H3 or H0
opponent model, and the actual opponent being varied on the
same basis. The objective of all these experiments was to see
if an opponent model only provides benefit against accurately
modelled opponents, and how far this benefit extends. The H3
and H0 agents from Table I were selected to vary both Offence
and the available Actions.

All random maps had 8-10 nodes, and each side started with
control of a single random node with a force of 100 units.

B. OM Efficacy experiments

Two round robin tournaments were run. The first includes
all six Heuristic agents in Table I, plus RHEA using several
of these as opponent models, as well as RHEA without an
opponent model (i.e. a ”Do Nothing” opponent model) and
RHEA with an opponent model that took random actions. The
second includes all Heuristic agents, and otherwise replaces
RHEA with MCTS. It also includes an MCTS agent that uses
MCTS to model the actions of the opponent; this does not
increase the number of calls to the forward model so is ‘free’
if this is the rate-limiting step. These experiments investigate
whether simple opponent models with a low computational
overhead can robustly help against more realistic opponents
that are outside the modelled policy space. The same 250 maps
are used for all match-ups between agent pairs; each map is
played twice with agents alternating sides for a total of 500
games between each pair.

V. RESULTS

A. OM Accuracy

Figure 2 shows that using an opponent model with the
correct Offence parameter against H3 leads to better perfor-
mance than not using an opponent model; there seems to be no
significant effect of the Defence parameter. This effect falls off
rapidly and RHEA with H3 as an opponent model (hereafter
abbreviated to RHEA+H3) is only better than RHEA against
Heuristic agents with an Offence of either 9 or 10. For any
lower values RHEA performs better with no opponent model
(i.e. where RHEA assumes that the enemy will sit still and
make no new moves at all). This is not specific against H3,
and the same pattern is shown against H0 (with Offence of

Fig. 2. The left-hand side shows the win rate of RHEA+OM against H3 and
H0 fixed opponents, where ‘OM’ is based on H3 with Offence between 1 and
10, and Defence between 0.5 and 5.0. The right-hand side shows MCTS+OM
on the same basis. 2000 games on random maps were run for each point. The
plane in each shows the baseline win rate of RHEA/MCTS with no opponent
model against the fixed opponent.

Fig. 3. Effect of varying opponent model against a fixed H0 opponent with
Offence of 3. The experiments are as in Figure 2, but against H0 as the
opponent and the Defence parameter is marginalised out. Shaded regions show
99% confidence intervals. Solid red line is the win rate of the RHEA/MCTS
algorithm and the dotted black line is the baseline performance against H0 of
RHEA/MCTS with no opponent model.

3) in Figure 3, which marginalises out the Defence parameter
for clarity.

MCTS+H3 also performs better than MCTS with no op-
ponent model when its actual opponent is close in Offence
parameter. The fall-off as the opponent model becomes less
accurate is less steep than with RHEA, and notably any
opponent model helps performance. MCTS with an opponent
model is always much better against H3 than vanilla MCTS
in striking contrast to the RHEA results; and against H0 the
deterioration with a very inaccurate model is small.

The effect of keeping the opponent model fixed and varying
the actual opponent is shown in Figures 4 and 5. These



Agent A B C D E F G H I J K L M Avg
A H0 50.0 44.4 51.2 52.0 51.4 52.0 34.6 47.6 44.6 45.0 45.2 51.6 37.2 47.5
B H1 55.6 50.0 52.2 53.0 51.0 52.0 35.2 32.8 34.8 34.6 34.6 38.8 32.6 43.7
C H2 48.8 47.8 50.0 50.2 48.8 49.6 51.8 47.4 44.8 44.2 42.0 51.4 46.4 48.1
D H3 48.0 47.0 49.8 50.0 48.0 50.0 52.0 46.0 43.6 43.0 43.6 51.6 46.8 47.7
E H4 48.6 49.0 51.2 52.0 50.0 51.6 50.4 47.2 36.2 34.6 35.2 50.6 38.8 46.4
F H5 48.0 48.0 50.4 50.0 48.4 50.0 40.4 46.0 47.8 46.8 47.6 47.4 42.6 47.6
G RHEA+H0 65.4 64.8 48.2 48.0 49.6 59.6 50.0 49.6 49.6 48.0 49.4 46.2 43.6 52.4
H RHEA+H1 52.4 67.2 52.6 54.0 52.8 54.0 50.4 50.0 48.4 47.4 46.8 47.4 41.4 52.0
I RHEA+H2 55.4 65.2 55.2 56.4 63.8 52.2 50.4 51.6 50.0 48.8 50.4 47.0 45.6 53.9
J RHEA+H3 55.0 65.4 55.8 57.0 65.4 53.2 52.0 52.6 51.2 50.0 50.6 48.4 44.2 54.7
K RHEA+H4 54.8 65.4 58.0 56.4 64.8 52.4 50.6 53.2 49.6 49.4 50.0 49.0 45.2 54.5
L RHEA+RND 48.4 61.2 48.6 48.4 49.4 52.6 53.8 52.6 53.0 51.6 51.0 50.0 45.0 51.7
M RHEA 62.8 67.4 53.6 53.2 61.2 57.4 56.4 58.6 54.4 55.8 54.8 55.0 50.0 57.6

TABLE II
PERCENTAGE WIN RATES OVER 500 GAMES ON RANDOM MAPS BETWEEN EACH PAIR OF RHEA OR HEURISTIC AGENTS. THE HIGHEST SCORING AGENT
AGAINST EACH OPPONENT IS IN BOLD, AND A GREEN BACKGROUND HIGHLIGHTS ALL AGENTS WITHIN A ONE-TAILED 95% CONFIDENCE BOUNDARY OF

THE BEST RESULT USING AN EXACT BINOMIAL TEST.

Fig. 4. Effect of varying an opponent based on H3 against a fixed opponent
model. The top line uses H3 as an opponent model (Offence of 10); the bottom
line uses H0 (Offence of 3 and restricted Actions). Shaded regions show 99%
confidence intervals. Solid red line is the win rate of RHEA/MCTS+H3 and
the dotted black line is the performance of RHEA/MCTS with no opponent
model.

show the same pattern. MCTS is almost always better with
an opponent model, however inaccurate, while RHEA only
benefits from an accurate opponent model. The exception to
this is when the opponent is based on H0 (Figure 5), where
RHEA also does better with any opponent model, but not
as much as MCTS. H0 never Reinforces or Redeploys, and
this reduced action set seems to give the real opponent fewer
opportunities to ‘surprise’ the opponent model.

B. OM Efficacy

The RHEA results are summarised in Table II. RHEA+H0
does best against H0 and H5, the two Heuristic agents with
the same Offence rating of 3. RHEA+H3 or RHEA+H4 do
well against any Heuristic with an Offence of 10 (H2/H3/H4).
RHEA with no opponent model only does especially well
against H1, as do most RHEA+H? agents. However it does
much better overall, and beats every RHEA+H? agent in a

Fig. 5. Effect of varying an opponent based on H0 against a fixed opponent
model. The experiments and key are as in Figure 4

head-to-head. This supports the conclusions from the Accuracy
experiments; having a reasonably accurate opponent model
improves performance, but hinders performance against op-
ponents for whom the model is not a good fit.

The MCTS results in Table III show a similar picture.
MCTS+H0 does best against H0 and H5 as the most similar
Heuristics, and MCTS+H1/3/5 are better against Heuristics
than against other MCTS agents. The results of Section V-A
where MCTS with any opponent model does much better
against H3 than MCTS without one are replicated in column
D of Table III. As with RHEA, MCTS with no opponent
model generally performs much better against MCTS using
an inaccurate opponent model, and MCTS consistently beats
MCTS+H?. However best overall is MCTS+MCTS, which
uses MCTS to model the opponent’s actions. This is worse
against specific opponents than MCTS using an accurate
opponent model, but is best against every single MCTS+H?
agent bar one. MCTS with no opponent model and MCTS
with a random opponent model come a close second overall.



Agent A B C D E F G H I J K L M Avg
A H0 50.0 46.0 52.0 51.0 52.2 51.2 36.6 46.6 47.8 46.6 49.0 46.6 46.0 47.8
B H1 54.0 50.0 51.2 53.2 51.6 51.6 36.2 36.2 36.4 35.6 34.8 34.6 35.2 43.1
C H2 48.0 48.8 50.0 50.4 48.6 48.6 48.4 43.8 43.0 43.6 49.8 49.8 52.0 48.1
D H3 49.0 46.8 49.6 50.0 48.4 49.6 48.2 45.8 43.4 43.2 48.0 50.4 51.0 48.0
E H4 47.8 48.4 51.4 51.6 50.0 51.0 49.6 39.8 41.6 40.6 46.2 45.2 49.8 47.2
F H5 48.8 48.4 51.4 50.4 49.0 50.0 42.6 47.4 47.8 49.0 46.6 45.4 48.2 48.1
G MCTS+H0 63.4 63.8 51.6 51.8 50.4 57.4 50.0 50.0 51.2 49.8 45.8 45.8 40.4 51.6
H MCTS+H1 53.4 63.8 56.2 54.2 60.2 52.6 50.0 50.0 50.4 50.0 44.4 45.0 41.8 51.7
I MCTS+H3 52.2 63.6 57.0 56.6 58.4 52.2 48.8 49.6 50.0 48.6 43.6 45.8 40.8 51.3
J MCTS+H5 53.4 64.4 56.4 56.8 59.4 51.0 50.2 50.0 51.4 50.0 44.6 46.0 40.6 51.9
K MCTS+RND 51.0 65.2 50.2 52.0 53.8 53.4 54.2 55.6 56.4 55.4 50.0 49.2 47.6 53.4
L MCTS 53.4 65.4 50.2 49.6 54.8 54.6 54.2 55.0 54.2 54.0 50.8 50.0 47.8 53.4
M MCTS+MCTS 54.0 64.8 48.0 49.0 50.2 51.8 59.6 58.2 59.2 59.4 52.4 52.2 50.0 54.5

TABLE III
PERCENTAGE WIN RATES OVER 500 GAMES ON RANDOM MAPS BETWEEN EACH PAIR OF MCTS OR HEURISTIC AGENTS. THE HIGHEST SCORING AGENT
AGAINST EACH OPPONENT IS IN BOLD, AND A GREEN BACKGROUND HIGHLIGHTS ALL AGENTS WITHIN A ONE-TAILED 95% CONFIDENCE BOUNDARY OF

THE BEST RESULT USING AN EXACT BINOMIAL TEST.

Fig. 6. Impact of changing RHEA sequence length (the number of forward
actions in each plan). The top-most graph is for a sequence length for 4 actions
as in Figure 2. The middle graph is for a sequence length of 2 actions, and
the bottom-most for just a single action.

C. RHEA Horizon Length

Ground War is a 2-player zero sum game, and what the
other player does very emphatically affects our score. In this
environment we expect modelling the opponent action to be
helpful, and the fact that RHEA is often more successful if
it assumes the opponent does nothing is counter-intuitive and
in need of explanation. The MCTS result is more congruent
with our a priori expectation.

The results suggest that RHEA is particularly sensitive to a
poor opponent model in comparison to MCTS. One hypothesis
is that RHEA is more sensitive to a poor assumption because

it always plans forward for x actions (where x = 4 in Figure
2), and applies equal amounts of computation to each action.
MCTS focuses more of its budget on the first action taken as
it builds up the game tree over iterations; every single iteration
will make a choice in the tree for the first action, but only the
last few iterations of the 50, if any, will make a decision for
the third action. This means that RHEA may generate a plan
that is dependent on anticipated moves by the opponent over
longer period of time relative to MCTS. In this case searching
less far forward in time can be beneficial.

To test this hypothesis we ran repeat experiments with
RHEA that have a reduced horizon of 1 or 2 actions. These
results are shown in Figure 6. Even when RHEA is only
planning one action forward there is still a steep fall-off
in performance for an incorrect opponent model to below a
baseline with none. There is however a plateau for an opponent
model Offence rating between 4 and 8 that is not significantly
different to the baseline. This lends some support to our
hypothesis but it is clearly far from sufficient to explain the
full difference between the effect on an opponent model in
RHEA and MCTS. A full understanding of this is a key area
for future work.

VI. CONCLUSION AND FUTURE WORK

We have used a parameterised Heuristic opponent in a
simplified RTS, Ground War, to investigate the effect of
accuracy of an opponent model for performance of MCTS
and RHEA agents with a small computational budget. For both
algorithms we have varied the actual opponent while keeping
the opponent model constant, and vice versa. We repeated this
for two different constant opponents and opponent models (H0
and H3) picked to be very different from each other.

We have shown that in this domain having an accurate
opponent model in statistical forward planning is beneficial
and improves performance. With RHEA this benefit rapidly
falls away as the opponent model becomes less accurate and
the experimental results suggest that using no opponent model
at all (assuming that the opponent never acts) can be the best
approach if we are uncertain about the their actual policy.



MCTS also benefits from an accurate opponent model, and
here the fall-off is much shallower. An opponent model is
usually still beneficial even if quite inaccurate. However, mod-
elling the opponent within the MCTS tree itself is much more
robust and is preferable if the opponent policy is unknown.

In this work we do not adapt the opponent model based on
observation of actions taken during the game so far. This is
a common approach and to the extent that it improves the
accuracy of the opponent model should be beneficial. The
research question of how accurate an opponent model needs
to be is just as valid in this adaptive method given that any
learned model is still constrained to a policy-space that may
not include the actual opponent.

Further work is especially needed to understand the precise
origin of the difference in behaviour of RHEA and MCTS
with an opponent model, and investigate this effect in other
games beyond the one used here.
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