
Multi-objective Automatic Algorithm Configuration
for the Classification Problem of Imbalanced Data

1st Sara Tari
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France
sara.tari@univ-lille.fr

2nd Nicolas Szczepanski
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

nicolas.szczepanski@univ-lille.fr

3rd Lucien Mousin
Lille Catholic University

Faculté de Gestion, Economie et Sciences
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

lucien.mousin@univ-catholille.fr

4th Julie Jacques
Lille Catholic University

Faculté de Gestion, Economie et Sciences
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

julie.jacques@univ-catholille.fr

5th Marie-Eléonore Kessaci
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

marie-eleonore.kessaci@univ-lille.fr

6th Laetitia Jourdan
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

laetitia.jourdan@univ-lille.fr

Abstract—Classification problems can be modeled as multi-
objective optimization problems. MOCA-I is a multi-objective
local search designed to solve these problems, particularly when
the data are imbalanced. However, this algorithm has been tuned
by hand in order to be efficient on particular datasets. In this
paper, we propose a methodology to automatically configure a
multi-objective algorithm for solving a supervised partial classi-
fication problem. This methodology is based on a multi-objective
approach of automatic algorithm configuration and requires
a clear definition of the experimental protocol. Therefore, we
present a k-fold cross-validation protocol to train and test the
configuration model. To the best of our knowledge, it is the
first time that multi-objective automatic algorithm configuration
is performed on optimization algorithms to solve classification
problems. Experimental results on real imbalanced datasets show
that our approach can find efficient configurations of MOCA-I
with less effort in comparison with the ones found exhaustively
by hand.

Index Terms—multiobjective optimization, automatic configu-
ration, partial supervised classification, imbalanced data

I. INTRODUCTION

Classification is a supervised learning problem where known
observations are classified within one or more classes, and
the goal is to predict the class(es) of a new observation.
Applications are, for example, the prediction of the diagnosis
of a patient’s illness, the belonging to a species of flower. . . .
However, the data may be imbalanced, which means that the
number of observations in each class varies a lot between each
other. In this case, the data are said imbalanced, and various
techniques have been proposed to tackle this particular type

This work is part of the PATHACOV project, funded by the Interreg France-
Wallonie-Vlaanderen program, with the support of the European regional
development funds.

of classification problem. An efficient approach was proposed
by [1] to solve supervised partial classification problem with
imbalanced and discrete data. The authors transformed the
original classification problem into a multi-objective optimiza-
tion and MOCA-I [2], a multi-objective metaheuristic based
on multi-objective local search designed to solve this problem
proved his great performance on nine imbalanced and discrete
datasets of the literature. Nevertheless, MOCA-I was tuned by
hand that requires a lot of experimental efforts while automatic
algorithm configuration (AAC) approaches could be used for
this task.

AAC consists of automating the configuration of highly
parameterized algorithms such as metaheuristics to solve both
single and multi-objective optimization problems. For exam-
ple, AAC has been applied to configure stochastic local search
algorithms to solve the multi-objective permutation flowshop
scheduling problem or the multi-objective traveling salesman
problem [3], [4]. In order to solve multi-objective problems,
Blot et al. [5] have proposed a pure multi-objective AAC (MO-
AAC) approach where multiple optimization performance
indicators are optimized simultaneously. In [4], the authors
showed that the MO-AAC approach is more appropriate than
the classical AAC approach to configure a multi-objective al-
gorithm to solve classical multi-objective combinatorial prob-
lems of the literature. The MO-AAC approach has never been
tested and used on classification problems.

In this paper, we propose to use MO-AAC to automatically
configure the MOCA-I algorithm that solves a supervised par-
tial classification problem with imbalanced and discrete data.
The contributions are: (i) the definition of an experimental
protocol based on k-fold cross-validation and (ii) an approach

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



based on MO-AAC to find efficient configurations of our
multi-objective local search algorithm.

The paper is organized as follows. Section II presents the
supervised partial classification problem and the MOCA-I al-
gorithm. Section III describes the principles of multi-objective
automatic algorithm configuration as well as MO-paramILS. In
section IV, we detail our methodology that corresponds to an
adaptation of the classical MO-AAC protocol to the context of
the partial supervised classification problem. Section V gives
the experimental setup and discusses the obtained results. In
the last section, we conclude and provide some perspectives
on this work.

II. THE SUPERVISED PARTIAL CLASSIFICATION PROBLEM
AND THE MOCA-I ALGORITHM

In this section, we briefly define the multi-objective opti-
mization in order to present the supervised partial classification
problem and its modeling as a multi-objective optimization
problem. Then, the different strategies of a multi-objective lo-
cal search (MOLS) are described. Finally, we present MOCA-I
that is the adaptation of a MOLS to the multi-objective mod-
eling proposed to solve the supervised partial classification
problem.

A. Multi-objective Optimization

In multi-objective combinatorial optimization problems,
multiple objective functions are optimized simultaneously. The
Pareto dominance is a multi-objective approach where no
predominance is given between the objectives. Therefore, a
solution s1 dominates a solution s2, if s1 is better or equal to
s2 according to all objectives and there is at least one objective
according to which s1 is strictly better than s2. When s1 is
neither dominated by, nor dominating, s2, the solutions are
said non-dominated. A set S of non-dominated solutions is
called a Pareto set, Pareto front, or an archive in a multi-
objective local search context.

B. The Supervised Partial Classification Problem and Its
Modeling as a Multi-Objective Problem

In a context of binary classification, a supervised
classification task aims to predict the class (category, for
example, ill or healthy) to which an observation belongs.
Observations are described by a variety of information, the
attributes, that can be of various forms depending on the
problem under consideration. For example, in a classification
task aiming to determine whether an individual has the flu
and in which each observation corresponds to a patient,
attributes describe a list of symptoms that each patient
may have. A classification task uses labeled observations
to generate a classifier, that describes a class by using the
attributes. The resulting classifier is used to predict the class
on new unlabeled observations. In future work, we will work
on medical data furnished by different European hospitals.
Since most prevalent diseases such as diabetes occur only on
6% of the population, medical datasets are often imbalanced:
the class to predict is less frequent than the opposite class.

It causes most classification algorithms to fail [6]. Moreover,
we focus on partial classification: the aim is to predict
observations matching a subset of the class. An example of
such a task could be to predict only patients positive to the
flu without aiming to find healthy individuals.

Several metrics exist in the literature to assess the efficiency
of classifiers, most of which are based on the confusion matrix
presented in Table I. The confusion matrix reports values in
function of the predictions performed by the classifier and the
actual class of observations. True positives (TP) and true neg-
atives (TN) counts well-classified observation, whereas false
positives (FP) and false negatives (FN) counts misclassified
observations. As an illustration, a healthy individual detected
as infected by the flu by the classifier is labeled as a false
positive, while an individual infected with flu not detected by
the classifier is labeled as a false negative.

TABLE I: Confusion Matrix.

Prediction
positive negative

Class positive TP FP
negative FN TN

Using the same observations to build and evaluate
classifiers can lead to a classifier that mostly describes these
observations, and thus has a weak generalization capacity
on unknown observations. To limit this phenomenon called
overfitting, classifiers are commonly evaluated on both known
and unknown data. The observations of a given dataset are
split into disjoint training and test sets, then the classifier is
built using the training set and evaluated using the test set.

1) Modeling as a multiobjective optimization problem:
Since a classifier is a combination of attributes, finding the
best classifier induces a combinatorial explosion. This charac-
teristic makes optimization techniques suitable to tackle this
problem. This part describes the modeling used in this paper:
solution representation, objectives, and neighborhood.

We use a Pittsburgh representation, where a solution is
a ruleset. Each ruleset is composed of rules, which are a
conjunction of terms. A term corresponds to an attribute test,
composed of an attribute, an operator (<,>,=), and a value.
The encoding length of a solution may vary, reducing the
sensitivity of the model to the number of attributes under study
compared to fixed-length encoding.

Since it is a partial classification task, all solutions pre-
dict the same outcome of the target class. Thus, it avoids
inconsistencies when using rulesets, making this representation
well-suited to this case. For a given ruleset, an observation is
classified as positive to the target class if it triggers at least
one rule.

The values of the confusion matrix are computed using all
the individuals in the dataset on which MOCA-I is applied.

To optimize machine learning metrics that are in conflict,
and thus attain rulesets that are interesting in a classification



context, three objectives are used:
• the sensitivity TP

TP+FN ∈ [0, 1],
• the confidence TP

TP+FP ∈ [0, 1],
• the number of terms
The sensitivity, to be maximized, represents the proportion

of samples positive to the class under investigation that are
detected by the ruleset. In contrast, the confidence, to be
maximized, represents the proportion of samples predicted
as positive that are real positives. The number of terms to
be minimized aims to reduce complexity and avoid the bloat
effect that leads rulesets to contain over-specific rules without
any improvement of the quality. This effect can quickly occur
in variable-length encodings.

Since we tackle the problem using a local search algorithm,
a neighborhood relation, which assigns a set of neighboring
solutions to each solution, has to be defined. The neighborhood
of a ruleset corresponds to the set of all rulesets having one
difference in an attribute test: an additional term, a suppressed
term, or a difference on the value or operator of a term.

C. Multi-objective Local Search Algorithms

A multi-objective local search (MOLS) is an algorithm
where solutions in an archive evolve using a neighborhood
relation [7]. A MOLS alternates between several phases: the
selection of one or more solutions into the archive, the
neighborhood exploration of the selected solutions, and
the archiving of new solutions found. A perturbation
phase may be applied in order to diversify the search. In the
following, the different components used in the experiments
to iterate these phases are described.

a) Selection: The selection strategy determines which
solutions of the archive will be explored being either all
solutions or one solution at random ( rand).

b) Exploration: According to a given strategy, the neigh-
borhood of each selected solution is explored, and some visited
neighbors are kept. For each selected solutions, all explores the
whole neighborhood of solutions and keeps all the improving
and the non-dominated neighbors while imp ndom randomly
explores the neighborhood until one improving solution is
found and keeps this neighbor as well as the non-dominated
neighbors identified so far.

c) Archiving: This phase adds the solutions kept during
the exploration phase into the archive following the Pareto
rule removing all dominated solutions. The archive is bounded,
and new solutions are discarded when the maximal size of the
archive is reached.

d) Perturbation: The perturbation phase corresponds to
a restart, that restarts the search from a new initial population.

D. The MOCA-I Algorithm

The above multi-objective modeling has been implemented
and manually configured in previous work, as the MOCA-
I algorithm: multi-objective classification algorithm for im-
balanced data [2]. In the subsection above, we described

basic components of MOLS, in particular, the ones instan-
tiated in our experiments that correspond to those previously
considered to manually configure MOCA-I. Additionally, we
present some mechanisms specific to MOCA-I that were also
previously considered. We consider an additional parameter
that specifies the maximum number of rules in rulesets and
is thus specific to MOCA-I. Since the purpose of MOCA-I is
to produce a classifier, we return a single ruleset among the
ones from the final archive. This ruleset is the one of best F-
Measure (F1), a machine learning metric computed as follows:

F1 =
2× Confidence× Sensitivity
Confidence+ Sensitivity

F1 corresponds to the harmonic mean, and thus a trade-off,
between confidence and sensitivity. Moreover, the initial pop-
ulation is dependent on the problem and consists of generating
rulesets from existing observations in order to obtain rules that
match at least one observation [2].

III. MULTI-OBJECTIVE AUTOMATIC ALGORITHM
CONFIGURATION

Automatic algorithm configuration (AAC) aims to auto-
matically determine a configuration (parameter setting) that
optimizes the performance of a given algorithm for a given
class of problem instances, regularly relatively to a given
computational budget. The procedure that configures the tar-
get algorithm is called a configurator such as irace [8],
SMAC [9], paramILS [10] or its multi-objective version MO-
paramILS [5].

AAC often consists of two phases: the training phase and
the test phase. The training phase optimizes the configuration
of the target algorithm according to a performance metric for
a configuration space Θ on a given set of training instances.
This process corresponds to an optimization problem in which
the solution is a configuration, and the quality of this solution
depends upon the objective being optimized. The test phase
assesses the configuration resulting from the training phase on
a set of test instances disjoint from the set of training instances.
Since it involves a training phase and a test phase, AAC also
corresponds to a machine learning process, involving similar
challenges: the configuration returned by the process may
overfit the training instances and thus not being adapted to
the instances to solve (test instances).

A. Multi-objective AAC

AAC generally refers to a mono-objective optimization
problem in which the objective is the running time or the
quality of the solution. In multi-objective optimization, differ-
ent performance indicators are used to evaluate the quality
of the Pareto front [11]. These indicators often focus on
three main properties: the accuracy, the diversity, and the
cardinality of the Pareto front. AAC can be easily performed
on a multi-objective optimization problem if the objective is to
optimize the quality of the indicator chosen [3]. An alternative,
called multi-objective AAC, consists of using simultaneously
multiple performance indicators to optimize the configuration



of a target algorithm. In this context, MO-AAC produces a
Pareto set of configurations instead of a single one. Since
AAC procedures are stochastic processes, it is usual to perform
several runs of their training phase. Consequently, in a multi-
objective AAC context, the training phase generates several
fronts of configurations, noted {{θ∗}}. To obtain a single
Pareto front of optimal configurations ({θ∗}), a validation
phase is then performed using (usually) the training instances.
Finally, the test phase assesses the optimal configurations of
{θ∗} on the test instances for all given performance objectives.

B. MO-paramILS
MO-paramILS [5] is a recent multi-objective extension of

ParamILS, a configurator that optimizes a single performance
metric using a local search method named iterated local search
(ILS). It follows the principles of paramILS by using an ILS
to optimize the configuration of the target algorithm, and the
main difference between the two configurators lies in the
multi-objective aspect of this ILS.

The training phase of MO-paramILS starts from an archive
of r randomly generated solutions and evolves an archive
of configurations during the search process. Moreover, the
incumbent (best-encountered configuration) corresponds to an
archive of solutions. During the perturbation phase of the
ILS, a single configuration is randomly selected and modified
by performing s random moves. As in paramILS, a restart
mechanism that can occur with a probability prestart pro-
vides additional diversification. The only change in the restart
mechanism is that it replaces the current archive with a single
configuration randomly chosen.

Fig. 1: The normalized hypervolume indicator correspond to
the gray area (left side). Illustration of the δ′ spread indicator
for two Pareto fronts (right side).

The performance metrics being optimized traditionally cor-
respond to the hypervolume [12] and the ∆′ spread indicator.
The hypervolume indicator (HV), to be maximized, computes
the volume of the search space that contains dominated
solutions and assesses both the accuracy and the diversity of
Pareto sets. In the case of objective values normalized in [0, 1],
HV measures the volume between a Pareto set and the point
(0, 0), as depicted in the left part of Figure 1. The ∆′ spread
indicator, to be minimized, is a variant of the Delta spread
indicator [13] and measures the diversity of solutions in Pareto
sets. It removes the euclidian distances from the extreme
position of the Pareto front to obtain more discriminating
values and allow a proper comparison as depicted in the right
part of Figure 1. This variant is computed as follows :

∆′ =

∑|S|−1
i=1 |di − d|
(|S| − 1)d

where d corresponds to the average over the euclidian
distance di, i ∈ [1, |S| − 1] between adjacent solutions of the
ordered front S.

The hypervolume reflects the quality of the Pareto front
and gives an idea about the diversity of the solutions in the
Pareto front, therefore, considering ∆′ ensures a good diversity
of the front. Let us note that in the case of MO-paramILS,
performance metrics have to be minimized; thus, we consider
1-HV instead of HV.

IV. THE PROPOSED MO-AAC APPROACH FOR
CLASSIFICATION PROBLEM

In this section, we propose a way to adapt the classical
MO-AAC approach [4] used in MO-paramILS to partial
classification tasks.

A. Cross-validation for MOCA-I

As MOCA-I performs a supervised classification task, the
produced ruleset must be assessed on unknown data to limit
the overfitting effect. As finding several datasets for the same
classification problem is almost impossible, datasets are split
into training and test sets as for classical machine learning
algorithms. In particular, rulesets are constructed and assessed
following a k-fold cross-validation protocol, as is previous
work assessing the efficiency of the algorithm [14].

Fig. 2: Illustration of the k-fold cross-validation with k = 5.

k-fold cross validation produces k training sets and k
test sets by splitting the dataset into k same-size folds. As
depicted in Figure 2, each training sets correspond to a unique
combination of k − 1 folds. The remaining fold corresponds
to the associated test set. Each training set is then used to
construct (at least) a classifier whose efficiency is assessed on
the associated test set.

B. MO-AAC Approach

1) Training and Test Instances: Let us recall that in the
context of AAC, the set of training instances must be disjoint
from the set of test instances while being similar in terms
of properties. For classical optimization problems, generators
of instances often exist that allows producing instances of



Fig. 3: Repartition of datasets into groups.

the same properties as the tackled instances. However, in a
classification context, datasets usually correspond to real data,
and finding similar datasets is a tedious, if not impossible,
task.

Here, we propose a methodology inspired by a κ-fold cross-
validation by using a subset of our datasets to optimize the
configuration of the remaining datasets. We repeat the process
for each subset in order to find a configuration for each dataset.

Let us note that we deliberately chose not to use some
training sets resulting from a given dataset to optimize the
configuration on the remaining ones as it majorly contains the
same observations and thus would increase the risk to overfit
the data.

We divide our set of n datasets into κ equal groups and
use κ− 1 groups for the training and validation phases of the
configurator while using the remaining set for the test phase.
We repeat the process κ times so that each group is used
exactly once in the test phase. As depicted in Figure 3, we call
Optsets the datasets used for the training and validation phases
of the configurator, and MLsets the disjoint set of datasets of
the test phase.

Following the k-fold cross-validation principle presented in
the previous section, we consider that a dataset comprises k
training sets and k test sets. We then call Opttra the set of
k× (κ− 1)× n

κ training sets contained in Optsets, and Opttst
the test sets of Optsets. The training phase of the configurator
only uses Opttra, whereas the validation phase uses Opttra
and Opttst. For MLsets, we call MLtra the training datasets
used during the test phase of the configurator and MLtst the
test sets.

2) MO-AAC Protocol: The protocol described in this sec-
tion is repeated for each couple (Optsets, MLsets) and is
illustrated in Figure 4.

a) AAC Training: Configurations are being optimized on
Opttra datasets using HV and ∆′ as performance indicators.
We compute these performance indicators on the final archive
of solutions after the removal of dominated solutions in terms
of sensitivity and confidence since the number of terms is
principally useful to guide the search. Moreover, MOCA-I
returns the solution of best F-Measure, a metric that corre-

Fig. 4: Illustration of the MO-AAC Protocol. For each phase,
the produced configurations are drawn.

sponds to a trade-off between sensitivity and confidence. As in
the classical protocol, we conduct several runs of the training
phase to reduce the impact of the stochastic bias, leading to
{{θ∗}} a set containing several Pareto sets of configurations.

b) AAC Validation: Each configuration of {{θ∗}} is
run once on each Opttra dataset. The average values of the
performance metrics for each configuration lead to a single
Pareto set of survival configurations (θ∗). Contrary to the
standard protocol, we only select one configuration θ∗ among
this set for the AAC test phase. This configuration corresponds
to the one that leads MOCA-I to the best F-Measure on Opttst
dataset, to limit the selection of a configuration that leads
MOCA-I to produce rulesets that overfit the data.

c) AAC Test:: Following the presented approach in sec-
tion IV-B1, the selected configuration is then used to construct
the rulesets on MLtra datasets, and their efficiency is assessed
on Opttst datasets.

V. EXPERIMENTS

In this section, the datasets used in the experiments are
first introduced. Then, further details on the experimental
setup and the methodology used to compare the results of the
exhaustive configuration with the ones obtained with the MO-
ACC protocol, are given. Finally, these results are analyzed
and discussed.

A. Datasets

The datasets come from the literature but have been trans-
formed into binary classification datasets according to the
method proposed in [15] and discretized using the 10-bin
discretization method of KEEL software [16]. Note that the
resulting datasets correspond to the ones previously tackled
with the original MOCA-I algorithm (see Table II). These
datasets are unbalanced, confirmed by their degree of asym-
metry (dasy), which refers to the proportion of observations
having the class to predict. In these experiments, we produced
five training sets and five test sets per dataset in order to follow
a 5-fold cross-validation protocol.



TABLE II: Description of the dataset (number of observations,
attributes, numerical attributes and degree of asymmetry).

Name #obs. #att. #num. dasy ref.
haberman 306 3 3 27.42% [17]
ecoli1 336 7 7 22.92% [17]
ecoli2 336 7 7 15.48% [17]
yeast3 1484 8 8 10.35% [17]
yeast2vs8 482 8 8 4.85% [17]
abalone9vs18 731 8 7 5.65% [17]
abalone19 4174 8 7 0.77% [17]
lucap0 2000 144 0 27.85% [18]
a1a 1605 123 0 24.61% [19]

B. Experimental protocol
Table III presents the configuration space of MOCA-I which

represents 96 distinct configurations ((2×3+1×2)(3×2×2)).

TABLE III: Configuration space for MOCA-I.

Parameter Values
Initial population {50, 100, 200}
Maximum archive size {100, 300, 500}
Maximum number of rules {5,10,20}
MOLS selection strategy {rand, all}
MOLS exploration strategy {imp ndom, all}

Since the configuration space is quite limited, we are able
to perform the exhaustive runs in order to assess the efficiency
and detect the drawbacks of the proposed AAC approach.
In particular, in order to be fair with the AAC approach,
we perform 6 runs per folds of datasets and aggregate the
performance to have a total of 30 runs per dataset for each
configuration. For each dataset, we use an experimentally
determined reference runtime as stopping criterion (see Table
IV).

For MO-paramILS, as explained in Section IV, 3 groups of
datasets are required. Table IV gives the groups (A, B, and C)
that have been defined in order to have equivalent runtimes
considering the whole approach (training, validation, and test
phases). Table V gives the parameters used by MO-ParamILS
to train and validate the model.

TABLE IV: Groups of datasets. Runtime (in seconds) of
MOLS is given for each dataset.

Group Dataset
Name runtime

A
lucap0 1 753.8
ecoli1 35.5
yeast2vs8 4.8

B
a1a 864.9
ecoli2 20.3
yeast3 282.5

C
haberman 27.1
abalone9vs18 423.1
abalone19 941.3

C. Results
Experiments have been conducted in parallel on two (24

× 3.0GHz, 64GB RAM) Intel XEON E5-2687W machines.

TABLE V: MO-AAC experimental protocol

Phase Parameters
Training No default configuration

1 random configuration
10 MO-ParamILS runs
100 MOLS run budget
max 10 MOLS run per configuration

Validation 1 run per instance
Test 30 runs per dataset (6/training set)

Group arch explore init pop ruleset select HV ∆′ F1

AB
500 imp ndom 100 20 rand 0.382 0.520 0.710
500 all 200 20 rand 0.404 0.502 0.674
500 imp ndom 50 10 rand 0.388 0.508 0.664

AC 500 all 100 10 rand 0.541 0.435 0.465
500 imp ndom 50 10 rand 0.511 0.458 0.461

BC 500 all 100 10 rand 0.557 0.458 0.450
500 all 200 20 rand 0.557 0.467 0.444

TABLE VI: Non-dominated configurations of the validation
for each training group with the returned configuration in bold.

Table VI reports the survival configurations of the AAC-
validation phase and gives in bold the one leading to the best
average F-measure. Let us remark that this AAC configuration
corresponds to the already best-known configuration for the
groups AC and BC.

Figure 5 (top) reports the performance of the tested configu-
ration according to the hypervolume and spread metrics on the
Opttra instances for the AAC-validation phase of each group
(AB, AC, and BC). All available configurations are plotted:
the Pareto ones are plotted with blue circles, the reference
configuration with the blue triangle, and the other ones with
a gray circle. In red, the survival configurations are plotted
with an empty square while the best of them is plotted with
a plain one. For the groups AC and BC, the two survival
configurations are among the non-dominated configurations
while for the group AB, they are very close to the Pareto front.
This result shows the performance of our AAC approach.

Figure 5 (bottom) gives the performance of the configuration
according to the hypervolume and spread metrics on the MLtra
instances for the AAC-test phase of each group (A, B and
C). Here, only the selected AAC configuration is highlighted
among the other ones. For the groups B and C, the AAC con-
figuration achieves a good hypervolume and spread, following
the tendency of the validation phase on the associated training
groups. Nevertheless, for group A the quality achieved by the
AAC configuration dramatically differs from the one of the
validation phase. This variation highlights that MO-paramILS
may have overfitted the datasets for this particular group of
datasets.

Figure 6 provides boxplots of the average F-Measure of
all configurations and reports the average F-Measure achieved
by the AAC configuration on each dataset. For each group,
the quality of the F-Measure achieved using the AAC con-
figuration compared to the exhaustive configuration is slightly
correlated to the quality of the optimization metrics. Further-
more, we performed statistical tests (Friedman and Wilcoxon)



0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.36 0.38 0.4 0.42 0.44

∆
S

P
R

E
A

D

HYPERVOLUME HV

BEST AAC
AAC

BEST KNOWN

PARETO

OTHER

AB

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.4 0.45 0.5 0.55 0.6 0.65 0.7

∆
S

P
R

E
A

D

HYPERVOLUME HV

BEST AAC
AAC

BEST KNOWN

PARETO

OTHER

AC

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.4 0.45 0.5 0.55 0.6 0.65 0.7

∆
S

P
R

E
A

D

HYPERVOLUME HV

BEST AAC
AAC

BEST KNOWN

PARETO

OTHER

BC

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.6 0.65 0.7 0.75 0.8 0.85 0.9

∆
S

P
R

E
A

D

HYPERVOLUME HV

BEST AAC
BEST KNOWN

PARETO

OTHER

C

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

∆
S

P
R

E
A

D

HYPERVOLUME HV

BEST AAC
BEST KNOWN

PARETO

OTHER

B

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.3 0.32 0.34 0.36 0.38 0.4

∆
S

P
R

E
A

D

HYPERVOLUME HV

BEST AAC
BEST KNOWN

PARETO

OTHER

A

Fig. 5: Performance on Opttra instances (top) and on MLtra instances (bottom).

to compare the performance between the configuration. For 5
datasets over 9, our AAC approach was able to find a config-
uration statistically equivalent to the best one. These datasets
are lucap0, a1a, yeast3, abalone19, and yeast2.
The supplementary material provided in https://bit.ly/2SfOfa3
shows that on these datasets, the average test F-Measure of
the exhaustive configurations is strongly correlated with the
average training F-Measure. On the other datasets, these values
are often uncorrelated, showing a correlation between the
efficiency of the AAC and the characteristics of datasets.

The comparisons of the AAC configurations with the ex-
haustive ones show the proposed approach is interesting.
However, this approach must be refined by using Optsets and
MLsets of similar characteristics.

VI. CONCLUSION

In this work, we proposed a methodology to automatically
configure MOCA-I, a multi-objective local search algorithm
designed to solve supervised classification problems. Auto-
matically configure such an algorithm is challenging since
overfitting can occur in both the AAC process and classifi-
cation task. In order to assess the quality of our approach,
the resulting configurations were compared to the exhaustive
configuration of MOCA-I on imbalanced datasets from the
literature. We were able to find good configurations for most
datasets, despite their limited number used in the training
phase of the configurator and with a significantly reduced
computational effort compared to the exhaustive runs.

In future work, we plan to investigate the effect of using
different performance metrics in the automatic algorithm con-
figuration process for the supervised partial classification of

imbalanced data. In particular, we will focus on the effect of
machine learning metrics during this process. One of our aims
will be to determine whether such metrics should be used alone
or combined with optimization metrics.

To improve the quality of the rulesets produced by MOCA-
I, we will add more MOLS components to the configuration
space, with a particular focus on selection, exploration, and
perturbation strategies. Doing so will result in a larger config-
uration space, which will probably require to adjust the MO-
paramILS protocol.

We will apply the methodology resulting from these studies
on health datasets to detect lung cancer using biomarkers. This
kind of data greatly varies from those used in this study, and
finding similar datasets may be even harder in this context.
Thus, we need to further think about ways of selecting the
datasets for the training phase of the AAC configurator.

REFERENCES

[1] J. Jacques, J. Taillard, D. Delerue, L. Jourdan, and C. Dhaenens, “The
benefits of using multi-objectivization for mining pittsburgh partial
classification rules in imbalanced and discrete data,” in Proceedings of
the 15th annual conference on Genetic and evolutionary computation.
ACM, 2013, pp. 543–550.

[2] J. Jacques, J. Taillard, D. Delerue, C. Dhaenens, and L. Jourdan,
“Conception of a dominance-based multi-objective local search in the
context of classification rule mining in large and imbalanced data sets,”
Applied Soft Computing, vol. 34, pp. 705–720, 2015.

[3] M. López-Ibáñez and T. Stützle, “The automatic design of multiob-
jective ant colony optimization algorithms,” IEEE Trans. Evolutionary
Computation, vol. 16, no. 6, pp. 861–875, 2012.

[4] A. Blot, M. Marmion, L. Jourdan, and H. H. Hoos, “Automatic con-
figuration of multi-objective local search algorithms for permutation
problems,” Evolutionary Computation, vol. 27, no. 1, pp. 147–171, 2019.

https://bit.ly/2SfOfa3


0.9

0.91

0.92

0.93

0.94

0.95

0.96

lucap0

Group A

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

ecoli1d
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

yeast2
0.58

0.59

0.6

0.61

0.62

0.63

0.64

a1a
Group B

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

ecoli2d
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

yeast3d
0

0.005

0.01

0.015

0.02

0.025

0.03

abalone19
Group C

0.3

0.35

0.4

0.45

0.5

habermand
0.2

0.25

0.3

0.35

0.4

abalone9

F-
M

ea
su

re

Fig. 6: Boxplots of the average F-Measure using all configurations on each dataset. The circle corresponds to the average value
of the AAC configuration.

[5] A. Blot, H. H. Hoos, L. Jourdan, M.-É. Kessaci-Marmion, and H. Traut-
mann, “Mo-paramils: A multi-objective automatic algorithm configura-
tion framework,” in International Conference on Learning and Intelli-
gent Optimization. Springer, 2016, pp. 32–47.

[6] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, Sep. 2009.

[7] A. Blot, M.-É. Kessaci, and L. Jourdan, “Survey and unification of local
search techniques in metaheuristics for multi-objective combinatorial
optimisation,” Journal of Heuristics, vol. 24, no. 6, pp. 853–877, 2018.

[8] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization. Springer, 2011,
pp. 507–523.

[10] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils:
an automatic algorithm configuration framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267–306, 2009.

[11] J. Knowles and D. Corne, “On metrics for comparing nondominated
sets,” in Proceedings of the 2002 Congress on Evolutionary Computa-
tion. CEC’02 (Cat. No. 02TH8600), vol. 1. IEEE, 2002, pp. 711–716.

[12] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE transactions
on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[14] J. Jacques, J. Taillard, D. Delerue, L. Jourdan, and C. Dhaenens, “Moca-
i: discovering rules and guiding decision maker in the context of
partial classification in large and imbalanced datasets,” in International
Conference on Learning and Intelligent Optimization. Springer, 2013,
pp. 37–51.

[15] A. Fernández, S. Garcı́a, J. Luengo, E. Bernadó-Mansilla, and F. Herrera,
“Genetics-based machine learning for rule induction: state of the art,
taxonomy, and comparative study,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 6, pp. 913–941, 2010.

[16] J. Alcalá-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas et al.,
“Keel: a software tool to assess evolutionary algorithms for data mining
problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.

[17] A. Frank, “Uci machine learning repository,” http://archive. ics. uci.
edu/ml, 2010.

[18] I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes,
and A. Statnikov, “Design and analysis of the causation and prediction
challenge,” in Causation and Prediction Challenge, 2008, pp. 1–33.

[19] B. Schölkopf, C. J. Burges, A. J. Smola et al., Advances in kernel
methods: support vector learning. MIT press, 1999.




