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Abstract—The paper explores the use of symbolic regression
to discover missing parts of the dynamics of space objects from
tracking data. The starting assumption is that the differential
equations governing the motion of an observable object are
incomplete and do not allow a correct prediction of the future
state of that object. Symbolic regression, making use of Genetic
Programming (GP), coupled with a sensitivity analysis-based
parameter estimation, is proposed to reconstruct the missing
parts of the dynamic equations from sparse measurements of
position and velocity. Furthermore, the paper explores the effect
of uncertainty in tracking measurements on the ability of GP to
recover the correct structure of the dynamic equations. The paper
presents a simple, yet representative, example of incomplete
orbital dynamics to test the use of symbolic regression.

Index Terms—Symbolic Regression, Genetic Programming,
Astrodynamics

I. INTRODUCTION

Learning how to effectively build dynamical system models

from raw data is a challenge with a rich history, whose most

famous example is probably the work conducted by Kepler1.

Because of the vast quantities of available tracking data (both

on celestial objects and man-made satellites), there is an in-

creasing interest in the automated identification and refinement

of dynamical systems (e.g., [1], [2]) and, in particular, in

astrodynamics. Numerous neural-network based approaches,

for the modelling of time-series data, exist (e.g., [3], [4]);

these approaches however lack interpretability, being highly

parameter-based. The introduction of empirical acceleration,

in orbit determination, displays a similar drawback: it does not

allow one to infer dependencies between physical quantities

[5]. Because of these reasons, symbolic regression appears a

viable solution to discover unmodeled components of dynam-

ical systems from raw observations. Alternative approaches,

based on sparse regression [6], have stricter requirements,

in terms of a priori assumptions. In fact, symbolic regres-

sion can be coupled with Genetic Programming, in order

to efficiently perform targeted searches in large domains.

This work introduces a general formulation whereby model

uncertainty (the unmodeled part of the dynamics) in orbital

mechanics needs to be quantified from measurements and a

1This is particularly clear in his 1609 book, whose full title can be translated
as: “New astronomy, treated by means of commentaries on the motion of Mars,
from observations of Tycho Brahe”.

GP-based symbolic regression method to deal with such an

uncertainty. The paper explores the applicability of symbolic

regression, based on a hybrid GP with local refinement, to a

simple, but representative, problem in orbital mechanics where

the dynamics is effected by an unknown dissipative effect

that causes a decay of the orbit. This work is part of the

development of an AI system for Space Situational Awareness

and Space Environment Management [7], called CASSAN-

DRA (Computer Agent for Space Situational Awareness aNd

Debris Remediation Automation), which can be found here:

https://github.com/strath-ace-labs/CASSANDRA.

The paper is structured as follows: after a first general intro-

duction to the general formulation of the problem, the paper

presents our proposed GP algorithm for symbolic regression

and how it handles uncertainty in the observations. Then the

case study is introduced with some preliminary results that

illustrate the potentiality of symbolic regression and the major

difficulty when only sparse and uncertain observations are

available.

II. SPACE DYNAMICS

Consider the two functions f : S×P × [t0 : t0+T ] −→ R
n

and υ : S × B × [t0 : t0 + T ] −→ R
n with S ⊆ R

n and the

initial value problem:
{

ṡ = f(s, p, t) + υ(s, b, t)
s(t0) = s0

(1)

where s is the state vector. The term υ(s, b, t) represents some

unknown function of the state that is capturing all unmodeled

components, p ∈ P ⊆ R
mp a set of uncertain model

parameters, b ∈ B ⊆ R
mb some unknown parameter vector of

the unmodeled components, and t the time coordinate. In this

paper, we will study only the case in which the unmodeled

components are not explicitly a function of time and the

missing component is added to the known component.

A. Problem Statement

The idea is that, given a set of No state observations so at

times ti, with i = 1, ..., No, one can obtain an approximation

of υ(s, b, t) by introducing different combinations of functions

of s and values b into the dynamics (Eq. (1)), propagating

the dynamics till time ti and comparing the propagated state
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s(ti) to the observed state so(ti). If No exact and distinct

measurements are available, one needs to solve the following

set of constraints:

s(ti)− so(ti) = 0; i = 1, ..., No (2)

On the other hand, when noisy measurements are available,

parameter distributions have to be estimated to infer the

nominal state of the spacecraft associated to the observation

epochs.

III. SYMBOLIC REGRESSION

Symbolic regression is the process of accurately matching

a given data set, making use of symbolic expressions; because

of the rise of Genetic Programming and Machine Learning,

together with the growth of available data sets, attempts have

been made to automate the regression process [8]. In the

case of dynamical systems, and in particular in astrodynamics,

one is interested in building a symbolic representation of the

differential equation associated to a number of state obser-

vations. The advantage of this approach, compared to other

regression techniques, like linear regression (and polynomial

fitting in general: [5], [6], [9], Section 7.3 of [10]), is that

not constraining the basis of the expression to a give set (even

though assumptions have to be made when defining the library

of primitive operators) allows to obtain a more insightful

expression, whose relation with the dynamical process is

explicit. While, with symbolic regression, it is still possible to

make use of the knowledge of the sparsity of the expression,

there is no need for an a priori specification of the terms of

the equation [11]. At the same time, the sparse nature of the

differential equations governing the motion of the spacecraft

does not appear to require a multi-gene genetic programming

approach [12].

When performing symbolic regression, candidate solutions

are usually represented as trees, where the terminal nodes

(also called “leaves”) correspond to constants and variables,

and where all the other nodes encode mathematical functions

(primitives) [13]. In this work vectors, representing, in a

dot

add

k1 k1

dot

k1 X_vec

Fig. 1: Tree representation of: (k1 + k1)(k1Xvec)

given coordinate system, the position and the velocity of the

spacecraft, have been used as terminators of the tree: this

physics-inspired approach allows to build symbolic relations

in multi-dimensional spaces.

A. Genetic Programming

While symbolic regression can be performed using deter-

ministic techniques (e.g., [14], [15]), this work focuses on the

implementation of Genetic Programming. In order to do so,

the DEAP (Distributed Evolutionary Algorithms in Python)

library [16] has been selected as a starting point. This has

been done because of the need to adapt existing evolutionary

algorithms, in order to identify governing equations: DEAP

allows for the customization of algorithms.

1) Primitives and terminals: The building blocks of each

individual have been defined using Strongly Typed Genetic

Programming (STGP): every primitive and terminal is assigned

a specific type2; moreover, the output of the tree is forced to

be a vector, whose size is given by the degrees of freedom of

the problem under investigation. The terminals used are:

Xvec, Vvec, (k1, . . . kn)

symbolically representing the position and the velocity of

the spacecraft in some reference system, together with a

symbolic representation of a set of constant parameters: the

introduction of the latter is justified in Section III-B. Of

course, the choice of the reference system influences the

complexity of the formulation of the equations of motion: it

is however possible, as shown in [17], to develop methods

discovering suitable coordinates and models at the same time.

The primitives considered are:

• the sum between scalars;

• multiplication, constrained to take a scalar and a vector,

as inputs;

• the Euclidean norm operator, returning a scalar from a

vector;

• the exponential operator, working on scalars only;

• the user-defined functions cm, returning the mth compo-

nent of the input vector;

2) Initialization and Selection: Before performing evolu-

tionary operations, the population is initialized: this has been

done using the gp.genHalfAndHalf function, producing trees

with a maximum height of two. The selection process is

then performed, at the beginning of each generation, with a

tournaments of size two: such a low value is beneficial, in

terms of population diversity.

3) Mutation and Crossover: The genetic operations of mu-

tation and crossover are then performed in order to explore the

domain of possible tree structures, constrained to a maximum

height of six: this limit allows to avoid overfitting. Both

operations are associated to a given probability, in order to

be performed only on a subset of the population and allow

the selection process to reach an optimum; the implemented

mating operator is described in Algorithm 1.

2See the following, last visited on 28-01-2020: https://deap.readthedocs.io/
en/master/tutorials/advanced/gp.html



Algorithm 1 Random Mating Operator

1: Select two individuals i1 and i2
2: Randomly initialize x in [0, 1]
3: if x < 0.5 then

4: Perform the gp.cxOnePoint operation

5: else

6: Perform the gp.cxOnePointLeafBiased operation

7: end if

The only mutation operation performed is the gp.mutInsert:

inserts a new branch at a random position in the chosen

individual. As also discussed later, describing Algorithm 2, this

is the only mutation scheme we are interested in. In fact, an

important hypothesis is that the null individual already leads to

good results (i.e., the unmodeled components of the dynamics

are small, compared to the modeled ones). We have here

introduced such nomenclature, following the definition of the

null allele: a mutated variant of a gene, not detectable solely

from phenotypic observations3. This consideration allows to

conjecture that the right combination of genetic operations

can be able to build incrementally good approximations of

the missing term: the initialization process can be thought of

as a gp.mutInsert mutation, performed on the null individual.

B. Handling Real Model Parameters

Dealing with real-parameters when using Genetic Program-

ming for symbolic regression remains a challenge. the DEAP

library contains the gp.mutEphemeral function, allowing to

mutate real-valued terminators, based on a pre-defined number

generator: for the problem of interest, this does not allow

to efficiently cover the domain. The same is true when

using more specific mutation schemes, like the Gaussian and

polynomial ones ( [19], [20]). Of course, one could think

of case-specific mutations: for example, a Gaussian mutation

in which the standard deviation is expressed as a function

of the set of fitnesses and associated parameters of those

individuals, within a population, with the same structure,

appears promising. Nevertheless, we here propose a white-

box approach, displayed in Eq. (3), in which information can

be extracted from the physical flow Φ.









dot

norm

V_vec

dot

k1 V_vec

b = [k1, . . . kn]









−−→ υ(s, b = b, t)
Φ

−−→ s(t) (3)

Constant values are therefore treated symbolically in the evo-

lutionary process, and unmodeled components of the dynamics

can be estimated only when individuals are coupled with a set

of values; the technique in which such values are determined

is discussed in Section III-C1. Of course, this approach makes

the evaluation of an individual more expensive, but the overall

process is faster and, mostly, more accurate.

3For a clear understanding of the use of biology jargon in symbolic
regression see, e.g., [18], [13].

C. Individual Evaluation

1) Parameters Estimation: Since the algorithm symboli-

cally represents also the parameters in the differential equation,

in order to evaluate the fitness of an individual (i.e., a tree),

the optimal set of values of the parameters has to be found. In

order to do so, together with the state of the spacecraft, also

the sensitivity matrix

∂s

∂b
(s, p, b, t)

can be propagated, by means of the following initial value

problem, obtained from Eq. 2.7 of [21]:

{

∂
∂t

(

∂s
∂b

)

= ∂(f+v)
∂s

∂s
∂b +

∂v
∂b

∂s
∂b = 0

(4)

The sensitivity matrix associated to the observation epochs

can therefore be used to perform differential correction on the

values of the unknown parameters b. This is done iteratively, as

given in Algorithm 2, making use of the linear approximation

∆b = ∆s/

(

∂s

∂b

)

(5)

where

∆s = so − ssym

has the same size of b; this has been done considering only a

subset of the available measurements.

Algorithm 2 Fitness Evaluation

1: Initialize: b = 0; ||∆s|| = 1; c = 0
2: while c < 100 and ||∆s|| > 0.001 do

3: Propagate Sensitivity Matrix

4: if ||∂s∂b || < ǫ then

5: break

6: end if

7: ∆s = so − ssym
8: ∆b = ∆s/

(

5∂s
∂b

)

9: b = b+∆b; c = c+ 1
10: end while

11: Evaluate fitness

Concerning Algorithm 2, some additional comments can be

made:

• the initial guess b = 0 is related to the hypothesis on

the behaviour of the null individual underlined at the end

of Section III-A: because of the incremental behaviour

displayed by the method, the hypothesis keeps holding

during the evolution, as long as the known function in Eq.

(16) is updated with the new best-known approximation

of the dynamical system under investigation;

• the condition on the norm of the sensitivity matrix (the

numpy machine ǫ has been used for this) terminates the

process, if convergence to a local minimum is reached;

• in line 8, a corrective factor is added to Eq. (5): this

correction speeds up the convergence of the process,

avoiding overshotting [22];



• as said in Section II-A, depending on the number of

parameters to be determined and on the number of

available observations, the linear system in line 8 could

be solved in a least-square sense or exactly; in the latter

case, a subset of the available conditions could be enough

to determine the value of vector ∆b.

2) Fitness Evaluation: In order to perform the previously

mentioned genetic operations, a fitness has to be associated to

each symbolic expression. This is done propagating the state

associated to the individual, where the value of the parameter

vector b is the one estimated with differential correction. The

fitness is therefore defined as

fit =
1

N0

N0
∑

a=1

n/2
∑

c=1

(sco(ta)− scsym(ta))
2 (6)

where N0 is again the number of observations available,

t1, . . . , tN0
are the epochs associated to such observations and

c is the component of the state vector s. The objective is

therefore the minimization of the fitness function.

D. Treatment of Stochastic Observations

The observations used to reconstruct the missing part of the

dynamics are in general sparse and affected by a degree of

uncertainty. This uncertainty can be of different nature and

generally has both an aleatory and an epistemic component.

As shown in [5], in the case of sparse observations affected

by uncertainty there can be more than one dynamical model

that is compatible with the measured positions and velocities.

Thus, one should expect that both the set of parameters b and

the structure of the equation reconstructed by GP are affected

by the uncertainty in the measurements. If the expected values

of the state vector, coming from observations, are enforced as

hard constraints, the result might not capture the actual missing

components as the trajectory is forced to satisfy constraints

that do not come from the natural dynamics but are dependent

on the errors in the observations.

One option is to consider the most probable value for each

observation and a cost function that maximises the likelihood

of correct identification. The other option is to quantify

the uncertainty in the observations and initial conditions as

confidence intervals on the observed states. If the distribution

of so is available and is precise, one can draw Np samples

and for each sample derive a complete symbolic solution

with associated set of coefficients b. Thus, in the following

we will assume that the distributions of the initial states and

the observed states at given times are perfectly known. We

will then draw Np samples and we will analyse the symbolic

structures generated by GP for each sample. Then, for similar

families of structures we will look at the distribution of the

values of the associated parameter vector b.

IV. ORBITAL MOTION WITH UNMODELED DRAG

Following [5], a test case is here used to show the results

obtained with the proposed method. Such problem is an

orbital motion with unknown drag component. The gravity

component of the model is fully known but the observations

show an additional component that is not modelled. The real

dynamics is assumed to be governed by the following system

of differential equations in polar coordinates:

v̇r = − µ
r2 +

v2

t

r − 1
2ρCdvvr

v̇t = − vtvr

r − 1
2ρCdvvt

ṙ = vr
θ̇ = vt

r

(7)

We assume a unitary area-to-mass ratio, and a constant density

ρ such that the product of the density times the drag coefficient

Cd is ρCd = 10−7 kg/km3. Furthermore, we assume that the

expected trajectory, given the known dynamic components, is

a circular orbit with vr(t = 0) = vr0 = 0 and vt(t = 0) =
vt0 . The orbital period, without drag, is T = 2π

√

r3/µ. The

evolution of the state of the spacecraft is displayed, for each

component, in the four plots of Figure 2: two observations per

revolution are performed at t ∈ [0, 3500, 6870, 9999] s.

In order to investigate the performance of the proposed

technique, the estimated state of the spacecraft at time t = 4T
will be used. In the nominal case, this is equal to:

s(4T ) =









r
θ
vr
vt









=









6855.7014 km
25.9035 rad
−65.8 m/s
7.6 m/s









(8)

A. Exact Observations

The first results follow from considering noiseless, exact

state measurements. The symbolic regression is able to recon-

struct the exact form of the missing term (Figure 3) in the

differential equation:

ṡ = f(s, p, t)−
1

2
ρCdv

[

vr
vt

]

= f(s, p, t) + k1v

[

vr
vt

]

(9)

Associated to such structure, the parameter estimation pro-

cess leads to

k1 = −5.0124 · 10−8 kg/km

with an error of approximately 0.2%.

It should be underlined how the hypothesis on the incre-

mental accuracy of the model is supported by experimental

results:

1) at first, the algorithm produces random structures, and

the best individuals of the population are the ones in

which a constant factor, set to 0, allows to set the whole

expression to 0;

2) the procedure then expresses the missing term as

k[vr, vt], approximating the norm of the velocity vector

as a constant. Indeed, since the initial orbit is circular,

this is a good approximation;

3) finally, the algorithm converges to the exact structure of

the unmodeled component of the dynamical system.

The fitness of the obtained solution is

fit = 8.713 · 10−3 km2
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and the state of the spacecraft, at t = 4T , is:

s(4T ) =









r
θ
vr
vt









=






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

(10)

In general, one would expect different governing equations

to match a finite set of observations (even when these are

exact); this issue, introduced in Section III-D and related

to overfitting, is avoided taking into account the sparsity of

the differential equation which, in the context of symbolic

regression, limits the size of its tree representation.

B. Noisy Observations

With the same spirit of [5] and [13], noise, modelled as zero-

mean Gaussian distributions, has been added on top of ideal

observations to investigate the robustness of the technique with

respect to different tracking techniques [23] and understand

its effect on the parameter estimation routine; because of this,

three different noise levels have been considered and, for each

of them, 35 simulations have been performed. The results

given in Table I, Table II and Table III show:

• the estimated structures of the solution, identifying the

unmodeled component of Eq. (1);

• for each family of solutions, the distribution of the

associated parameter;

• a graph to investigate the relation between the value

of the fitness, associated to the available measurements,

and of ∆x(t = 4T ). The correlation between these two

quantities is a performance indicator of the symbolic

regression extrapolation.

1) Noise level 1: In the first case, the standard deviation

associated to the measurements is given by:









σr

σθ

σvr

σvt


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=









100 m
0 rad
1 m/s
1 m/s









(11)



TABLE I: Solutions - Noise level 1

Structure Parameter Extrapolation

dot
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While 14 simulations converge to the right structure of Eq.

(9), 21 estimate the motion to be governed by:

ṡ = f(s, p, t) + k1

[

vr
vt

]

(12)

Both families of solutions nevertheless display comparable

fitness values with an high correlation with the final position

offset; as previously stated, this is due to the fact that the

initial orbit is circular. It is not clear whether or not a longer

simulation (i.e., more generations) would have allowed these

solutions to evolve into the correct ones.

2) Noise level 2: In the second case, measurement errors

have been modelled using:







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(13)

The two main solution families are the same as above; the

TABLE II: Solutions - Noise level 2

Structure Parameter Extrapolation

dot

k1 V_vec -3.6 -3.5 -3.4

k
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parameters are more widely distributed and the correlation

between the fitness and the final state is lower, because of

higher noise. It is finally interesting to note how one of the

simulations converged to the null individual.

3) Noise level 3: For the final case, the standard deviation

associated to the measurements is given by:

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With such a level of noise, a new non-trivial family of

TABLE III: Solutions - Noise level 3

Structure Parameter Extrapolation

dot
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solutions arises:

ṡ = f(s, p, t) + k1r

[

vr
vt

]

(15)

Solutions associated to the correct differential equation out-

perform all the others, in extrapolating the spacecraft position,

even if their fitness is not necessarily lower.

V. FINAL REMARKS

The paper presented a simple, yet representative, case

in which missing components of the dynamics of a space

objects are discovered using symbolic regression. It has been

shown how a combination of symbolic regression with local

sensitivity analysis is effective at capturing both the structure

of the equations and the values of the model parameters. One

of the key findings is that, when observations are affected by

uncertainty, different families of dynamic equations can be

identified and for each of them the model parameters follow

a probability distribution that is a function of the probability

distribution of the observations.



Future works will consider more complex forms of un-

certainty in the observations and more complex dynamic

structures of the perturbation, whose modelling will be en-

abled by including more primitives. It will incorporate also e

multiplicative unknown term in the dynamics, leading to the

following more general formulation:
{

ṡ = υ2(s, b, t)f(s, p, t) + υ1(s, b, t)
s(t0) = s0

(16)

Finally, the development of a technique to discover coordinate

systems in which the dynamics can be sparsely represented,

using symbolic regression, appears desirable, as mentioned in

Section III-A1.
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