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Abstract—Parallel evolutionary algorithms have been used for
solving multiobjective optimization problems. The aim is to find
or approximate the Pareto optimal set in a reasonable time. In
this work, we present a new approach that divides the objective
search-space into different partitions and assigns each processor
its corresponding partition. Each processor will try to find the
set of solutions for its partition only. The sub-Pareto fronts will
be combined later and the parallelisation approach is based
on a mutli-start approach by having independent algorithm on
every processor with its own starting points. Experimental results
on well known test cases showed that the proposed method
outperformed several state-of-the-art evolutionary algorithms
regarding convergence to the true Pareto front and gave very
competitive results when considering the hypervolume metric.
Also, superlinear speedup results were achieved for all test
functions.

Index Terms—Multiobjective Optimisation, Evolutionary Mul-
tiobjective Algorithms, Parallelisation, Objective Search Space

I. INTRODUCTION

In single objective optimization we are interested in a single
solution that minimizes or maximizes a given problem. How-
ever, many real world problems have more than one objective
function to be considered during the optimization process
(known as multi-objective or criteria optimization). For multi-
objective problems (MOPs) there is a set of solutions rather
than one unique optimal solution. The set of optimal solutions
is called the Pareto optimal set. The solutions are all possible
tradeoffs for the MOP taking into account all objectives.
When plotted in the objective space they give the Pareto-
front. Also, these solutions are incomparable to one another.
In other words, no solution dominates another solution in the
Pareto set. Thus they form a set of non-dominated solutions.
Formally [12], a solution x∗ = x1, x2, ..., xn dominates a
solution y∗ = {y1, y2, ..., yn} (denoted as x ≺ y) if and only
if ∀i ∈ {1, ..., n} , xi ≤ yi and ∃i ∈ {1, ..., n} , xi < yi.

In this work, we look at how to use parallel processing [5]
for dividing the objective search space of multi-objective prob-
lems and assigning each partition to a different processor. The
motivation for dividing the objective space using a geometric-
based apporach is to guarantee that each processor is working
on a different part of the Pareto front, thus processors can
work independently, otherwise all processors will converge to
the same single solution. On each processor we execute an

evolutionary algorithm using a multi start approach. Here we
run a single evolutionary algorithm on every processor but
with different parts of the objective space using additional
constraints.

Figure 1 illustrates this concept for an artificial bi-objective
optimization problem. The first objective function was used
for the division of the objective space. Each processor will be
given one additional constraint that specifies its partition and
several starting points retrieved from the local archive that was
built during the optimization process. This explicit division of
the objective space infers an implicit division of the search
space since all starting points given to a certain processor will
be within a certain lower and upper bounds for every decision
variable.

We engineered state-of-the-art single and multi-objective
evolutionary algorithms in a parallel system called PESMO.
PESMO stands for Parallel Evolutionary System for Multi-
objective Optimisation. It comprises three new features: 1)
an approach for generating and retrieving the starting points
for the different partitions given to the set of processors.
This was achieved by using a single objective optimizer
for every objective function and thus building an archive of
solution vectors, 2) a well defined geometric-based approach
for dividing the objective space of MOPs, 3) Deciding at run-
time the objective function to be used for dividing the objective
space into different partitions.

An attempt to divide the objective space was presented in
[11]. However, they specify manually a point to be used as
a reference for giving boundaries to processors. The use of
reference points requires previous knowledge of every single
problem in advance before applying the parallelisation. In this
paper, we automate this process by determining the boundaries
of the Pareto front and dividing the objective space at run
time regardless of the number of processors or problem type.
Others [1] looked at binary quadratic programming problems
or parallel algorithms for Knapsack [2].

The rest of the article is structured as follows. The back-
ground and related work is given in Section II. In Section
III, we give a thorough description of the proposed approach.
The experimental environment is presented in Section IV and
finally we conclude and outline future work in Section V.
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Fig. 1. The division of an objective space of an artificial bi-objective problem
on five processors. F1 and F2 are dummy functions.

II. BACKGROUND AND RELATED WORK

This section describes the single and multiple objective
evolutionary algorithms [21] [20] used in PESMO.

A. (1 + 1)-CMA-ES

The (1+1)-CMA-ES [22] which is part of the Shark library
[24] 1 is a co-evolutionary single objective elitist algorithm.
It is based on two basic concepts: 1) derandomisation of the
mutation distribution as it adapts in a deterministic way, 2)
cummulation where the search path of the previous population
is considered. The (1+1)-CMA-ES has been modified so that
it keeps track of the traces found during the search process.
These traces will be used later by the parallel system for
finding starting points for different regions of the objective
space.

B. SMS-EMOA

The S-metric Selection-EMOA (SMS-EMOA) [9] aims at
maximizing the S-metric value of the population. This opti-
mization aim rewards progression toward the Pareto front as
well as a good distribution of individuals. The maximal S-
metric value is reached by the Pareto front. Thus, optimizing
the S-metric value is very general purpose. It follows a steady-
state selection scheme and an equiprobable mating selection
are applied. he runtime of a generation of SMS-EMOA is
O(µd/2+1) as described in [10]. It has a dynamic selection
mechanism where it can start with any initial population size
and evolve until reaching the desired population size.

C. Overview of Related Parallel Evolutionary Multi-objective
Optimization Algorithms

In the following subsections, selected different approaches
for parallelising Evolutionary Multi-objective Optimization

1Available for download from http://shark-project.sourceforge.net/

Algorithms (EMOAs) that either divide the decision/objective
search spaces directly or indirectly are outlined.

1) Dividing the Decision Search Space: The work of [14],
[23] are similar in principle. The population is divided into
subpopulations. Each processor gets a subpopulation. To di-
vide the population it is sorted according to an objective
function (the objective functions are used in turn). This causes
similar individuals to be grouped together. Therefore, this
would divide the search space indirectly and each processor
would search different areas of the search space. The problems
with these two approaches are that the high possibility of
producing infeasible solutions (i.e. individuals that are outside
the search space of a given processor) and causing high
communication overhead for sending them to other processors.

In [25], an approach called Multiple Resolution Multi-
Objective Genetic Algorithm (MRMOGA), the island model
is used as the underlying parallel system. A key feature
in MRMOGA is the possibility of encoding solutions using
different resolutions. Here, each island has its population and
uses a different resolution for its encoding. Results are shown
only for the first three ZDT test cases. Also, this approach
has poor distribution of the results where distances among
solutions are not equal.

In [36], the divide-and-conquer technique is used to divide
the decision variables space into small components. Here, if
there are m variables in the decision variable space then m
sub-populations will be created. Each sub-population will fo-
cus on optimizing one decision variable. The sub-populations
are further divided into groups and each group will be as-
signed to a node. The sub-populations work in a cooperative
co-evolutionary manner. However, this approach might have
problems with scalability as the number of generated sub-
populations is equal to the number of decision variables.

2) Dividing the Objective Search Space: In [11] an ap-
proach called cone separation was introduced to divide the
objective space into sub-spaces. Each processor is assigned
a sub-space (region). To define the boundaries of a given
region, each processor is given constraints according to the
borders of its boundaries. However, each processor explores
the entire search space and solutions outside the region of a
given processor are considered infeasible and migrated to other
processors every generation which cause extra communication
overhead. In our approach, we use an efficient adaptive ap-
proach for determining the shape of the Pareto front which
does not require lots of communication overhead.

The cone separation idea was further improved in [35] using
clustering algorithms and an island model. Here, the geometric
subdivision scheme in cone separation is replaced with a k-
means clustering algorithm where k is set to the number of
processors. The experiments showed that the objective space
clustering is better the than search space clustering. Also, when
the zone constraints are deactivated the results improved.

To sum up, the objective-based approaches divide the ob-
jective space geometrically or cluster the population. Both
approaches add constraints. We think that an objective-based
approach would have better scalability with many objectives.



Also, the objective space can be divided based on information
by Pareto bounds thus yielding even smaller search space.

III. DESCRIPTION OF THE PROPOSED APPROACH FOR
DIVIDING THE OBJECTIVE SEARCH SPACE

The aim of this work is to approximate the Pareto-front by
dividing the objective space into P partitions and assigning
each partition to a different processor. This explicit division
should result in an implicit division of the search space.
especially if the problem is regular. By regular there is a
coresponding clear division of the search space as a result of
dividing the objective space. In other words, each processor
would have new lower and upper bounds for every decision
variable of the optimization problem.

Another important issue is to give each processor starting
points that satisfy the lower and upper bounds for its region
boundaries in the objective space. It is very difficult and
time consuming to generate a random point and then check
if its functions’ values satisfy a certain partition. Therefore,
we build an archive of starting points that can be used later
according to the needs of each processor. The archive contains
non-dominated and dominated points. Also, all processors
are working using a multi-start approach and use collective
communication.

PESMO comprises four phases and an outline is given
as follows: 1) For each objective function find the solution
vector that minimizes it using the (1+1)-CMA-ES. Use these
solution vectors to initialize the (1+1)-CMA-ES on different
processors. Each processor will choose a vector and different
weights. The aim is to build an archive of starting points from
the traces of the optimization process.

The traces of all the processors are gathered on the root
processor. The traces are filtered into dominated and non-
dominated points then broadcasted to the other processors.
2) The ranges matrix is built at the root processor and all
needed values are calculated from the matrix. 3) Next, count
how many non-dominated points are within the min and max
values that were found for every objective function (found in
each row of the ranges matrix). The objective function with
the biggest count will be used to divide the objective space.
Its corresponding values are then broadcasted to the rest of the
processors. 4) Each processor will search its archive of starting
points to initialize SMS-EMOA and use it for the remaining
function evaluations. Finally, the root processor will gather and
combine all sub-Pareto fronts. The four phases are described
next.

1) Phase I: The first phase is described in Algorithm 1. It
works as follows: Each processor (up to d processors) will run
the (1 + 1)-CMA-ES single objective optimizer described in
Section II-A for one of the objective functions in the problem.
The (1+1)-CMA-ES will then return a solution vector X∗i that
minimizes Fi. Next, use these solution vectors to initialize the
(1+1)-CMA-ES used on different processors. Each processor
will use a different solution vector with different weights.
Here, the Tchebycheff method [28] is used to generate the
traces on different processors. We adjust the method slightly

as we set a very small weight for the objective function that
was used to initialize the (1+1)-CMA-ES. Also, we vary the
vectors and weights on different processors so that there is
good variety in starting points.

We have modified (1 + 1)-CMA-ES so that copies of
the traces found during the optimization process are stored.
Each processor will generate its own traces that are converted
into a sub-population. All sub-populations are gathered on
the root processor and combined into one big population.
The population is filtered into non-dominated and dominated
population then broadcasted to all processors to be stored
in the local archive shown. The local arcvhive has traces of
decision variables and the corresponding function value per
optimisation function. About 10% MaxFEs will be used for
finding the function minimum and building archive on each
processor during this phase. The size of the local archive on
each processor in bytes can be calculated using Equation 1.

ArchiveSize = (Dom+NonDom) ∗ (n+ d) ∗ w (1)

Algorithm 1 Pseudo-code for phase I: Find function minimum
and build the archive.

1: Each Processor Pi will do the following:
2: MaxFEs ← TotalFEs

P
3: zk ← CMA− ES(4%MaxFEs, k) // k is the objective

function
4: z1···d ← Gather z on root processor
5: if root then Broadcast vecs to the other processors
6: end if
7: Initialize w1···d
8: u∗1···d ← z∗1···d − ε // ui : Utopian point for objective i
9: τ (f,w,u

∗)(x)← maxj←1···dwj | fj − u∗j |
10: popi ← CMA − ES(6%MaxFEs, τ) // each processor

has its population
11: if root then
12: Pop ← Gather popi
13: NonDomPop ← GetPareto(Pop)
14: DomPop ← Pop - NonDomPop
15: Broadcast (NonDomPop, DomPop) to other processors
16: end if
17: Archive1 ← NonDomPop
18: Archive2 ← DomPop
19: ArchiveSize1 ← Size(NonDomPop)
20: ArchiveSize2 ← Size(DomPop)

2) Phase II: The aim of the second phase is to build the
ranges matrix shown in Figure 2. The number of function
evaluations needed here are d ∗ d. An outline of the needed
steps is shown in Algorithm 2. The values (X∗i , i = 1 · · · d)
found in the previous phase will be used here. The matrix will
be used to give an approximation of the bounds of the Pareto-
front in the objective space. For every single row in the ranges
matrix we do find the minimum m̃i and maximum M̃i values.
The difference D̃i is M̃i − m̃i. Diffi corresponds to the
difference between the lowest and highest values for objective
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Fig. 2. The ranges matrix used to define an approximation of the Pareto
bounds in the objective search space.

i in the ranges matrix. When Diffi is multiplied with constant
c we can control the area to work on in the objective search
space. The default value for c is zero. The value D̃i will
be used to divide the objective space (according to objective
function i) into P partitions with width not exceeding δi. All
of these values mi, δi, and i, ∀i←i···d are broadcasted to other
processors.

Once other processors receive the required values then the
question is which objective function the parallel system should
use to the divide the objective space (i.e. objective functions
1 · · · d). Therefore, the next phase will look at this issue.

Algorithm 2 Pseudo-code for phase II: Build the ranges
matrix.

1: Each processor Pi will do the following:
2: if root then
3: for i← 1 · · · d do
4: for j ← 1 · · · d do
5: RangesMatrixij←fi(X∗j )
6: end for
7: mi ←Min(RangesMatrixij←1···d)
8: Mi ←Max(RangesMatrixij←1···d)
9: Diffi ←Mi −mi

10: M̃i ←Mi + c ·Diffi
11: m̃i ← mi − c ·Diffi
12: D̃i ← M̃i − m̃i

13: δi ← D̃i

P
14: end for
15: end if

3) Phase III: As mentioned earlier, we need to decide
which objective function should be used to divide the objective
space into P partitions. There are d possibilities. We call this
process partition probing and it is described in Algorithm 3.
One option is to use the objective function with biggest D̃
value. However, for few irregular problems it is possible that
we have more than one solution to the problem (multi-modal
or non-unique solutions). In this case the range from m̃ to M̃
could cover only part of the Pareto front and not all of it. If
this range is partitioned into P partitions then it is possible
that few (or many) processors are doing useless work.

Therefore, each processor will search its local archive
for the non-dominated points that are within the processor’s
constraint for all objective functions in turn. The points will
be counted for all objectives. The counter will be collected

on the root processor and the overall sum will be calculated.
The objective function that has the maximum number of non-
dominated points will be used for dividing the objective space.

Algorithm 3 Pseudo-code for phase III: Find the objective
function to divide the objective space.

1: Each processor Pi will do the following:
2: for k ← 1 · · · d do
3: Broadcast to all processors m̃k, δk, and k
4: Ai ← m̃k + i · δk − ε
5: Bi ← m̃k + (i+ 1) · δk + ε
6: for x← 1 · · ·ArchiveSize1 do
7: if Ai 6 Archive1 → Tracex → Fk 6 Bi then
NonDomCntik ++

8: end if
9: end for

10: if root then Gather NonDomCntik
11: end if
12: end for
13: if root then
14: NonDomSumk ←

∑P
i=0NonDomCntik

15: end if
16: Find k with max NonDomSumk

17: Broadcast m̃k, δk, and k

4) Phase IV: The final phase is outlined in Algorithm 4.
The root processor broadcasts to all processors the needed
information in order to divide the objective space. All proces-
sors will search their local archive for starting points that are
within the processor’s additional constraints. Execute SMS-
EMOA with the initial population created from the traces in
the archive on each processor then gather the sub-populations
on the root processor.

The following strategy (which gives priority to non-
dominated points) is used when searching for points in the
local archive: 1) Search for non-dominated points in the non-
dominated points archive first, 2) Stop the search when number
of non-dominated points found reaches MaxSP, 3) If variable
useDom is set true or no points are found so far then search
in dominated points archive, 4) If still no points are found then
each processor will increase its area by 50%.

IV. EXPERIMENTAL ENVIRONMENT

The parallel machine used is a cluster of Linux machines
running Red Hat linux. All processors are homogeneous with
local memory and cache. The machines are connected through
a standard ethernet switch. No special hardware or software is
used to minimize communication overhead. The standard MPI
library [31] and gcc compiler were used.

The classical family of ZDT1 to ZDT4 and ZDT6 MOPs
[40] were used to test the proposed PESMO. Also, the
following well known state-of-the-art EMOAs: AbYSS [30],
NSGA2 [16], PAES [26], PESA-II [13], SPEA2 [41], MO-
CELL [29] and MOEA/D [39] were used for comparison
purposes. They are all implemented in the JMetal Framework
[19]. The generational distance (GD) [37] and hypervolume



Algorithm 4 Pseudo-code for phase IV: Search the archive
for starting points and run EMOA on each processor Pi

1: Each processor Pi will do the following:
2: receive from root m̃k, δk, k
3: Ai ← m̃k + i · δk − ε, Bi ← m̃k + (i+ 1) · δk + ε
4: if rank == 0 then Ai ← Ai − δk
5: end if
6: if rank == Size - 1 then Bi ← Bi + δk
7: end if
8: while SPcnt == 0 do
9: for x← 1 · · ·ArchiveSize1 do

10: if Ai 6 Archive1 → Tracex → Fk 6 Bi then
11: StartingPointSPcnt

← Archive1 →
Tracex, SPcnt++

12: if SPcnt >MaxSP then Break
13: end if
14: end if
15: end for
16: if SPcnt == 0 ||useDom == true then
17: for x← 1 · · ·ArchiveSize2 do
18: if Ai 6 Archive2 → Tracex → Fk 6 Bi

then
19: StartingPointSPcnt ← Archive2 →

Tracex
20: if SPcnt++ >MaxSP then Break
21: end if
22: end if
23: end for
24: end if
25: if SPcnt == 0 then
26: Delta← Bi−Ai

4
27: Ai ← Ai −Delta, Bi ← Bi +Delta
28: for x← 1 · · ·ArchiveSize∗ do
29: if Ai 6 Archive∗ → Tracex → Fk 6 Bi

then
30: StartingPointSPcnt ← Archive∗ →

Tracex, SPcnt++

31: if SPcnt >MaxSP then Break
32: end if
33: end if
34: end for
35: end if
36: end while
37: FEs←MaxFEs− 10%MaxFEs− EAFEs − d∗d

P
38: LocalPopi ← EMOA(Ai, Bi, k, StartingPoints,
39: SPcnt,

popSize
P , n, d, FEs)

40: if root then Gather LocalPopi
41: end if

(HV) [42] metrics are used to compare the quality of obtained
solutions for all algorithms. Smaller GD and higher HV values
are desirable. PESMO and the other EMOAs were setup as
follows. The population size was set to 100, crossover operator
is simulated binary (SBX) [4], mutation operator is polynomial
[3], crossover probability (Pc = 0.9), mutation probability

(Pm = 1/n), crossover distribution index (ηc = 20), mu-
tation distribution index (ηm = 20). In all experiments we
used 25000 function evaluations with 40 runs. The maximum
number of starting points was set to 100 for PESMO. The
population size and number of function evaluations are fixed
as this is a standard for comparison with other techniques as
reported in the literature. Table I present the GD metric results
for ZDT MOPs while Table II show the HV metric results that
are discussed next.

A. Activating and Deactivating the Constraints

Once the configuration of the various parameters are deter-
mind we can perform the required experiments in order to test
the proposed methodology implemented in PESMO. The aim
of this set of experiments is to see the effect of deactivating
the constraints at a certain point of program execution on the
quality of obtained solution. Once the constraints are deac-
tivated then each processor can explore the entire objective
space and different parts of the Pareto front can be explored
by more than one processor (normally the neighboring ones).
Using this technique more than one processor can work on
the same part of the Pareto front. However, no information
exchange is allowed between processors. The question is when
to deactivate the constraints. Therefore, we deactivate the
constraints after 50%, 75%, 80%, 85%, 90% and 95% FEs. We
also experiment with activating the constraints (activate until
100%) and deactivating the constraints for all FEs (De-activate
100%FEs).

Regarding the ZDT1 MOP, PESMO progressively improve
the GD metric as the number of processors is increased up
to 10. Also, the GD metric improve when the constraints are
de-activated in the last 5-25% FEs. When the constraints are
deactivated from the beginning of the execution (deactivate
100%) does not seem to improve convergence to Pareto front.
This could be due to generating solutions that are dominated
by solutions found by other processors. The hypervolume
results do not improve as we increase the number of pro-
cessors. In fact the HV metric slightly decreases as more
processors are used. This due to the nature of SMS-EMOA
as maximizing the hypervolume across the entire Pareto front
by one processor would give slightly bigger dominated area.
In the parallel system each processor will use SMS-EMOA to
maximize the hypervolume for its sub-Pareto front only. When
these points are collected on one processor to generate the final
solution. Then, the corresponding HV would decrease as more
processors are used despite the fact the GD metric improves.
Nonetheless, the HV results obtained by PESMO are still
better than other EMOAs as it will be shown in Section IV-B.
Also, de-activating the constraints gives a gradual decrease
in hypervolume. We think this is due to generating a small
overlap between processors and maximizing the HV metric
will not by maximized as desired in overlapped regions.

For the ZDT2 MOP, the GD metric slightly improves as
number of processors is increased. Also, deactivating the
constraints in the last 5-25 % FEs improves the GD metric.
However, it slightly gets worse in case of deactivating the



constraints in the last 50% or 100% FEs. This could be due to
the fact that SMS-EMOA prefers convex problems and ZDT2
is a non-convex problem [9]. Also, increasing the number of
processors improve the results up to 8 processors. Similar
behavior to ZDT1 when considering the HV metric.

It is interesting to note that for the ZDT3 MOP, the earlier
the constraints are de-activated the better GD results are
obtained up to 8 processors. Recall that the ZDT3 Pareto Front
shape is disconnected. Therefore, it is better for each processor
to explore the entire objective search space, otherwise, few
processors might generate a sub-Pareto front that parts of it are
dominated by other solutions generated by other processors.
This would happen when all sub-Pareto fronts are gathered
and combined at the root processor. An interesting behavior
is when the constraints are activated 100% FEs as PESMO
managed to get very good GD value on exactly 8 processors.
This is due to good partitioning of the Pareto front across the
8 processors. We think this behavior is only with this instance
of the ZDT3 MOP.

However, the hypervolume results are acceptable only if
the constraints are deactivated only in the last 5-25% FEs.
This suggests that for disconnected problems it is good to
de-activate the constraints only in the last remaining FEs,
otherwise, the generated solutions will dominate each other
thus reducing the quality of the HV metric values.

The ZDT4 is a challenging MOP as it has 219 local Pareto
fronts. Thus it is likely for an EMOA to get trapped in
local optima. PESMO results for the GD and HV metrics
get worse as more processors are used. It is worth noting
that deactivating the constraints 100% gave slightly better
results than activating the constraints 50-100% FEs. This poor
performace of PESMO suggest that separating local Pareto
fronts with constraints in the objective space is a difficult task.
Therefore, in Section IV-C a new option will be used with
PESMO to tackle multi-modal problems.

The results for the ZDT6 MOP confirm the conclusion
that de-activating the constraints improve the GD metric but
not the hypervolume metric. Also, increasing the number of
processors improve the GD metric only of the constraints are
de-activated in the last 5-20% FEs up to 8 processors. Recall
that ZDT6 MOP has a non-uniform spread of solutions across
the Pareto front. Thus, de-activating the constraints helps in
giving better approximation of the Pareto front.

A conclusion can be drawn from the above experiments as
follows. When solving a new MOP, the shape of the Pareto-
front is not known. Therefore, deactivating the constraints at
some point (but not too early) would guarantee the robustness
of PESMO for many MOPs. Since today’s Desktop machines
can have 2, 4 or 8 cores then PESMO can be used widely for
such type of machines and standard parallel clusters available
widely in many institutions.

B. Comparing PESMO with Other EMOAs

The aim is to compare PESMO with few EMOAs. PESMO
used with constraints activated only 90% FEs. Also, to provide

TABLE I
GENERATIONAL DISTANCE RESULTS FOR ZDT1, ZDT2, ZDT3 AND

ZDT6 MOPS USING SEVERAL EMOAS. PESMO ACTIVATE UNTIL 90%
FES. THE SUPERSCRIPTS A, B AND C INDICATE WHETHER PESMO USING
MORE THAN TWO PROCESSORS IS STATISTICALLY SIGNIFICANTLY BETTER

THAN THE SMS-EMOA AND PESMO1 AND MOEAD, RESPECTIVELY.

EMOA GD EMOA GD
x̃IQR x̃IQR

ZDT1

AbYSS 1.82212e − 042.99e−05 PESMOa,b
2 6.07875e − 058.93e−06

NSGA2 2.21422e − 044.86e−05 PESMOa,b
3 5.60789e − 051.06e−05

PAES 2.31559e − 041.33e−04 PESMOa,b
4 5.62754e − 059.87e−06

SPEA2 2.21736e − 043.23e−05 PESMOa,b
5 5.49454e − 051.62e−05

MOEAD 1.25554e − 037.81e−04 PESMOa,b
6 5.97481e − 051.41e−05

MOCELL 1.76603e − 041.85e−05 PESMOa,b
7 5.35609e − 051.08e−05

PESAII 2.21983e − 048.21e−05 PESMOa,b
8 5.48323e − 051.08e−05

SMS-EMOAb 7.00101e − 051.90e−05 PESMOa,b
9 5.31404e − 051.40e−05

PESMO1 7.97139e − 051.39e−05 PESMOa,b
10 5.07411e − 051.19e−05

ZDT2

AbYSS 1.04149e − 045.83e−05 PESMOa,b
2 4.39822e − 053.29e−06

NSGA2 1.68839e − 044.30e−05 PESMOa,b
3 4.32627e − 055.63e−06

PAES 2.34300e − 043.46e−04 PESMOa,b
4 4.29589e − 055.18e−06

SPEA2 1.67339e − 046.17e−05 PESMOa,b
5 4.35050e − 053.70e−06

MOEAD 1.35862e − 038.51e−04 PESMOa,b
6 4.26783e − 055.89e−06

MOCELL 6.11599e − 053.21e−05 PESMOa,b
7 4.37754e − 053.63e−06

PESAII 1.76887e − 041.00e−04 PESMO8 4.51888e − 055.65e−06
SMS-EMOA 4.56165e − 052.90e−06 PESMO9 4.49604e − 056.69e−06
PESMO1 4.63651e − 056.06e−06 PESMO10 4.62933e − 057.40e−06
ZDT3
AbYSS 1.93836e − 042.24e−05 PESMO2 1.60390e − 041.44e−05
NSGA2 2.12399e − 041.70e−05 PESMO3 1.60482e − 042.24e−05
PAES 1.99370e − 041.27e−04 PESMO4 1.62652e − 041.08e−05
SPEA2 2.32443e − 041.88e−05 PESMO5 1.81478e − 043.27e−05
MOEAD 2.87742e − 031.23e−03 PESMO6 1.75932e − 041.97e−05
MOCELL 2.01641e − 041.85e−05 PESMO7 1.67162e − 042.12e−05
PESAII 1.92501e − 043.84e−05 PESMO8 1.59114e − 042.58e−05
SMS-EMOA 1.46639e − 046.43e−06 PESMO9 1.64333e − 041.32e−05
PESMO1 1.48016e − 041.02e−05 PESMO10 1.61850e − 042.42e−05
ZDT6

AbYSS 5.49989e − 042.13e−05 PESMOa,b,c
2 5.22343e − 046.49e−05

NSGA2 9.94321e − 041.28e−04 PESMOb
3 5.33571e − 047.76e−05

PAES 8.60327e − 048.54e−03 PESMOa,b,c
4 5.17071e − 048.48e−05

SPEA2 1.70983e − 033.34e−04 PESMO5 5.27560e − 047.77e−05

MOEADa,b 5.33020e − 045.37e−06 PESMO6 5.57301e − 049.33e−05

MOCELL 6.54748e − 044.00e−05 PESMOb
7 5.37795e − 048.12e−05

PESAII 8.77987e − 045.52e−03 PESMO8 5.70250e − 041.03e−04

SMS-EMOAb 5.43154e − 041.50e−05 PESMO9 5.46228e − 044.97e−05
PESMO1 5.50230e − 042.20e−05 PESMO10 5.71132e − 047.38e−05

results with confidence a non-parametric statistical test (two-
sided wilcoxon rank sum test [33]) is performed to find if
PESMO is statistically better (with p < 0.05) that the best
result of the sequential EMOAs (only compare to the best
including SMS-EMOA).

PESMO outperformed all EMOAs for the ZDT1 MOP
up to 10 processors regarding the GD metric. Also, up to
4 processors it outperformed other EMOAs and was very
competitive with SMS-EMOA regarding the HV metric. For
the ZDT2 MOP, PESMO gave excellent behavior regarding
GD metric up to 7 processors. Beyond this size it was very
competitive. The HV metric was also acceptable. Both GD
and HV metrics for ZDT3 are very competitive with SMS-
EMOA. SMS-EMOA ranked after MOEAD for ZDT6 MOP
but PESMO up to 4 processors managed to outperform both
regarding the GD metric.

It is worth noting that PESMO on one processor gave
better results than SMS-EMOA regarding the HV metric. This
suggests that the use of intelligent starting points can improve
the results of SMS-EMOA. Thus, the approach proposed



in PESMO for generating starting points is usefull indeed.
However, regarding the GD metric no difference was found
between SMS-EMOA and PESMO1.

TABLE II
HYPERVOLUME RESULTS FOR ZDT1, ZDT2, ZDT3 AND ZDT6. PESMO

ACTIVATE UNTIL 90% FES.

EMOA Hypervolume EMOA Hypervolume
x̃IQR x̃IQR

ZDT1
AbYSS 0.6613862.30e−04 PESMO2 0.6617192.31e−04
NSGA2 0.6593774.82e−04 PESMO3 0.6614892.46e−04
PAES 0.6574061.73e−03 PESMO4 0.6612473.00e−04
SPEA2 0.6599234.75e−04 PESMO5 0.6611282.99e−04
MOEAD 0.6445971.03e−02 PESMO6 0.6609044.67e−04
MOCELL 0.6610072.78e−04 PESMO7 0.6607714.46e−04
PESAII 0.6572641.03e−03 PESMO8 0.6607072.96e−04
SMS-EMOA 0.6620502.41e−05 PESMO9 0.6605283.96e−04
PESMOa

1 0.6621241.86e−05 PESMO10 0.6602745.40e−04
ZDT2
AbYSS 0.3281813.68e−04 PESMO2 0.3281518.54e−04
NSGA2 0.3260823.89e−04 PESMO3 0.3278328.17e−04
PAES 0.3238462.14e−03 PESMO4 0.3274863.31e−03
SPEA2 0.3264269.02e−04 PESMO5 0.3274387.84e−04
MOEAD 0.3104071.26e−02 PESMO6 0.3271319.66e−04
MOCELL 0.3282776.49e−04 PESMO7 0.3272021.68e−03
PESAII 0.3245749.40e−04 PESMO8 0.3263424.55e−03
SMS-EMOA 0.3288412.57e−05 PESMO9 0.3262663.36e−02
PESMOa

1 0.3288657.88e−03 PESMO10 0.3258313.25e−02
ZDT3
AbYSS 0.5158233.46e−03 PESMO2 0.5157721.02e−04
NSGA2 0.5147882.02e−04 PESMO3 0.5154852.57e−04
PAES 0.4999164.94e−02 PESMO4 0.5154381.60e−04
SPEA2 0.5140804.60e−04 PESMO5 0.5153681.77e−04
MOEAD 0.4518382.90e−02 PESMO6 0.5148981.39e−04
MOCELL 0.5151664.06e−04 PESMO7 0.5144933.40e−04
PESAII 0.5124893.73e−03 PESMO8 0.5143193.63e−04
SMS-EMOA 0.5160055.84e−05 PESMO9 0.5137343.28e−04
PESMOa

1 0.5161114.12e−06 PESMO10 0.5135165.92e−04
ZDT6
AbYSS 0.4003502.32e−04 PESMO2 0.3993195.07e−04
NSGA2 0.3887971.89e−03 PESMO3 0.3982093.65e−04
PAES 0.3965362.17e−03 PESMO4 0.3973715.01e−04
SPEA2 0.3790714.57e−03 PESMO5 0.3965057.74e−04

MOEADa,b 0.4013691.85e−05 PESMO6 0.3959657.27e−04
MOCELL 0.3964219.24e−04 PESMO7 0.3954571.04e−03
PESAII 0.3961691.01e−03 PESMO8 0.3954591.01e−03
SMS-EMOA 0.4006712.21e−04 PESMO9 0.3946638.93e−04
PESMOa

1 0.4008713.48e−04 PESMO10 0.3943481.30e−03

C. PESMO and Separating Local Pareto Fronts

The poor performance of PESMO with ZDT4 requires
adding an option to the parallel algorithm to separate local
Pareto fronts efficiently. Therefore, the user can switch on
an option that can help PESMO for multimodal problems.
It works as follow, deactivate the zone constraints on each
processor then every n function evaluations the sub-population
of all processors are gathered on the root processor and filtered
to non-dominated and dominated solutions. These solutions are
broadcasted to each processor where it will select new starting
points to be used as initial population according to its zone
constraints. The processor then resumes execution until the
next gather process is issued.

The user specifies the how many times to gather the sub-
populations (assume it is G), then n = MaxFEs/G. This
has been tested with the following gathering intervals: 2, 4, 8
and 16. In the last interval the zone constraints are activated.
The idea behind this technique that if one processor manages
to separate the local Pareto fronts and reaches the global
Pareto front then other processors should benefit from this.
It is possible that a processor will have a shorter path in the
objective search space to the PFtrue. No noticeable extra cost

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 1  2  3  4  5  6  7  8  9  10

G
D

Processors

ZDT4

No-Gathering
Gather-2
Gather-4
Gather-8

Gather-16
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in terms of execution time due to additional gathering of sub-
solutions.

Figure 3 shows the median of the generational distance met-
ric for ZDT4 using different intervals. Due to the complexity
of ZDT4 50000 FEs are used. The results show that it is better
to use a gathering interval of 8 or more. This confirms that
allowing all processors to work on the entire objective search
space of a multi-modal problem is useful.

TABLE III
GD RESULTS FOR ZDT4 MOP USING SEVERAL EMOAS WITH 50000FES.

EMOA GD EMOA GD
x̃IQR x̃IQR

AbYSS 2.281e-049.62e−05 PESMOa,b
2 6.057e-051.87e−05

NSGA2 1.641e-045.61e−05 PESMOa,b
3 6.312e-051.71e−05

PAES 3.033e-021.96e−01 PESMOa,b
4 6.768e-051.89e−05

SPEA2 1.782e-042.94e−05 PESMOa,b
5 6.032e-051.95e−05

MOEAD 4.909e-046.46e−04 PESMOa,b
6 6.745e-052.06e−05

MOCELL 1.633e-042.61e−05 PESMOa,b
7 7.208e-054.09e−05

PESAII 2.234e-046.13e−03 PESMOa
8 7.872e-055.35e−05

SMS-EMOA 7.947e-051.69e−05 PESMO9 7.968e-056.33e−05
PESMOa

1 7.733e-051.45e−05 PESMO10 1.106e-048.77e−05

Tables III and IV present the generational distance and
hypervolume metrics for PESMO and other EMOAs using
50000 FEs. The results show how PESMO can outperform all
EMOAs up to 7 processors including SMS-EMOA regarding
convergence and very competitive with the hypervolume met-
ric. Also the results up to 10 processors are very competetive.

TABLE IV
HV RESULTS FOR ZDT4 MOP USING SEVERAL EMOAS WITH 50000FES.

EMOA HV EMOA HV
x̃IQR x̃IQR

AbYSS 0.66002.12e−03 PESMOb
2 0.66172.15e−04

NSGA2 0.65961.29e−03 PESMO3 0.66154.62e−04
PAES 0.65364.11e−03 PESMO4 0.66125.49e−04
SPEA2 0.66071.14e−03 PESMO5 0.66113.63e−04
MOEAD 0.65499.59e−03 PESMO6 0.66085.19e−04
MOCELL 0.66157.05e−04 PESMO7 0.66057.37e−04
PESAII 0.65701.88e−03 PESMO8 0.66021.17e−03
SMS-EMOA 0.66164.69e−04 PESMO9 0.65991.01e−03
PESMOa

1 0.66183.77e−04 PESMO10 0.65941.63e−03



D. Speedup Analysis

In on order to understand the effect of parallel computing
on the behavior of PESMO we need to look at speedup
analysis. Recall that SMS-EMOA complexity is O(µd/2+1) as
mentioned in Section II-B. In PESMO the population size µ is
divided equally among all processors. Hence, the complexity
for PESMO is O(( µP )

d/2+1). As each we increase number of
processors then SMS-EMOA execution time of every single
processor will improve due to reduction in population size. A
cost model for PESMO is:

TPESMO(P ) =
MaxFEs

P ∗ (TSelection + TCrossover +
TMutate + TEvaluate)

where TSelection is time to select new population and it
depends on population size. In PESMO population size is µ

P ,
TEvalute is time for one function evaluation, TCrossover and
TMutate are crossover and mutation time respectively. There-
fore, increasing number of processors reduces the computation
time from two perspectives: 1) dividing the total number of
function evaluations across all processors and 2) reducing
population size which has a strong effect on selection time.
The relative computational speedup is

SpeedupP =
Time(PESMO1)

Time(PESMOP )
(2)

Therefore, two types of speedup are reported: 1) relative
speedup by measuring the time of PESMO after 25000 FEs.
This should give the overall behavior of the parallel system and
2) fixed population size speedup where PESMO execution time
on one processor is measured with the following population
sizes: 100, 50, 34, 25, 20, 17, 14, 11 and 10 to be used with
PESMO execution time measured on 1, 2, 3, 4, 5, 6, 7, 8 ,9 and
10 processors, respectively. Hopefully, this will separate the
algorithmic behavior of SMS-EMOA due to the high selection
time.

Figure 4 presents the average relative speedup and fixed
population size speedup for all problems. The relative speedup
results are superlinear. This is due to the reduction of pop-
ulation size as the number of processors increase and the
calculation of the function evaluations across the processors.
Reducing the over all computational is important in case the
system to be used with time costly functions especially those
that have many decision variables. The best speedup is for
the ZDT6 problem. This is due to the nature of the problem
as it requires more time to compute one function evaluation.
The fixed population size speedup are acceptable and the best
speedup is when 6 processors are used then starts to decrease
due to communication overhead as the ZDT functions are not
that expensive functions to compute.

V. CONCLUSIONS AND FUTURE WORK

We have described a novel approach for approximating the
Pareto front of multiobjective problems using a parallel evo-
lutionary system. The system we propose integrates state-of-
the-art EMOAs that run in a multi-start parallel approach. The
engineered system was tested on standard benchmark prob-
lems and compared with well known EMOAs. The obtained
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Pareto fronts gave very good results in terms of generational
distance and hypervolume metrics. In fact, PESMO achieved
new GD results for all the test problems and new hypervolume
value for the difficult ZDT4. Also, de-activating the constraints
is important for disconnected problems. The computational
speedup was super linear due to the population size division
on few processors.

To sum up, the work presented in this paper has the
following novelties:

• We propose a novel parallel evolutionary system for
defining and dividing the Pareto-front in the objective
space of multi-objective problems.

• We introduce the use of intelligent starting points rather
than randomly generated initial population. Each proces-
sor is given a population within the lower and upper
boundaries of its sub-Pareto front.

• PESMO is adaptive as it determines at run-time which
objective function should be used to divide the objective
space.

For future work, possibly looking at how to make the system
adaptive where processors can change the boundaries of their



partitions in order to load balance work according to a certain
threshold. Also, specialised crossover and mutation operators
that can be more suited to work in highly niche partitions.

REFERENCES

[1] J. Shi, Q. Zhang and J. Sun, PPLS/D: Parallel Pareto Local Search
Based on Decomposition, IEEE Transactions on Cybernetics, vol. 50,
no. 3, pp. 1060-1071, March 2020.

[2] N. Kantour, S. Bouroubi, D. Chaabane, parallel MOEA with
criterion-based selection applied to the Knapsack Problem, Applied Soft
Computing, 80, 2019, Pages 358-373.

[3] M. Hamdan. A dynamic polynomial mutation for evolutionary multi-
objective optimization algorithms. International Journal on Artificial
Intelligence Tools, 20(1), pp. 209-219, 2011.

[4] M. Hamdan, Revisiting the distribution index in simulated binary
crossover operator for evolutionary multiobjective optimisation algo-
rithms. In 2014 Fourth International Conference on Digital Information
and Communication Technology and its Applications, Thailand, 2014,
pp. 37-41.

[5] B. Mishra, S. Mishra, S. Singh. Parallel Multi-Criterion Genetic Al-
gorithms: Review and Comprehensive Study. International Journal of
Applied Evolutionary Computation (IJAEC), 7(1), 50-62,2016.

[6] E. Alba, F. Chicano, On the behavior of parallel genetic algorithms
for optimal placement of antennae in telecommunications, International
Journal of Foundations of Computer Science 16 (2) (2005) 343–359.

[7] E. Alba, J. M. Troya, A survey of parallel distributed genetic algorithms,
Complexity 4 (4) (1999) 31–52.

[8] E. Alba, J. M. Troya, Analyzing synchronous and asynchronous parallel
distributed genetic algorithms, Future Generation Computer Systems 17
(2001) 451–465.

[9] N. Beume, B. Naujoks, M. Emmerich, SMS–EMOA: Multiobjective
selection based on dominated hypervolume, European Journal of Op-
erational Research 127 (3) (2007) 1653–1669.

[10] N. Beume, G. Rudolph, Faster S-Metric Calculation by Considering
Dominated Hypervolume as Klee’s Measure Problem, in: B. Kovaler-
chuk (ed.), Proceedings of the Second IASTED Conference on Compu-
tational Intelligence, ACTA Press, Anaheim, 2006, pp. 231–236.

[11] J. Branke, H. Schmeck, K. Deb, M. Reddy, Parallelizing multi-objective
evolutionary algorithms: Cone separation, in: IEEE Congress on Evolu-
tionary Computation (CEC), 2004, pp. 1952–1957.

[12] C. A. Coello Coello, D. A. Van Veldhuizen, G. B. Lamont, Evolutionary
Algorithms for Solving Multi-Objective Problems, Kluwer Academic
Publishers, New York, 2002, iSBN 0-3064-6762-3.

[13] D. W. Corne, N. R. Jerram, J. D. Knowles, M. J. Oates, PESA-II:
Region-based Selection in Evolutionary Multiobjective Optimization,
in: L. Spector, E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, E. Burke (eds.),
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2001), Morgan Kaufmann Publishers, San Francisco, Califor-
nia, 2001, pp. 283–290.

[14] F. de Toro Negro, J. Ortega, E. Ros, S. Mota, B. Paechter, J. Martin,
PSFGA: Parallel processing and evolutionary computation for multiob-
jective optimisation, Parallel Computing 30 (2004) 721–739.

[15] K. Deb, R. Agrawal, Simulated binary crossover for continous search
space, Complex Systems 9 (1995) 115–148.

[16] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182–197.

[17] K. Deb, S. Tiwari, Omni-optimizer: A generic evolutionary algorithm for
single and multi-objective optimization, European Journal of Operational
Research 185.

[18] J. J. Durillo, A. J. Nebro, C. A. C. Coello, F. Luna, E. Alba, A
comparative study of the effect of parameter scalability in multi-
objective metaheuristics, in: IEEE Congress on Evolutionary Computing,
Hong Kong, 2008.

[19] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, E. Alba, jMetal: A java
framework for developing multi-objective optimization metaheuristics,
Tech. Rep. ITI-2006-10, Departamento de Lenguajes y Ciencias de la
Computación, University of Málaga, E.T.S.I. Informática, Campus de
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