
Improving Classification of Metamorphic Malware
by Augmenting Training Data with a Diverse Set of

Evolved Mutant Samples
1st Kehinde O. Babaagba

School of Computing
Edinburgh Napier University
Edinburgh, United Kingdom

K.Babaagba@napier.ac.uk

2nd Zhiyuan Tan
School of Computing

Edinburgh Napier University
Edinburgh, United Kingdom

Z.Tan@napier.ac.uk

3rd Emma Hart
School of Computing

Edinburgh Napier University
Edinburgh, United Kingdom

E.Hart@napier.ac.uk

Abstract—Detecting metamorphic malware provides a chal-
lenge to machine-learning models as trained models might
not generalise to future mutant variants of the malware. To
address this, we explore whether machine-learning models can
be improved by augmenting training data-sets with samples
of potential variants. These variants are generated using an
evolutionary algorithm that evolves a behaviourally diverse set
of mutants, optimised to avoid detection by a large set of existing
detection-engines. Using features calculated from the behavioural
trace of a sample as input, we evaluate the ability of five machine-
learning methods to detect the new variants, show that the
detection rate is considerably improved by including the new
samples as training data, and that the classifiers still generalise
over a range of malware. We then repeat this experiment using
a sequence-based deep-learning method as the classifier, which
is shown to out-perform the feature-based classifiers.

Index Terms—Machine-learning, Evolutionary computing,
Malware and Computer security

I. INTRODUCTION

Metamorphic malware represents a dangerous class of mal-
ware which changes its form stochastically over generations.
They often use varying obfuscation methods to enable them
to go undetected by antivirus engines and other detectors.
Obfuscation approaches include techniques such as garbage
code insertion (the addition of junk code into the malware’s
code), instruction substitution (which replaces instructions
with valid ones that do not change the code’s function) and
instruction-reordering. These mutation methods make meta-
morphic malware hard to detect by existing detection-engines.

Machine-learning (ML) methods are now common in mal-
ware detection [1], trained using samples of known malware.
However, this provides an attack surface for adversaries to
launch attacks, by creating malware that is dissimilar from the
training data and designed to avoid detection. For metamorphic
malware which can continually change its form, this is even
more of an issue. One approach to this is to use an adversarial
learning method [2] in which a feedback loop is created in
a system that (1) continually searches for malware samples
that are misclassified by the machine-learning model used for
detection, and (2) retrains the model based on these samples.

Here we propose a modified version of this method which uses
an Evolutionary Algorithm (EA) first to evolve a diverse set
of malware-mutants that are optimised with respect to their
ability to evade detection by a large set of detection engines,
while retaining their maliciousness. The evolution of these
mutants has been previously described in recent papers [3],
[4]; the former uses a classical EA to evolve an optimised
mutant, whereas the latter uses a quality-diversity algorithm
MAP-Elites to return a set of mutants which are diverse with
respect to their behavioural and structural similarity to the
original malware. In this paper, we investigate whether these
mutants can be used to train better machine-learning models
capable of detecting other potential unseen mutants.

This paper seeks to answer the following research questions:

• To what extent are models trained only on existing
samples of known malware capable of detecting potential
mutants?

• Can these models be improved by augmenting the train-
ing set with evolved samples, and if so, what is the most
appropriate method of combining the evolved samples
with existing samples?

• Do models trained on evolved data representing future
mutants retain their ability to recognise existing known
malware?

The questions are answered by conducting a study using two
types of ML models, namely non-sequential and sequential
models. We compare five classical ML models with Long-
Short-Term-Memory (LSTM) [5], a deep-learning method.
The former methods rely on features describing the frequency
of system-calls made by a malware, while the latter uses the
ordered sequence of system calls directly as input.

The contributions of this paper can be summarised as fol-
lows. Firstly, we provide evidence to show that models trained
only on existing samples of malicious code are vulnerable,
failing to detect mutant samples. Secondly, we demonstrate
that the samples evolved using Evolutionary Algorithms pro-
vide a rich-source of training data that improves the ability
of classifiers to detect new mutants while retaining their

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

ability to generalise across existing samples. Finally, we show
that sequential models yield a better performance than non-
sequential models. We also make the feature vector data
available [6], so the readers can make use of the data.

We structure the rest of the paper as follows. In Section
II, we present the background of this research and review
related work. Section III describes our research methodology.
Experiments and result analysis are discussed in Section IV. In
Section V, we conclude the paper and suggest areas of future
research.

II. RELATED WORK

In spite of the fact that ML approaches have been shown to
offer cutting edge solutions for automatically detecting mal-
ware as seen in [7], [8], [9] among others, the recent research
focus on adversarial sample generation has also demonstrated
how susceptible ML models are. For instance, 84.24% of
adversarial examples created in [10] were misclassified on
MetaMine (a well know deep learning API available online).
Other examples of susceptible ML models are described in
[11], [12], [13].

Recent research in the field of Evolutionary Computing
suggests that the field offers useful methods in creating mod-
ified versions of malware optimised to evade detection. An
EA is described in [14] that evolved samples that evaded
a number of detection engines. Our recent work advanced
this, using a multi-objective fitness function in [3] which
optimised for samples that were evasive but also structurally
and behaviourally diverse compared to the original malware,
and using a quality-diversity algorithm in [4] to enhance the
range of diversity and return multiple samples in one run.
Moreover, an adversarial approach to generating pdf malware
was described in [15], which used a genetic programming
approach.

Although many studies have demonstrated that machine
learning models are susceptible to evasive attacks [10], fewer
provide solutions that help secure machine-learning models
from these adversarial samples. The work of [16] presented
a wrapper based feature-selection approach that is adversary-
aware to enhance the security of classifiers against adversarial
attacks. Their model takes into consideration the data pertur-
bations employed by the adversaries with experimental results
demonstrating the efficiency of their technique when tested on
samples from spam and malware detection domain.

Here, we focus on a two-phase approach to training better
malware detectors: in the first phase, an EA is used to evolve a
diverse set of mutants that are both malicious and evasive. This
was described in previous work [3], [4]. The second-phase is
proposed in this paper, in which the evolved data is shown to
be beneficial in training improved ML detection models.

III. METHODOLOGY

This section briefly discusses the algorithms employed in
the generation of the training samples, which have been docu-
mented in [3], [4]. Then, the data-collection and pre-processing

steps taken to obtain both normal and malware samples are de-
scribed. Last but not least, we introduce the machine-learning
algorithms (sequence and non-sequence based) employed in
the detection process.

A. Generation of mutant variants of existing malware

The adversarial samples used as training data and test data
in this work were created using two evolutionary algorithms as
described in [3] and [4]. The first algorithm used a steady state
mutation-only EA [3] to generate variants, which were eval-
uated according to one of three fitness functions: minimises
the behavioral similarity between a variant and the original
malware; minimises the structural similarity between a variant
and the original malware; minimises the detection rate with
respect to 63 detection-engines. Only evolved samples that are
both evasive and malicious are retained. The aforementioned
methods also ensure that all samples are distinct (more details
can be found in [3] and [4]).

In order to test that the evolved mutants retain their mali-
cious nature, we use Droidbox1 which is an Android based
sandbox designed for analysing Android files dynamically.
This involves monitoring the sample’s behavior while it ex-
ecutes. Droidbox runs Android files submitted to it and logs
key information of the sample such as connections opened,
API call traces, file related activities (such as file deletion and
creation) among others.

The second EA uses a quality diversity algorithm — MAP-
Elites — to produce a set of adversarial samples that are
diverse with respect to their structural and behavioural sim-
ilarity to the parent malware, denoted by s and b respectively.
For each descriptor < s, b >, the algorithm optimises the
evasiveness of the variant associated with the descriptor. This
method was shown to produce a larger variety of mutants, and
to maximise the evasiveness.

B. Data collection

In this work, our ultimate focus is on metamorphic malware.
However, since it is not easy to collect sufficient samples
and their mutants, we use Android malware from well-known
families as a proxy to generate mutant samples which represent
potential future variants, in order to prove the concept that
augmenting training data with a diverse set of evolved mutant
samples improves classification of metamorphic malware is a
viable method.

The Android samples used are archived as APK files.
Benign and malicious data are collected from various sources
as shown in Table I. The adversarial samples generated by
the EA described in Section III-A are mutant variants of the
malware samples collected from Contagio Minidump2 and
Malgenome3 as well as malicious samples from three different

1Droidbox - https://www.honeynet.org/taxonomy/term/191
2Contagio Minidump - http://contagiominidump.blogspot.com/2015/01/android-

hideicon-malware-samples.html
3Malgenome - http://www.malgenomeproject.org/

TABLE I
DATA-SETS UTILISED

Samples Acronym Data Source Total number of Samples Description
Benign Samples B Google Playstore7 50 Comprised of games,

beauty, communication
and entertainment
applications

Malicious Samples from
web

Mw Contagio Minidump2 50 Comprised of Dougalek
family4, Droidkungfu6 and
other families of malware

Evolved malware EM Variants of malware
samples from Contagio
Minidump2 and
Malgenome dump3

50 Samples generated
using MAP-Elites and
Steady state EA (This
set of samples contains
three families; 21 from
Dougalek4, 15 from
GGtracker5 and 14 from
Droidkungfu6)

Evolved malware - unseen
set for testing

EMu Variants of malware
samples from Contagio
Minidump2 and
Malgenome dump3

30 Samples generated
using MAP-Elites and
Steady state EA (This
set of samples contains
two families; 21 from
Dougalek4, and 9 from
Droidkungfu6)

families, namely Dougalek4, GGtracker5 and Droidkungfu6.
The samples selected from the dump are chosen on the basis
of their malicious payload and they fall into four categories,
namely those that either escalate privilege, try to gain remote
control of phones, those that result in financial charges or those
that steal personal information of users.

Additional malicious samples Mw collected from the web
are also from the Contagio Minidump which consists of
families such as Dougalek, DroidKungfu among other ma-
licious software. The clean samples B on the other hand
are sourced from Google play store7 and downloaded using
Apkdownloader8. The benign samples are selected from vari-
ous categories such as entertainment, gaming, communication
among others.

A further data-set EM of malicious samples is formed
from the evolved mutants generated by the methods previ-
ous described, containing mutants generated from 3 malware
families. A final dataset EMu consists of an additional 30
generated mutants and is held out as an unseen set for
testing. This dataset only contains mutants from those malware
families present in the dataset collected from the web.

C. Data Processing

We use information obtained from the behavioural trace
collected from running a sample as an input to the classifiers.

4Dougalek - https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/androidosdougalek.a

5GGtracker - https://www.f-secure.com/v-
descs/trojan android ggtracker.shtml

6Droidkungfu - https://www.f-secure.com/v-
descs/trojan android droidkungfu c.shtml

7Google Play - https://play.google.com/store?hl=en
8Apkdownloader -https://apps.evozi.com/apk-downloader/

We employ Strace9 to monitor the behavior of the malware
and Strace keeps a log of the system calls made by each
malware. By running the malware’s main activity using Mon-
keyRunner10, we are able to simulate user interaction with the
malware. We then generate both sequential and non-sequential
features from this log as follows:

1) Non-sequential data processing: For the non-sequential
data processing, the logs generated from Strace are converted
to a fixed sized vector with each element corresponding to the
observed frequency of a potential system-call employed. 251
systems calls are considered.

2) Sequential feature generation: The sequential features
are also extracted from the Strace log. However, the feature
vector consists of the time-ordered list of system-calls ex-
tracted from the log.

D. Machine-Learning

We select five non-sequential models to test as predic-
tors, based on their prevalence in the metamorphic malware
detection literature. They are Logistic Regression, Support
Vector Machine, Naı̈ve Bayes, Decision Trees, and K-Nearest
Neighbour.

For comparison with the non-sequential models, LSTM is
chosen for detection based on sequences of system calls.
Although deep-learning models, such as LSTM network, have
shown their superiority in handling time-ordered information
in other problem domains, they are less explored in malware
detection [17], [18], [19].

The algorithms employed are briefly explained below.

9Strace - https://linux.die.net/man/1/strace
10Monkeyrunner - https://developer.android.com/studio/test/monkey

1) Logistic Regression (LR): This algorithm is often used
for binary data and when the target variable is categorical.
For instance to predict whether a software code is benign (0)
or malicious (1). A logit transformation is employed to force
the Y value to take on varying values between 0 and 1. The
probability P = 1/(1 + e− (c+ bX)) is first computed after
that X is then linearly associated to lognP/(1− P) [20].

2) Support Vector Machine (SVM): SVM has as its goal
identifying a hyper plane in a feature space of N dimen-
sions that uniquely classifies data points. The hyper plane
discovered is ideally one that maximises the distance between
data points of the classes i.e. has the maximum margin. This
results in greater confidence in future classification attempts.
SVM requires little computational power yet producing high
accuracies [21].

3) Naı̈ve Bayes (NB): This is a probability based machine
learning model employed in classification tasks. It follows the
Bayesian theorem summarised in (1) below.

P (A|B) =
P (B|A)P (A)

P (B)
(1)

From the theorem, we note that provided that B has oc-
curred, we can then compute the probability of A occurring.
This implies that while A is the hypothesis, B is the evidence.
Naı̈ve Bayes assumes that features are independent and so the
absence of a feature has no effect on the other [22].

4) Decision Trees: A binary decision tree results from the
split of a node into two child nodes severally, starting with the
root node which comprises of the entire learning sample [23].

5) K Nearest Neighbour (KNN): This algorithm seeks to
find the instances in the training data in a feature space of
N dimensions that are closest to the instance to be classified.
It assumes that if an instance is close together in the feature
space with the instance to be classified, then it is likely to be
similar and have the same class as the instance to be classified.
Although it is one of the simplest ML models to implement,
it is highly sensitive to the occurrence of parameters that are
irrelevant [24].

6) Recurrent Neural Network (RNN): This is a type of
machine-learning algorithm that is built for learning from time
series sequence data. An RNN is a deep learning algorithm,
which comprises of layers connected in such a way that they
go from the output of one layer to the input of the next layer
and have feedback loops returning to the preceding layer. An
RNN learns from sequences of time series data particularly,
where temporary information is deduced from the sequences
and employed in finding associations that exist between data
and the expected network output [25].

In order to learn from the sequential data obtained from
the samples described in Section III-C, we use LSTM, a
neural network specially designed for learning long term
dependencies from such data. It consists of gates that are able
to hold, recover and forget information over a long time span.
Traditional neurons in the hidden layer are substituted with
memory blocks in LSTM with these blocks accepting inputs

from the network via the input node and outputs from the
output gate multiplication as seen in Fig. 1 [5].

Fig. 1. An example LSTM memory block where the connections with weights
proceeding from the cells to the gates are illustrated using dashes and the black
circles are multiplications [5]

IV. EXPERIMENTS AND DISCUSSION

All classical non-sequential ML models were implemented
using Scikit-learn libraries for Python, with the Keras library10

implementation of LSTM in python for the sequence based
machine learning. 10-fold cross validation was used to train
and validate models. An unseen test-set containing evolved
mutant malware was used in testing.

The LSTM and its hyper-parameters were empirically tuned.
As a result of its documented success in terms of its accu-
racy and computational power, “Adam” optimiser [26] was
employed. We used batch sizes between 10 and 500, and
experimented using either 1 or 2 layers of LSTM. Following
this, we chose LSTM with 2 layers: each layer has 128
neurons. The binary cross entropy function was used as the
loss function (this function was chosen as our classification is
binary). Moreover, as our problem is a classification problem,
we employ a Dense output layer comprising of one neuron
with a sigmoid activation function. We employed a batch size
of 50 so as to space out the updates of weight. The model
was fitted using just three epochs as it speedily over-fitted the
problem.

10Keras - https://github.com/fchollet/keras

The experiments then were conducted and results are
analysed in the subsections below to answer our research
questions.

A. Are models trained on existing samples of malware capable
of detecting potential mutants?

To answer the first research question, we trained the sequen-
tial and non-sequential machine-learning models on a data-set
that is comprised of the benign samples (dataset B, Table I) and
the malicious samples collected from the web (dataset Mw,
Table I). Table II shows the results from the cross-validation
experiment, indicating that the trained models perform well on
this data-set which only contains samples of known malware
from the web. However, when the best trained model (Naı̈ve
Bayes) is tested on the unseen set of evolved mutants EMu

(top line of Table V), the model performs very poorly with an
accuracy of 0.4.

TABLE II
10-FOLD CROSS VALIDATION WITH MODEL THAT USES SAMPLES OF B

AND Mw AS TRAINING DATA

Model 10-fold Mean Accuracy (std) Validation Accuracy
LR 0.889881 (0.115217) 0.9

KNN 0.910317 (0.103585) 0.95
CART 0.912103 (0.080542) 1

NB 0.937103 (0.084450) 0.95
SVM 0.899603 (0.093919) 1

B. Can the models be improved by augmenting training data
with evolved mutants?

In order to determine whether adding evolved mutants to the
training set results in better models we conducted two further
experiments:

1) The training set consists of the benign samples B and
50 evolved mutants EM

2) The training set consists of the benign samples B, 25
evolved mutants randomly selected from EM and 25
samples randomly selected from Mw (the samples from
the web)

The results are shown in Tables III and IV respectively.
We note that both approaches achieved good accuracy on
the validation sets, with once again the Naı̈ve Bayes method
performing well. The trained models were then tested on the
unseen set of evolved mutants EMu, with results shown in the
second two lines of Table V, obtained using the Naı̈ve Bayes
model. Compared to the results from the same model trained
with the malicious samples from the web, a clear difference is
observed, with both of the trained models resulting in accuracy
of over 80%. This clearly indicates that the evolved mutants
provide useful additional data by which to train a model to
recognise future variants of metamorphic malware.

TABLE III
10-FOLD CROSS VALIDATION WITH MODEL THAT USES SAMPLES OF B

AND EM AS TRAINING DATA

Model 10-fold Mean Accuracy (std) Validation Accuracy
LR 0.903770 (0.102321) 0.9

KNN 0.871032 (0.124375) 0.85
CART 0.922817 (0.084685) 0.95

NB 0.949603 (0.062133) 0.95
SVM 0.899206 (0.071488) 075

TABLE IV
10-FOLD CROSS VALIDATION WITH MODEL THAT USES SAMPLES OF B,

Mw AND EM AS TRAINING DATA

Model 10-fold Mean Accuracy (std) Validation Accuracy
LR 0.914881 (0.093706) 0.9

KNN 0.897817 (0.099469) 0.9
CART 0.913492 (0.097603) 0.9

NB 0.949603 (0.062133) 0.95
SVM 0.905556 (0.101645) 0.95

C. Is a sequential model (LSTM) better in terms of accuracy
than the best classical model (Naı̈ve Bayes) in detecting
potential mutants?

The experiments described above were repeated using the
LSTM. That is, three methods of training a model are con-
sidered. (1) using equal amounts of benign data and malware
collected from the web (B and Mw); (2) using equal amounts
of benign data and evolved mutants (B and EM); (3) 50
samples of benign data, and 25 samples each of malware
from the web and evolved mutants (B, Mw and EM). We
compare the results of the best non sequence based model
(Naı̈ve Bayes) and LSTM on the aforementioned test cases.

From Tables V and VI, we see that as in the classical
models, the model trained using only malware collected from
the web performs poorly on the mutant samples, although the
LSTM has slightly higher accuracy than Naı̈ve Bayes with an
accuracy of 53% as opposed to an accuracy of 40% for Naı̈ve
Bayes. The LSTM outperforms Naı̈ve Bayes for the model
trained purely on benign and evolved samples ((B and EM),
with accuracy of 90%). On the other hand, the model trained
with equal proportions of malicious samples from the web and
the evolved mutants performs less well than the Naı̈ve Bayes
model, obtaining accuracy of 62% compared to 82%.

TABLE V
COMPARISON OF ACCURACY OBTAINED ON THE UNSEEN TEST SET EMu

USING A NAÏVE BAYES MODEL TRAINED ON 3 DIFFERENT TRAINING SETS

Training Data EMu (Accuracy)
B and Mw 0.4
B and EM 0.84

B, Mw and EM 0.82

TABLE VI
COMPARISON OF ACCURACY OBTAINED ON THE UNSEEN TEST SET EMu

USING AN LSTM MODEL TRAINED ON 3 DIFFERENT TRAINING SETS

Training Data EMu (Accuracy)
B and Mw 0.53
B and EM 0.9

B, Mw and EM 0.62

TABLE VII
MODELS THAT USE B AND EM AS WELL AS B, Mw AND EM AS

TRAINING DATA AND Mw AS TEST DATA FOR BOTH NAÏVE BAYES AND
LSTM

Training Data Naı̈ve Bayes Ac-
curacy (Mw)

LSTM Accuracy
(Mw)

B and EM 1 0.73
B, Mw and EM 1 0.91

D. Do models trained on evolved data representing future
mutants retain their ability to recognise existing malware?

The previous results show that models trained using evolved
mutants are capable of recognising other evolved mutants.
However, it is important to evaluate whether these models are
fitted to the evolved mutants and therefore fail to recognise
existing malware.

Hence, we conduct additional experiments where the models
trained using evolved samples are tested on a set of unseen
malicious samples from Mw, i.e. the samples collected from
the web. The model trained with (B,EM) is tested on the
unseen set Mw. The model trained with (B,EM,Mw) is
tested on the 25 samples from Mw not used in training.

As can be seen from Table VII, it is clear that models trained
with potential mutants are also able to detect other malicious
samples. An accuracy of 100% is obtained for both Naı̈ve
Bayes models, with 73% and 91% respectively for the LSTM
model that use (B, EM) and (B, Mw, EM) as training data.
Hence, we conclude that the models are not over-fitting to the
new mutants, and losing their ability to generalise.

We also do an analysis that investigates when the sequential
(LSTM) and non-sequential (Naı̈ve Bayes) methods agree
on which instances are misclassified. For each method, we
compare the overlap between the set of mis-classified instances
produced by each method in order to understand whether both
methods fail on the same instances or not (where overlap
refers to the number of instances that are mis-classified by
both methods). The exact instances that are mis-classified are
given in [6].

From Table VIII, we see that using the Mw set during
training results in a large number of mis-classified instances
by both methods, and the overlap is high (10 instances,
representing approximately 56% and 71% of mis-classified
instances for Naı̈ve Bayes and LSTM respectively). All the
overlapping mis-classified instances come from the Dougalek
family. For the EM training set the overlap is high, in that
it represents 40% of the instances mis-classified by Naı̈ve

TABLE VIII
MIS-CLASSIFIED INSTANCES ON THE UNSEEN TEST SET EMu USING

BOTH NAÏVE BAYES (NB) AND LSTM MODELS TRAINED ON 3 DIFFERENT
TRAINING SETS. THE FINAL COLUMN NOTES WHICH FAMILIES THE

OVERLAPPING INSTANCES CAME FROM. THE FEATURE VECTOR DATA IS
AVAILABLE IN [6]

Training Data # Mis-classified Overlap Instances
NB LSTM

B and Mw 18 14 10 Dougalek(10)
B and EM 5 3 2 Dougalek(1),

Droidkungfu(1)
B, Mw and EM 6 11 2 Dougalek(1),

Droidkungfu(1)

Bayes and 66% of those mis-classified by the LSTM. Of the
2 overlapping instances, one is from the Dougalek family
and the other from Droidkungfu. Finally, for the training
set that includes Mw, EM , although the overlap is also 2
instances, this represents a smaller proportion of the instances
mis-classified by each method (approximately 33% and 18%
respectively). Again the overlapping instances are from the
Dougalek and Droidkungfu families.

V. CONCLUSION

It is well known that metamorphic malware presents a dif-
ficult class of malware which can evade detection by machine
learning models, due to the number of mutation techniques
used to obfuscate their code. We attempt to address this
through a method that combines evolutionary computing and
machine-learning. The former evolves a large set of malicious
mutant variants of malware. The latter then uses this data to
augment training sets, to develop models that are capable of
recognising both existing malware and its future variants.

We have shown experimentally that machine learning mod-
els trained on existing malicious samples are vulnerable to
potential mutants, and that training with evolved data addresses
this. In addition to evaluating classical feature-based ML
models, we have also applied an LSTM using a time-ordered
sequence of system calls as input and shown that this can
outperform the classical models in some cases. Finally, our
results show that the models generalise over both existing
malware and the evolved variants.

Future work will focus on designing a Generative Adversar-
ial Network (GAN), where the mutants generated are not only
used to train machine learning models for improved detection,
but the error in the detection is used to produce more evasive
mutants, potentially leading to even better detection rates.

REFERENCES

[1] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine
learning techniques for malware analysis,” Computers &
Security, vol. 81, pp. 123 – 147, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404818303808

[2] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, ser. KDD ’05. New York, NY, USA: ACM,
2005, pp. 641–647.

[3] K. O. Babaagba, Z. Tan, and E. Hart, “Nowhere metamorphic malware
can hide - a biological evolution inspired detection scheme,” in De-
pendability in Sensor, Cloud, and Big Data Systems and Applications,
G. Wang, M. Z. A. Bhuiyan, S. De Capitani di Vimercati, and Y. Ren,
Eds. Singapore: Springer Singapore, 2019, pp. 369–382.

[4] ——, “Automatic Generation of Adversarial Metamorphic Malware
Using MAP-Elites,” in 23rd European Conference on the Applications
of Evolutionary and bio-inspired Computation, P.A. Castillo et al, Ed.
Seville: Springer-Verlag New York, Inc., 2020, pp. 1–16.

[5] A. Graves, Supervised Sequence Labelling. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 5–13. [Online]. Available:
https://doi.org/10.1007/978-3-642-24797-2 2

[6] K. O. Babaagba, Z. Tan, and E. Hart, “Improving classification
of metamorphic malware,” https://github.com/KehindeOloye/Improving-
Classification-of-Metamorphic-Malware.git, 2020.

[7] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan,
J. Han, and B. Thuraisingham, “Cloud-based malware detection for
evolving data streams,” ACM Trans. Manage. Inf. Syst., vol. 2, no. 3, Oct.
2008. [Online]. Available: https://doi.org/10.1145/2019618.2019622

[8] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in AI 2016: Advances
in Artificial Intelligence, B. H. Kang and Q. Bai, Eds. Cham: Springer
International Publishing, 2016, pp. 137–149.

[9] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Computing, vol. 20, no. 1, pp. 343–357, 2016. [Online]. Available:
https://doi.org/10.1007/s00500-014-1511-6

[10] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS 17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 506519. [Online].
Available: https://doi.org/10.1145/3052973.3053009

[11] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 4, pp. 984–996, April 2014.

[12] N. rndic and P. Laskov, “Practical evasion of a learning-based classifier:
A case study,” in 2014 IEEE Symposium on Security and Privacy, May
2014, pp. 197–211.

[13] Z. Yin, F. Wang, W. Liu, and S. Chawla, “Sparse feature attacks
in adversarial learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 6, pp. 1164–1177, June 2018.

[14] E. Aydogan and S. Sen, “Automatic generation of mobile malwares using
genetic programming,” in Applications of Evolutionary Computation,
A. M. Mora and G. Squillero, Eds. Cham: Springer International
Publishing, 2015, pp. 745–756.

[15] W. Xu, Y. Qi, and D. Evans, “Automatically Evading Classifiers: A
Case Study on PDF Malware Classifier,” in 23rd Annual Network
and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA. The Internet Society, 2016.

[16] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adver-
sarial feature selection against evasion attacks,” IEEE Transactions on
Cybernetics, vol. 46, no. 3, pp. 766–777, March 2016.

[17] R. Lu, “Malware detection with lstm using opcode language,”
arXiv:1906.04593, 2019.

[18] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in 2013
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, May 2013, pp. 3422–3426.

[19] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE),
Oct 2015, pp. 11–20.

[20] J. I. Hoffman, “Chapter 33 - logistic regression,” in
Basic Biostatistics for Medical and Biomedical Practitioners
(Second Edition), 2nd ed., J. I. Hoffman, Ed. Academic
Press, 2019, pp. 581 – 589. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780128170847000334

[21] V. Kecman, Support Vector Machines – An Introduction. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1–47. [Online].
Available: https://doi.org/10.1007/10984697 1

[22] G. I. Webb, Naı̈ve Bayes. Boston, MA: Springer US, 2010, pp.
713–714. [Online]. Available: https://doi.org/10.1007/978-0-387-30164-
8 576

[23] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and regression trees, ser. The Wadsworth statistics/probability series.
Monterey, CA: Wadsworth & Brooks/Cole Advanced Books &
Software, 1984. [Online]. Available: https://cds.cern.ch/record/2253780

[24] R. Nisbet, G. Miner, and K. Yale, “Chapter 9 - classification,”
in Handbook of Statistical Analysis and Data Mining Applications
(Second Edition), 2nd ed., R. Nisbet, G. Miner, and K. Yale,
Eds. Boston: Academic Press, 2018, pp. 169 – 186. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780124166325000098

[25] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” ArXiv, vol. abs/1506.00019, 2015.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

