
On the Parameterization of
Cartesian Genetic Programming

Paul Kaufmann
Gutenberg School of Management & Economics
Johannes Gutenberg University, Mainz, Germany

paul.kaufmann@uni-mainz.com

Roman Kalkreuth
Department of Computer Science

Dortmund Technical University, Germany
roman.kalkreuth@tu-dortmund.de

Abstract—In this work, we present a detailed analysis of
Cartesian Genetic Programming (CGP) parametrization of the
selection scheme (µ + λ), and the levels back parameter l. We
also investigate CGP’s mutation operator by decomposing it into
a self-recombination, node function mutation, and inactive gene
randomization operators. We perform experiments in the Boolean
and symbolic regression domains with which we contribute to
the knowledge about efficient parametrization of two essential
parameters of CGP and the mutation operator.

Index Terms—Cartesian Genetic Programming

I. INTRODUCTION

Genetic Programming (GP) can be considered as nature-
inspired search heuristic, which allows for the automatic
derivation of programs for problem-solving. First work on
GP has been done by [1], [2] and [3]. Later work by [4]
significantly popularized the field of GP. GP is traditionally
used with trees as program representation. Over two decades
ago Miller, Thompson, Kalganova, and Fogarty presented first
publications on Cartesian Genetic Programming (CGP) —
an encoding model inspired by the two-dimensional array of
functional nodes connected by feed-forward wires of an Field
Programmable Gate Array (FPGA) device [5] CGP offers a
graph-based representation that, in addition to standard GP
problem domains, makes it easy to be applied to many graph-
based applications such as electronic circuits [6], [7], image
processing [8], and neural networks [9]. The geometric and al-
gorithmic parameters of CGP are usually configured according
to the findings of Miller [10]. The experiments of Goldman
and Punch [11], [12] and Kaufmann and Kalkreuth [13], [14]
showed, however, that CGP’s standard parameterization can
be improved significantly in different ways. In this work, we
argue that by taking a more in-depth look into the interplay of
CGP’s inner mechanisms, the convergence can be improved
even further. For instance, CGP relies solely on the mutation
operator. The mutation operator decomposes functionally into
the self-recombination, node function mutation, and inac-
tive gene randomization operators. The first two operators
operate only on genes that contribute to the coding of a
CGP phenotype. The inactive gene randomization operator
exclusively touches genes that are not used for the genotype-
to-phenotype mapping. The self-recombination and inactive
gene randomization operators are linked together by CGP’s
optimization algorithm. Traditionally, CGP uses a variant of

the (1 + 4) Evolutionary Strategy (ES) that prefers off-spring
individuals over parents of the same fitness. The consequence
of the selection preference is that inactive genes that have been
touched by the randomization operator do not contribute to a
change of the fitness and therefore propagate always to the
next generation. This circumstance allows a steady influx of
random genetic material, and we assume that it supports the
self-recombination operator to explore close and distant parts
of the search space, i.e., increase its search horizon.

The search horizon of the self-recombination operator can
also be improved using another inner mechanism of CGP.
Goldman and Punch showed that active genes are distributed
unevenly in a single-line CGP model [15]. The probability
to be used for the encoding of a phenotype rises for genes
located close to the beginning of a genotype. However, the
effectiveness of the self-recombination operator depends on
the amount of genetic and random genetic material accessible
to it. Distributing the probability of active gene locations more
evenly throughout the genotype by setting the levels back
parameter to some fraction of the genotype length improves
self-recombination’s effectiveness.

The role of node function mutation and its relation to
the self-recombination operator has not been investigated yet.
This also has been the major motivation for our work. Our
experiments show that node function mutation contributes to
the successful evolution of goal functions but that the self-
recombination contributes to a greater extent. Switching off
node function mutation can, therefore, improve the conver-
gence rates of CGP.

This paper is divided into six Sections. After the Intro-
duction, Section II surveys related work for our experiments.
Section III introduces Cartesian Genetic Programming. We
discuss the motivation and methodology for our experiments
in Section IV. The experiments are presented and discussed
in Section V. Section VI concludes our work.

II. RELATED WORK

Many works and contributions in the field of CGP primar-
ily head for extending and improving CGP by novel ideas
such as biogeography-based optimization [16], introduction
of recurrent wires [17], and the evolution of differentiation
systems [18]. Recently, Miller [19] published a survey on the
status of CGP and reflected the many extensions that have been

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

introduced to CGP in recent years. However, his article surveys
only a few works, which address the understanding of the inner
mechanisms of standard CGP and its mutation operator. The
work of Turner and Miller [20] takes a deeper look into the
various “neutrality” effects in CGP. The authors investigate the
effects of “algorithmic neutrality”, i.e., preferring off-spring
individuals over parents of same fitness and “neutral genetic
drift” in inactive genotype regions. They also take a look into
scaling up CGP’s genotype sizes in search of the right balance
between search space sizes and convergence speeds.

Closer to our work are the results of Kaufmann and
Kalkreuth [14], [13]. Using an automatic parameter tuner [21],
the authors tested and evaluated different grid and (µ + λ)
configurations of CGP and made comparisons to Simulated
Annealing (SA). The outcome of their study is that for
regression benchmarks, large µ’s and huge λ’s as well as
for combinational benchmarks SA perform best. The use of
an automatic parameter tuner limits, however, the scope of
Kaufmann and Kalkreuth’s study. It becomes more challenging
to derive general dependencies of CGP’s parameters from
these experiments. This work follows a different approach –
the experiments test as many relevant parameter combinations
as possible to find relationships between them.

The contribution which can bee seen as closest to our work
are the findings of Goldman and Punch [15], [11], [12]. In
their work, the authors have defined a parameter-free mutation
procedure, called “single-mutation”, that we utilize for our
experiments. The mutation procedure implements a loop that
picks a gene randomly and mutates it by flipping the respective
value in the legal range. Setting the maximal loop count to
one would correspond to the conventional mutation operator
of CGP. Single-mutation’s loop, however, stops after hitting
an active gene for the first time. The rationale behind this
mutation procedure is that the functional quality needs an
evaluation only if the encoded phenotype changes.

Another result of Goldman and Punch is the analysis of
the distribution of active genes within the genotype of a
CGP individual. When not restricting CGP’s wire length, the
probability for genes being active is higher if located at the
beginning of the genotype. A cluster of active genes at the
beginning of a genotype results in a representational bias
towards smaller phenotypes. Evolution of functions with larger
topologies is hampered by this property [15]. Goldman and
Punch also conjectured that the steady injection of random
genes into the inactive genotype regions may be beneficial for
CGP. In this work, we validate this hypothesis experimentally.

Compared to the number of works that introduce manifold
novel ideas for CGP, we feel that only a minority aims to
achieve a more fundamental understanding of CGP. This has
been the major motivation for our work. The contributions
of our work to the understanding of CGP are, on the one
hand, more clarity about the parametrization of two significant
parameters of CGP. This is in line with the work of Kaufmann
and Kalkreuth, however, in a more systematic manner. We
also follow up the work of Goldman and Punch on the single-
mutation operator with further experiments on the decompo-

f2
1
0

f0
1
2

f1
3
4

f3
2
2

1 0 2 1 2 0 3 4 1 2 2 3 5 4

ni no

nc

nr

5

4

fi
AND
NAND
OR
NOR

1

3
2

0

primary
inputs

primary
outputs

inner
nodes

0

1

2

3

4

5

6

7

8

Fig. 1: Cartesian Genetic Program (top) and its encoding
(bottom). All nodes contributing to primary outputs are called
“active” and all other nodes “inactive”. For example, node 6
is an inactive node.

sition of CGP’s mutation operator.

III. CARTESIAN GENETIC PROGRAMMING

This section introduces the representation model, the evo-
lutionary operator, and the optimization procedure of CGP.

A. The Representation Model

Cartesian Genetic Programming is a representation model
that encodes the goal function as a directed acyclic graph
(DAG) [22]. An exemplification of the encoding is illustrated
in Fig. 1. The graph nodes are arranged as a nc × nr grid
and are connected by feed-forward wires (c.f. top of Fig. 1).
Inputs to the graph are sourced in by ni primary inputs, and
the graph’s outputs are fed into no primary output nodes. All
nodes are enumerated column-wise and from left to right. A
wire can be restricted to span at most l columns. Each node
may have up to na ingoing wires and computes a single output.
The lengths of wires connecting primary outputs with inner
nodes and inner nodes with primary inputs are restricted by
the levels back parameter l. Usually, l is set to span the entire
genotype (l =∞). Each node may implement a function from
the functional set.

The graph in CGP is encoded by a linear list of integers, as
shown at the bottom of Fig. 1. The first na+1 integers encode
the na input wires (connection genes) and the function gene
of the upper left node of the grid. In Fig. 1, the upper left
node with the index 3 connects to the primary inputs 1 and 0
and computes the function f2 = OR. The encoding of node
three is, therefore “1 0 2”. The next na+1 integers encode the
configuration of node four and so on. The encoding scheme
proceeds column-by-column and from left to right until all
inner nodes are specified. The no primary outputs are encoded
by no connection genes. For example, the first primary output
in Fig. 1 with the index 7 connects to node five and is therefore
coded as “5” in the genotype.

The genotype size of CGP is fixed and amounts for
nrnc(na+1)+no genes. However, not all genes are lying on
paths that are contributing to primary outputs. For instance,
the output of node 6 in Fig. 1 is not connected directly or

transitively to a primary output. Such nodes and their genes are
called “inactive” because they are not required to implement
the phenotype. All other nodes and genes are called “active”.

The size of CGP’s genotype can be reduced, and in conse-
quence, the convergence improved, by setting the number of
rows to nr = 1. Related work almost exclusively uses this
“single-line” CGP model.

B. The Mutation Operator

CGP relies mostly on the mutation operator [22]. The
operator works on the linear list of genes. Given the mutation
rate and the length of the genotype, the operator computes
how many genes have to be mutated. These genes are then
selected randomly. A function gene is mutated by choosing a
function from a set of valid functions randomly. A connection
gene is mutated by randomly rewiring it to a preceding node
within the range given by the levels back parameter.

C. The Optimization Algorithm

CGP is traditionally optimized by an (1+λ) Evolutionary
Algorithm (EA). The selection scheme is implemented such
that off-spring individuals that are as fit or better as the parent
are preferred when selecting the new parent for the next
generation. In [7] it has been shown by Miller that Kozas’s
Computational Effort (CE) [23] becomes minimal for µ = 1
and λ = 4 [10]. Since then, the (1 + 4) EA has been used
predominantly by works employing CGP.

The characteristic property of CGP’s (1 + λ) selection
scheme is that those off-spring individuals with changes only
in inactive genes have identical fitness as the current parent and
are preferred when choosing the parent for the next generation.
As λ is usually set to a small number (i.e., four), CGP’s EA
is executed for thousands to millions of generations. Because
only in very few generations, relative to the overall number,
fitness can be improved, in a lot of remaining generations
random changes of inactive genes are propagated to the next
generation. The combination of CGP’s selection scheme with
the mutation of inactive genes creates a randomization operator
that forces a steady influx of random genetic material into
CGP’s genotypes. This, as we will show later, can help to
improve the convergence of CGP.

IV. PRELIMINARIES

This section describes the motivation and the methodology
for the experiments done in this work.

A. Parametrization of CGP’s selection scheme

In related work, CGP is often configured according to
the findings of Turner and Miller [10]. This includes setting
the number of rows to nr = 1, configuring the levels
back parameter as l = nc, and using the (1 + 4) selection
scheme. Later work by Goldman and Punch [12] introduced
the parameter-free single-mutation operator and showed that
it is often more efficient than the original mutation algorithm.
The idea behind single-mutation is to repeatedly mutate genes
until an active gene has been changed for the first time. This

helps avoiding redundant evaluation of candidate solutions
that encode the same phenotype as their parent. Since the
introduction of single-mutation, more and more works resorted
to the new operator. There has been done, however, no study on
how single-mutation interacts with other parameters of CGP.
Previous work by Kaufmann and Kalkreuth [14], [13] showed
that the effectiveness of the traditional (1+4)-CGP couldn’t be
generalized. Because Kaufmann and Kalkreuth have used an
automated parameter tuner, identification of general parameter
dependencies is limited in their study.

In our first experiment, we extend the work of Kaufmann
and Kalkreuth by a grid search on µ and λ for a better
understanding of the interplay between of parameters and their
impact on CGP when using “single-mutation”. Those values
for µ and λ that generalize best are then selected for the
subsequent experiment to configure CGP’s EA.

B. Decomposition of CGP’s Mutation Operator

The original mutation operator of CGP works at the geno-
type level, which is defined as a sequence of integers (cf.
Sec. III). This is different to traditional GP, where evolutionary
operators act on the graph of a candidate solution. Depending
on the effects an operator may induce in a GP graph, one
can differentiate between, for instance, recombination and a
subtree mutation operators. In this work, we argue that CGP’s
mutation operator can be configured better when isolating the
different effects it has in a CGP graph and parametrizing these
components independently, as it is done in GP.

We propose the decomposition of CGP’s mutation operator
into three different components. The mutation of function
genes of active nodes can be seen as the node function
mutation operator. The mutation of connection genes of active
nodes is from the graph topology perspective very similar
to GP’s recombination applied on two identical individuals.
We define, therefore, the mutation of active connection genes
as the self-recombination operator. Finally, the mutation of
inactive genes can be seen as a randomization operation,
because CGP’s selection scheme emphasizes off-spring indi-
viduals with mutated inactive genes over the parent with the
same fitness. Mutated inactive genes experience, therefore, no
evolutionary selection pressure and may proceed to the next
generations as well as accumulate in a genotype over time.

The focus of the second experiment is to gain insight
to which degree the respective components of the mutation
operator contribute to the search performance of CGP.

C. Parametrization of CGP’s Levels Back Parameter

Goldman and Punch have observed that the distribution of
active genes is uneven in CGP and that active genes tend
to locate more likely towards the beginning of a genotype.
The consequence of an unequal active gene distribution are
shrinking genotype regions of inactive, i.e., randomized genes
between active genes. A smaller amount of randomized genetic
material hampers the effectiveness of, for instance, the self-
recombination operator. A more even distribution of active
genes among the genotype would induce more significant

TABLE I: List of benchmarks and CGP parameters according
to [10], if not otherwise stated.

Parameter Value
nr 1
nc, Boolean benchmarks 100
nc, symb. regression bench. 10
na 2
F , Boolean benchmarks AND, NAND, OR, NOR
F , symb. regression bench. +, -, *, /, sin, cos, ex, ln(|x|)
l ∞
no. generations, 10.000.000
mut. rate, symb. regression 20%
no. repetitions per benchmark 100
µ, λ, Boolean benchmarks {1, 2, 4, 8, 16, 32}
µ, λ, symb. regression bench. {1, 2, 4, 8, 16, 32, 64, 128}
Boolean benchmarks add2...add4, mult2, mult3, epar4...epar8,

mux6, mux11, 4cmp
symb. regression bench. Koza-1...Koza-3, Nguyen-4...Nguyen-6

TABLE II: List of symbolic regression benchmarks.

Benchmark Objective Function Vars Training Set
Koza-1 x4 + x3 + x2 + x 1 U[-1,1,20]
Koza-2 x5 − 2x3 + x 1 U[-1,1,20]
Koza-3 x6 − 2x4 + x2 1 U[-1,1,20]
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[-1,1,20]
Nguyen-5 sin(x2) cos(x)− 1 1 U[-1,1,20]
Nguyen-6 sin(x) + sin(x+ x2) 1 U[-1,1,20]

regions of randomized genes between active genes and fa-
cilitate the self-recombination operator. There is already a
built-in mechanism of CGP that can be used to enforce a
better distribution of active genes: the levels back parameter
l. Setting l to a fraction of the genotype length nc would
pull active genes apart and let self-recombination explore the
search space more freely.

The goal of the third experiment is to investigate, whether
the standard way of configuring l = nc is appropriate and if
smaller values for l would result in better convergence.

V. EXPERIMENTS

This section starts with the search for the best µ and
λ parameters for CGP’s selection scheme. Using µ and λ
that generalize best, CGP’s original mutation operator is then
decomposed, and the impacts of its principal components
(node function mutation, self-recombination, and randomiza-
tion operators) are measured. Finally, the behavior of the levels
back parameter is investigated. The section starts with the
description of the experimental setup.

A. Setup

We have configured the experiments according to original
findings of Miller [10] and to be consistent with related work
(cf. Tab. I and Tab. II). The benchmarks subdivide into Boolean
and symbolic regression functions. We have selected popular
benchmarks to make the results of this paper comparable to
the findings of other authors.

The Boolean benchmarks include the n-adder (2n+1 inputs,
n+1 outputs), n-multiplier (2n inputs, 2n outputs), n-even-
parity (n inputs, 1 output), 6-multiplexer (2+4 inputs, 1 out-
put), 11-multiplexer (3+8 inputs, 1 output), and 4-comparator

TABLE III: Which (µ + λ) is best? Configuration and the
median number of fitness evaluations of the best and the
(1+ 4) selection schemes. For all Boolean benchmarks, there
is a significant difference under the Mann-Whitney U test at
α = 0.05 between the two best and all remaining (µ + λ)
configurations. The best (µ+λ) configurations are (1+1) and
(1+2). There is no significant difference between them, except
for epar5. For all symbolic regression benchmarks, there is
no significant difference under the Mann-Whitney U test at
α = 0.05 between the best and the (1+4) selection schemes.

best conf. (1+4) diff.
add2 36.824 (1 + 2) 45.970 24,8%
add3 209.184 (1 + 1) 257.078 22,9%
add4 848.098 (1 + 1) 1.009.954 19,1%
mult2 5.074 (1 + 1) 7.366 45,2%
mult3 773.675 (1 + 1) 836.214 8,1%
epar4 8.276 (1 + 1) 10.426 26,0%
epar5 30.517 (1 + 1) 38.810 27,2%
epar6 103.163 (1 + 1) 141.462 37,1%
epar7 319.846 (1 + 2) 391.850 22,5%
epar8 861.860 (1 + 1) 1.051.970 22,1%
mux6 5.150 (1 + 2) 6.490 26,0%
mux11 135.669 (1 + 1) 164.610 21,3%
4cmp 44.079 (1 + 1) 54.066 22,7%
koza1 38.257 (128 + 8) 48.530 26,8%
koza2 150.138 (1 + 8) 171.094 13,9%
koza2 131.395 (1 + 1) 140.434 6,8%
nguyen4 2.343.344 (128 + 1) 7.965.366 239,9%
nguyen5 2.384.210 (1 + 8) 2.444.646 2,5%
nguyen6 389.434 (1 + 1) 573.234 47,2%

(4 inputs, 18 outputs) circuits. The last benchmark computes
for all 2-bit input tuples the “<”, “==”, and “>” relations. The
evolution of a Boolean circuit is considered as completed if
CGP can evolve a correct solution. Otherwise,∞ is logged as
the required number of fitness evaluations of the current CGP
run.

Symbolic regression benchmarks have been selected and
configured according to [24]. The functions are shown in
Tab. II. A training data set U[a, b, c] in Tab. II refers to c
uniform random samples drawn from [a, b]. The cost function
is defined by the sum of the absolute differences between the
real function values and the values of an evaluated individual.
When the cost function computes a value lower than 0.01, the
algorithm is classified as converged.

The benchmarks are compared using the median number
of fitness evaluations and Koza’s Computational Effort metric
at z = 99% [23]. To classify the significance of our results,
we use the Mann-Whitney U test at the significance level of
1− α = 95%.

B. Finding a Good (µ+ λ) Selection Scheme

Tab. III and IV summarize results of the grid search exper-
iments. The tables compare the best and the (1 + 4) selection
schemes regarding the median number of fitness evaluations
and CE.

The general trend for Boolean benchmarks is that if a
selection scheme is configured with small µ’s and λ’s, it tends
to perform better. The conventional (1+4) selection scheme is
always inferior to the (1+1) and the (1+2) selection schemes,

TABLE IV: Which (µ + λ) is best? Configuration and the
Computational Effort at z = 99% of the best and the (1 + 4)
selection schemes.

best conf. (1+4) diff.
add2 193.305 (1 + 1) 235.083 21,6%
add3 978.322 (1 + 1) 1.195.924 22,2%
add4 4.058.649 (1 + 1) 5.105.176 25,8%
mult2 30.596 (1 + 1) 44.094 44,1%
mult3 2.751.027 (1 + 1) 3.094.606 12,5%
epar4 39.617 (1 + 1) 50.893 28,5%
epar5 152.206 (1 + 1) 184.074 20,9%
epar6 527.471 (1 + 1) 635.396 20,5%
epar7 1.416.719 (1 + 2) 1.883.893 33,0%
epar8 4.413.641 (1 + 2) 5.661.376 28,3%
mux6 24.661 (1 + 1) 31.130 26,2%
mux11 466.200 (1 + 1) 594.617 27,5%
4cmp 109.395 (1 + 1) 157.653 44,1%
koza1 112.357 (1 + 1) 124.704 11,0%
koza2 464.443 (1 + 4) 464.443 0,0%
koza2 620.968 (1 + 1) 716.012 15,3%
nguyen4 1.845.381 (1 + 1) 2.796.467 51,5%
nguyen5 10.903.192 (1 + 16) 15.135.145 38,8%
nguyen6 647.106 (1 + 2) 828.551 28,0%

which in return perform best among all configurations, regard-
ing the median number of fitness evaluations (8%-45%) and
CE (20%-44%). The difference between the two best selection
schemes and (1+4) is also always statistically significant. The
(1 + 1) selection strategy generalizes best among all Boolean
benchmarks and will be used in the remaining experiments of
this paper.

In preliminary experiments, we have tested whether Gold-
man and Punch’s single-mutation outperforms CGP’s original
mutation operator. While this is always the case for Boolean
benchmarks, it has also been observed by other authors [12].
For symbolic regression benchmarks single-mutation under-
performs. We, therefore, rely on CGP’s original mutation op-
erator with a mutation rate of 20% for the symbolic regression
benchmarks.

For symbolic regression benchmarks, the (1 + 4) selection
scheme is inferior to the best selection strategy except for the
CE of the Koza-2 benchmark. We could observe, however,
no statistically significant difference between (1 + 4) the best
configurations, except for Nguyen-6. The search for a well-
generalizable selection scheme configuration is more difficult
in this case. There is no clear trend as being observed in
the Boolean experiments. For Koza-2, Koza-3, Nguyen-5,
and Nguyen-6, µ = 1 results in good performances. For
Koza-1 and Nguyen-4, µ = 1, 2, 64, 128 performs best. After
an analysis of which configuration is as close to the best
configuration as possible over all benchmarks, we identified
the (1+1) selection scheme as the best candidate. Except for
the Nguyen-4 benchmark, where (1 + 1) excel for the CE,
(1 + 1) is also statistically not significantly different from the
best configuration. We, therefore, configure CGP’s selection
strategy as (128+ 1) for the Nguyen-4 and as (1 + 1) for the
remaining symbolic regression benchmarks for the rest of this
paper.

C. Investigating Success Rates of CGP’s Evolutionary Oper-
ators

 0

 20

 40

 60

 80

 100

40 45 50 55 60 65 70 75 80 85 90 95

pe
rc

en
ta

ge
 o

f
su

cc
es

sf
ul

 m
ut

at
io

ns

fitness

function genes connection genes primary output genes

 0

 20

 40

 60

 80

 100

121 147 173 199 225 251 277 303 329 355 381

pe
rc

en
ta

ge
 o

f
su

cc
es

sf
ul

 m
ut

at
io

ns

fitness

function genes connection genes primary output genes

Fig. 2: Which mutation type leads to most fitness improve-
ments? The diagrams plot for the 2-adder (top) and 3-
multiplier (bottom) benchmarks the relative fitness improve-
ment rates (y-axes) at different fitness levels (x-axis) for the
mutation of node functions, the incoming wires of inner nodes,
and the incoming wires of primary outputs. The illustrated be-
havior can be observed in slight variations for all benchmarks.

When decomposing CGP’s original mutation into node
function, self-recombination, and randomization operators, one
of the first questions is to what extent do these operators
contribute to the convergence of CGP. In the first experiment,
we log for CGP’s original mutation operator, if a mutation of
a function or a connection gene results in improvements of
the goal function. Fig. 2 shows for 2-adder and 3-multiplier
benchmarks and for the different fitness levels, the relative
fitness improvement rates for the mutation of function, and
connection genes. It can be observed that the functional quality
is improved predominantly by mutating the connection genes
of inner nodes and primary outputs. Very similar observations
can be made for all remaining benchmarks. Switching off
the mutation of connection genes stops the convergence of
CGP for Boolean and the symbolic regression benchmark
completely.

D. The Impact of the Node Function Mutation Operator

With the insight from Fig. 2, one of the next questions
is: If mutation of connection genes contributes more fre-
quently to the improvement of the goal function, would CGP’s
convergence improve further by switching off the mutation
of function genes? Tab. V and VI show the development
of the median number of fitness evaluations and the CE,
when switching off the mutation of function genes (“no node
function mutation” column). The left column (“mutation”)

of Tab. V and VI presents the reference performance of
CGP configured according to the findings in the previous
Section. Switching off the mutation of function genes improves
CGP’s median performance for Boolean and decreases CGP’s
median performance for symbolic regression benchmarks. The
CE follows the trend, although with a few small exceptions
(mux11, 4cmp, Koza-1, and Nguyen-4).

TABLE V: Comparison of median number of fitness eval-
uations when using single-mutation (Boolean benchmarks)
/ regular CGP mutation (symbolic regression benchmarks),
switching off the mutation of function genes (“no node
function mutation” column), randomization of inactive genes
(“rand. operator” column), and switching off function gene
mutation as well as switching on inactive gene randomization
(two rightmost columns).

rand.
no node rand. operator

mutation function diff. operator diff. +no node diff.
mutation function

mutation
add2 36.824 30.383 -17,49% 32.808 -10,91% 28.637 -22,23%
add3 209.184 189.930 -9,20% 189.834 -9,25% 169.400 -19,02%
add4 848.098 775.500 -8,56% 835.130 -1,53% 736.587 -13,15%
mult2 5.074 4.252 -16,20% 4.817 -5,07% 4.260 -16,04%
mult3 773.675 615.263 -20,48% 747.698 -3,36% 557.560 -27,93%
epar4 8.276 6.431 -22,29% 7.593 -8,25% 6.449 -22,08%
epar5 30.517 26.730 -12,41% 29.630 -2,91% 25.815 -15,41%
epar6 103.163 91.001 -11,79% 103.367 0,20% 84.402 -18,19%
epar7 319.846 284.569 -11,03% 288.625 -9,76% 293.132 -8,35%
epar8 861.860 761.476 -11,65% 828.991 -3,81% 715.667 -16,96%
mux6 5.150 3.771 -26,78% 4.737 -8,02% 3.699 -28,17%
mux11 135.669 113.440 -16,38% 125.387 -7,58% 105.657 -22,12%
4cmp 44.079 38.785 -12,01% 41.230 -6,46% 36.071 -18,17%
koza1 45.911 73.718 60,6% 31.033 -32,4% 68.302 48,8%
koza2 156.415 1.915.520 1124,6% 165.427 5,8% 1.538.417 883,5%
koza3 131.395 628.200 378,1% 187.617 42,8% 471.458 258,8%
nguyen4 2.343.344 4.756.925 103,0% 3.410.237 45,5% 3.207.054 36,9%
nguyen5 2.673.635 ∞ ∞ 3.107.270 16,2% ∞ ∞
nguyen6 389.434 4.331.564 1012,3% 369.065 -5,2% 3.252.557 735,2%

TABLE VI: Comparison of the CE when using single-mutation
(Boolean benchmarks) / regular CGP mutation (symbolic
regression benchmarks), switching off the mutation of function
genes (“no node function mutation” column), randomization
of inactive genes (“rand. operator” column), and switching off
function gene mutation as well as switching on inactive gene
randomization (two rightmost columns).

rand.
no node rand. operator

mutation function diff. operator diff. +no node diff.
mutation function

mutation
add2 193.305 155.999 -19,30% 148.319 -23,27% 146.688 -24,12%
add3 978.322 939.585 -3,96% 948.170 -3,08% 767.922 -21,51%
add4 4.058.649 3.512.000 -13,47% 4.297.296 5,88% 3.651.637 -10,03%
mult2 30.596 25.409 -16,95% 27.323 -10,70% 25.386 -17,03%
mult3 2.751.027 2.419.276 -12,06% 2.757.074 0,22% 1.922.387 -30,12%
epar4 39.617 32.421 -18,16% 33.737 -14,84% 30.665 -22,60%
epar5 152.206 117.219 -22,99% 122.577 -19,47% 96.551 -36,57%
epar6 527.471 430.443 -18,39% 482.472 -8,53% 435.160 -17,50%
epar7 1.416.719 1.327.559 -6,29% 1.169.705 -17,44% 1.356.460 -4,25%
epar8 4.413.641 3.852.772 -12,71% 4.085.368 -7,44% 3.733.203 -15,42%
mux6 24.661 17.871 -27,53% 23.866 -3,22% 15.479 -37,23%
mux11 466.200 481.671 3,32% 431.743 -7,39% 391.074 -16,11%
4cmp 109.395 117.333 7,26% 118.856 8,65% 110.355 0,88%
koza1 112.357 109.524 -2,5% 104.420 -7,1% 79.398 -29,3%
koza2 501.239 1.192.581 137,9% 467.027 -6,8% 1.651.625 229,5%
koza3 620.968 1.716.582 176,4% 632.260 1,8% 800.486 28,9%
nguyen4 4.485.606 4.323.409 -3,6% 4.406.429 -1,8% 4.699.820 4,8%
nguyen5 15.270.132 26.922.151 76,3% 16.740.551 9,6% 68.120.064 346,1%
nguyen6 722.230 1.862.043 157,8% 634.519 -12,1% 539.234 -25,3%

E. Randomization of Inactive Genes

The role of CGP’s randomization operator has been already
extensively studied in literature [20], [25], [26], [27], [28].

However, the works usually concentrate on figuring out what
happens if the mutation of inactive genes is switched off.
Given the results of Goldman and Punch regarding the uneven
distribution of active genes, higher mutation rate could facili-
tate the effectiveness of CGP’s self-recombination operator.

The randomization operator mutates all inactive genes in
an individual at the end of a generation. Redundant mutations
of already mutated genes can be avoided by mutating only
those genes that have experienced a transition from an active
to an inactive state, i.e., have been rendered by the evolutionary
process as not beneficial for the functional quality.

Tab. V and VI shows that indeed, randomizing inactive
genes improves CGP’s performance for most Boolean and
symbolic regression benchmarks regarding the CE as well as
for most Boolean benchmarks regarding the median number
of fitness evaluations. The improvements are, however, not
as pronounced as switching off the node function mutation
operator. The median number of fitness evaluations cannot
be improved for the 6-parity benchmark (0.2%), Koza-2
(5.8%), Koza-3 (42.8%), Nguyen-4 (45.5%), and Nguyen-
5 (16.2%). Regarding the CE metric, 4-adder (5.88%), 3-
multiplier (0.22%), 4-cmp (8.65%), Koza-3 (1.8%), and
Nguyen-5 (9.6%) benchmarks witness a degradation.

The last two columns of Tab. V and VI show the results
when skipping the node function mutation and enabling the
randomization operators. The cumulative results are often
superior to the improvements of principle operators for the
Boolean benchmarks. Only for the 7-parity benchmark, the
combined improvement regarding the median number of fit-
ness evaluations (-8.35%) lies below the improvement of
skipping the function gene mutations (-11.03%). Same holds
for CE and the 4-adder benchmark (-10.03% vs. -13.47%).
The combined improvements usually follow the improvements
when skipping mutation of function genes. Notable exceptions
are the CE for 3-multiplier, 5-parity, and the multiplexer
benchmarks, where the combined improvement is more than
10% better than the improvements of the principal operators.

For symbolic regression benchmarks, switching off node
function mutation is usually better than switching off node
function and switching on the randomization operators. Only
for the Koza-1 (-29.3%) and Nguyen-6 (-25.3%) benchmarks,
the CE can be improved in comparison to the CE of the
principal operators (Koza-1: -2.5% and -7.1%, Nguyen-6:
157.8% and -12.1%).

F. Exploring Levels Back Parameter

The question of this Section is: What are the excellent
regions for the levels back parameter l and will distributing
active genes more evenly in the genotype by setting l to a
fraction of nc improve self-recombination’s efficiency?

For Boolean benchmarks we are using the standard CGP
parameters showed in Tab. I, Goldman and Punch’s single-
mutation operator, no node function mutation operator, and
the randomization operator. We conduct experiments for every
l = 1, 2 . . . 100. The top line in Fig. 3 shows for the
adder benchmark the median number of fitness evaluations

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1x10
6

 0 10 20 30 40 50 60 70 80 90 100

add2

add3

add4

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1x10
6

 0 20 40 60 80 100 120 140 160 180 200

add2

add3

add4

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1x10
6

 0 50 100 150 200 250 300

add2

add3

add4

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1x10
6

 0 50 100 150 200 250 300 350 400 450 500

add2

add3

add4

Fig. 3: Which levels back parameter is best? Increasing l =
1, 2 . . . nc (x-axis) for nc = 100, 200, 300, 500 for the adder
benchmarks. y-axis encodes the median number of fitness
evaluations. Similar behavior can be observed for all Boolean
benchmarks that are investigated in this paper.

for solving the goal function. The first observation is that
for small goal functions such as the 2-adder, the reduction
of l has no substantial effect. With the increasing complexity
of the goal function, however, reducing l to 25 to 40 will
improve CGP’s converges dramatically. Setting l to a fraction
of nc shows that a more even distribution of active genes
helps to improve the effectiveness of CGP’s self-recombination
operator. This behavior can be observed for all Boolean
benchmarks investigated in this paper.

Another question is: Is there a relation between the genotype
length nc and the levels back parameter l? Repeating the
experiments of the previous paragraph for nc = 200, 300, 500
and l = 1, 2, . . . nc shows in the second to fourth rows of

 0

 200000

 400000

 600000

 800000

 1x10
6

 1 2 3 4 5 6 7 8 9 10

Nguyen6

 0

 200000

 400000

 600000

 800000

 1x10
6

 2 4 6 8 10 12 14 16 18 20

Nguyen6

 0

 200000

 400000

 600000

 800000

 1x10
6

 5 10 15 20 25 30

Nguyen6

 0

 200000

 400000

 600000

 800000

 1x10
6

 5 10 15 20 25 30 35 40 45 50

Nguyen6

 0

 200000

 400000

 600000

 800000

 1x10
6

 10 20 30 40 50 60 70 80 90 100

Nguyen6

Fig. 4: Which levels back parameter is best? Increasing l =
10, 20, 30, 50 for the Nguyen6 benchmark.

Fig. 3, how with rising nc the sensitivity for a properly
selected levels back parameter drops. This means that the
self-recombination operator becomes effective for larger nc’s
despite the clustered active genes at the beginning of the
genotype as a consequence of l → nc. All other Boolean
benchmarks exhibit similar behavior. The conclusion of the
development of the convergence rate for nc = 100 → 500
is that given a sufficiently long CGP genotype, there are
enough random genes even between clustered active genes at

the beginning of a genotype to render the self-recombination
operator effective.

The effects of scaling l and nc for the Nguyen-6 benchmark
can be seen in Fig. 4. Remaining symbolic regression bench-
marks behave similarly. The first observation is that rising
genotype lengths nc may improve CGP’s convergence, but
not to the extent as it happened for Boolean benchmarks.
Interestingly, CGP’s efficiency drops for smaller l values with
rising nc. Setting l close to nc is, therefore, more critical for
symbolic regression benchmarks.

VI. CONCLUSION

This work investigates the question, whether CGP’s per-
formance can be improved by taking recent developments of
Goldman and Punch [15] and Kaufman and Kalkreuth [14]
into account. We show that the single-mutation operator
can have a pronounced impact on CGP’s selection scheme.
Boolean functions can be evolved significantly faster when
utilizing the (1 + 1) EA. Decomposing CGP’s mutation op-
erator into node function, self-recombination, and randomiza-
tion operators and enabling the most efficient of them, the
randomization and self-recombination operators, can further
increase CGP’s convergence. This shows that for Boolean
benchmarks random search is one of the major mechanisms
of CGP. The performance of CGP for symbolic regression
benchmarks, however, cannot be improved consistently with
these measures.

Common to both benchmarks is that more extensive geno-
type lengths nc in the single-line CGP model allow for faster
convergences and that CGP is more sensitive to decreasing
values of the levels back parameter l.

REFERENCES

[1] R. Forsyth, “Beagle a darwian approach to pattern recognition,”
Kybernetes, vol. 10, no. 3, pp. 159–166, 1981.

[2] N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” in Proceedings of the 1st International Conference
on Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.,
1985, pp. 183–187.

[3] J. Hicklin, “Application of the genetic algorithm to automatic program
generation,” Master’s thesis, 1986.

[4] J. Koza, “Genetic Programming: A paradigm for genetically breeding
populations of computer programs to solve problems,” Dept. of Com-
puter Science, Stanford University, Technical Report STAN-CS-90-1314,
Jun. 1990.

[5] J. F. Miller, P. Thomson, T. Fogarty, and I. Ntroduction, “Designing
Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits:
A Case Study,” 1997.

[6] P. Kaufmann, K. Glette, T. Gruber, M. Platzner, J. Torresen, and B. Sick,
“Classification of Electromyographic Signals: Comparing Evolvable
Hardware to Conventional Classifiers,” IEEE Trans. Evolutionary Com-
putation, vol. 17, no. 1, pp. 46–63, 2013.

[7] Z. Vası́cek and L. Sekanina, “Evolutionary Design of Complex
Approximate Combinational Circuits,” Genetic Programming and
Evolvable Machines, vol. 17, no. 2, pp. 169–192, 2016. [Online].
Available: http://dx.doi.org/10.1007/s10710-015-9257-1

[8] L. Sekanina, “Image Filter Design with Evolvable Hardware,” in Pro-
ceedings of the Applications of Evolutionary Computing on EvoWork-
shops 2002. London, UK, UK: Springer-Verlag, 2002, pp. 255–266.

[9] M. M. Khan, G. M. Khan, and J. F. Miller, “Evolution of neural
networks using cartesian genetic programming,” in IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2010, pp. 1–8.

[10] J. F. Miller, “An Empirical Study of the Efficiency of Learning
Boolean Functions Using a Cartesian Genetic Programming Approach,”
in Genetic and Evolutionary Computation (GECCO), vol. 2. Morgan
Kaufmann, 1999, pp. 1135–1142.

[11] B. W. Goldman and W. F. Punch, “Length bias and search limitations
in cartesian genetic programming,” in Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’13.
ACM, 2013, pp. 933–940.

[12] ——, “Reducing wasted evaluations in cartesian genetic programming,”
in Genetic Programming. Springer Berlin Heidelberg, 2013, pp. 61–72.

[13] P. Kaufmann and R. Kalkreuth, “Parametrizing Cartesian Genetic Pro-
gramming: An Empirical Study,” in KI 2017: Advances in Artificial
Intelligence: 40th Annual German Conference on AI. Springer Inter-
national Publishing, 2017.

[14] ——, “An Empirical Study on the Parametrization of Cartesian Genetic
Programming,” in Genetic and Evolutionary Computation (GECCO).
(Compendium). ACM, 2017.

[15] B. W. Goldman and W. F. Punch, “Analysis of cartesian genetic program-
ming’s evolutionary mechanisms,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 3, pp. 359–373, 2015.

[16] S. Yazdani and J. Shanbehzadeh, “Balanced cartesian genetic pro-
gramming via migration and opposition-based learning: Application to
symbolic regression,” Genetic Programming and Evolvable Machines,
vol. 16, no. 2, pp. 133–150, 2015.

[17] A. J. Turner and J. F. Miller, “Recurrent Cartesian Genetic Program-
ming,” in International Conference on Parallel Problem Solving from
Nature (PPSN). Springer International Publishing, 2014, pp. 476–486.

[18] D. Izzo, F. Biscani, and A. Mereta, “Differentiable genetic program-
ming,” Arxiv Preprint arxiv:1611.04766, 2016.

[19] J. F. Miller, “Cartesian genetic programming: its status and future,”
Genetic Programming and Evolvable Machines, pp. 1 – 40, 2019.

[20] A. J. Turner and J. F. Miller, “Neutral genetic drift: an investigation
using cartesian genetic programming,” Genetic Programming and
Evolvable Machines, vol. 16, no. 4, pp. 531–558, 2015. [Online].
Available: https://doi.org/10.1007/s10710-015-9244-6

[21] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43 – 58,
2016.

[22] J. Miller and P. Thomson, “Cartesian Genetic Programming,” in Euro-
pean Conf. on Genetic Programming (EuroGP). Springer, 2000, pp.
121–132.

[23] J. R. Koza, “Evolving a Computer Program to Generate Random
Numbers Using the Genetic Programming Paradigm,” in Proc. Intl. Conf.
on Genetic Algorithms. Morgan Kaufmann, 1991, pp. 37–44.

[24] J. McDermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper,
K. De Jong, and U.-M. O’Reilly, “Genetic Programming Needs
Better Benchmarks,” in Genetic and Evolutionary Computation
(GECCO). ACM, 2012, pp. 791–798. [Online]. Available:
http://doi.acm.org/10.1145/2330163.2330273

[25] R. M. Downing, “On Population Size and Neutrality:
Facilitating the Evolution of Evolvability,” in EuroGP. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 181–192. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1763756.1763774

[26] T. Yu and J. F. Miller, “Through the interaction of neutral and adaptive
mutations, evolutionary search finds a way,” Artificial Life, vol. 12, no. 4,
pp. 525–551, 2006.

[27] T. Yu and J. Miller, “Neutrality and the Evolvability of Boolean Function
Landscape,” in European Conf. on Genetic Programming (EuroGP), ser.
LNCS, vol. 2038. Springer, 2001, pp. 204–217.

[28] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutrality
in digital circuit evolution,” in ICES, ser. LNCS, vol. 1801. Springer,
2000, pp. 252–263.

