
Eigenvector Crossover in jDE100 Algorithm

Petr Bujok

Department of Informatics and Computers

Faculty of Science, University of Ostrava

30. dubna 22, 70200 Ostrava, Czech Republic

petr.bujok@osu.cz

Patrik Kolenovsky

Department of Informatics and Computers

Faculty of Science, University of Ostrava

30. dubna 22, 70200 Ostrava, Czech Republic

p19091@student.osu.cz

Vladimir Janisch

Department of Informatics and Computers

Faculty of Science, University of Ostrava

30. dubna 22, 70200 Ostrava, Czech Republic

p19031@student.osu.cz

Abstract—In this paper, an advanced variant of the efficient
jDE100 variant is proposed. The introduced jDE100e employs
an efficient rotationally-invariant Eigenvector crossover. Both
algorithms are applied on 10 test problems for a single-objective
optimisation CEC 2020 with four dimension levels. The results
show that the proposed jDE100e is able to solve some of the
problems successfully. A comparison of the proposed jDE100e
with the original jDE100 illustrates the superiority of the newly
designed algorithm as jDE100e performs significantly better in
16 out of 40 problems, and jDE100 is not able to outperform
jDE100e significantly.

Index Terms—Differential evolution, jDE100, Eigenvector
crossover, experiments, test problems

I. INTRODUCTION

Global optimisation is an evolving and widely applied

research area. A single-objective real-parameter problem of

global optimisation is typically limited by bound constraints

and it is defined as follows. For the objective function,

f(x), x = (x1, x2, . . . , xD) ∈ R
D and the bounded search

area Ω =
∏D

j=1
[aj , bj], aj < bj , j = 1, 2, . . . , D, the

global minimum (maximum) is such a point x∗, which satisfies

condition f(x∗) ≤ f(x), ∀x ∈ Ω is the solution of the

problem.

There are many approaches to solve global optimisation

problems, for instance, methods inspired by evolution of

species are very popular. These methods are called Evo-

lutionary algorithms (EA) and achieve good efficiency and

applicability. One of the main reasons of good results provided

by the EA algorithms is development of a population of

possible solutions using stochastic and heuristic operations.

One of the most often developed and applied EA is called

Differential evolution (DE). The DE algorithm is very simple

because it uses only a small number of operations and control

parameters, but it provides very good accuracy and efficiency

when solving optimisation tasks from various areas [1]–[3].

In this paper, an enhanced variant of the adaptive DE algo-

rithm is proposed. The best performing optimisation technique

assessed at the last Congress on Evolutionary Computation

(CEC 2019 [4]) was jDE100 [5]. Although the jDE100 al-

gorithm uses only one mutation strategy and one crossover

variant, it achieved the best results in all ten problems. The

results and use of a simple crossover variant were the main

motivation to design an enhanced version of jDE100 using

covariance-based crossover type [6].

The rest of the paper is organised as follows. The basic

idea of the Differential evolution algorithm is in Section II.

An efficient jDE100 variant and Eigenvector crossover are

briefly described in Section III and IV. The main idea of the

proposed variant of the jDE100 algorithms is in Section V.

Experimental settings and results are discussed in Section VI

and VII. Finally, Section VII contains some concluding points

on the proposed method.

II. DIFFERENTIAL EVOLUTION

In 1996, Storn and Price proposed a simple and efficient

optimisation algorithm called Differential Evolution (DE) [7].

The main advantages of the DE algorithm are its simplicity

and good efficiency. The main steps of the DE algorithm are

depicted in a pseudo-code of Algorithm 1.

Algorithm 1 Differential evolution algorithm

initialise population P = {x1,x2, . . . ,xN}
while stopping condition not reached do

for i = 1, 2, . . . , N do

create a new trial vector yi

if f(yi) ≤ f(xi) then

insert yi into Q
else

insert xi into Q
end if

end for

P ← Q
end while

At first, population of N individuals (potential solutions) is

randomly generated in the search area and evaluated by the

objective function f . Then, the development of the population

is repeated until the stopping condition is satisfied. The

individuals of the population are developed by evolutionary

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

operators - mutation, crossover, and selection. A new point

(offspring) yi is generated from the parent point xi as follows.

A mutated point vi is computed from the parent individual

using mutation. The most popular mutation variant used in DE

is called rand/1 (1), where r1, r2, r3 are randomly selected,

but mutually distinct indices from [1, N], different from i,
and F ∈ (0, 2] is a scale factor.

v = xr1 + F · (xr2 − xr3) (1)

After mutation, elements of the parent vector xi and

mutated vector vi are combined to a new trial point - yi.

This operation is called crossover and the most popular is

binomial crossover (2), which is controlled by crossover ratio

CR ∈ (0, 1).

yi,j =

vi,j , if randj(0, 1) ≤ CR or j = randj(1, D)

xi,j , otherwise.

(2)

A newly generated individual yi is evaluated by an objective

function and it is inserted into an auxiliary population Q if it

is better than the parent individual xi, i.e. f(yi) ≤ f(xi).
Otherwise, the old solution is copied into the auxiliary popu-

lation Q. At the end of generation, the auxiliary population Q
replaces the old population P . The last operation is known as

selection, and such a simple variant of DE is called standard

or canonical DE.

The efficiency of the standard DE is worse when solving

complex optimisation problems, or large scale problems with

high dimension D. The problem is in fixed values of control

parameters - N,CR, F . This results in adaptation of the control

parameters values in DE to cope with various optimisation

problems. In more than two decades of DE, many adaptive

variants of this algorithm have been proposed and successfully

applied to real problems [1]–[3].

III. ADAPTIVE DE VARIANT - JDE100

One of very efficient and recently proposed adaptive DE

variants is called jDE100 [5]. This method was introduced by

Brest et al. in 2019, when jDE100 was the best performing

optimisation algorithm in the CEC 2019 competition for

single-objective optimisation problems.

In contrast to standard DE, the jDE100 algorithm employs

several advanced approaches. The main steps of the jDE100

algorithm are in the pseudo-code of Algorithm 2. At first,

independent populations - a big population Pb of size Nb and

small population Ps of size Ns - are randomly initialised and

evaluated. In addition, the control parameters of mutation and

crossover are initialised, F = 0.5 and CR = 0.9 for each point

in both populations. After initialisation, development of both

populations is performed until the stopping condition. Before

evaluation of populations, the conditions for reinitialisation of

populations are checked. The big population Pb is reinitialised

(all individuals are randomly generated) if my eps percent of

the best individuals from Pb is evaluated by similar objective

function value (measured by parameter ε < 1 × 10−16). The

Algorithm 2 jDE100 algorithm

initialise big population Pb = {x1,x2, . . . ,xNb
}

initialise small population Ps = {x1,x2, . . . ,xNs
}

initialise Fi = 0.5, CRi = 0.9, i = 1, 2, . . . (Nb +Ns)
while stopping condition not reached do

if reinitialisation condition is reached then

reinitialise populations

end if

for i = 1, 2, . . . , Nb do

create a new trial vector yi

if f(yi) ≤ f(xi) then

insert yi into Qb

else

insert xi into Qb

end if

end for

Pb ← Qb

if xbest ∈ Pb then

xbest → Ps

end if

for k = 1, 2, . . . ,m do

for j = 1, 2, . . . , Ns do

create a new trial vector yj

if f(yj) ≤ f(xj) then

insert yj into Qs

else

insert xj into Qs

end if

end for

Ps ← Qs

end for

end while

big population is also reinitialised if the best point xbest is

not improved in the ageLmt generations.

The small population Ps is reinitialised (all individuals are

randomly generated) if my eps percent of individuals from Ps

is evaluated by a similar objective function value as the best

point of Ps (measured by parameter ε < 1×10−16). Then, all

points are randomly generated, except the best solution xbest.

Note, if the population is reinitialised, values of Fi and CRi

are also set to the initial values, i.e. Fi = 0.5 and CRi = 0.9.

After that, one generation of the big population Pb is

performed. A well-known rand/1 mutation is preferred, where

index r1 is selected from Pb and indices r2, r3 are selected

from a union Pb

⋃

xs, where xs is the point from the

small population. Further, binomial crossover and selection are

applied to generate a new trial point. Similarly to canonical

DE, auxiliary populations QB and QS are used to develop

a new generation of individuals. At the end of generation

in Pb, the position of the best point is checked - if it is

located in Pb, then a copy of xbest is sent to the small

population. Then m generations of the small population Ps are

performed, m = round(Nb/Ns). The process of evaluation of

Ps is similar to the evaluation of Pb, the indices r1, r2, r3 are

selected from Ps.

Note, jDE100 is derived from the original jDE [8], there-

fore adaptation of F , CR is also used. The values of these

parameters are the same if the individual produced a good

new trial solution. In other cases, F and CR are randomly

changed in given intervals (Fl, Fu) and (CRl, CRu). A detail

of the jDE100 algorithm is available in the original papers [5],

[8].

IV. EIGENVECTOR COORDINATE SYSTEM

Although jDE100 is a very efficient optimisation method,

there is only a standard binomial crossover employed to

generate trial individuals. It was shown that the efficiency of

DE with binomial crossover with CR < 1 is rather poor when

solving rotated objective functions [9]. Therefore, a variant of

DE with rotationally-invariant crossover should be used.

In 2014, the covariance-based Eigenvector coordinate sys-

tem for a crossover operation in DE (CoBiDE) was pro-

posed [6]. The main aim of this approach was better efficiency

in functions with strongly correlated coordinates. Simply, a

covariance matrix C from a portion of population (ps) is

computed. This matrix is used to compute Eigenvectors B
and Eigenvalues E using Eigen decomposition:

C = BE2BT . (3)

A mutated point vi and the parent point xi are combined

in the Eigen coordinate system, with probability pb:

x
′

i = BT
xi and v

′

i = BT
vi. (4)

After that, a newly developed trial vector y
′

i is transformed

from the Eigen coordinate system back to a standard coordi-

nate system using the same Eigenvectors B.

yi = By
′

i (5)

This transformation of individuals in crossover is performed

only with a probability pb. In other cases of generations, the

standard binomial crossover operation in a standard coordinate

system is preferred.

For simplicity, this type of crossover will be named Eigen-

vector crossover. The Eigenvector crossover was successfully

used in a study where it achieved good results [10]. Moreover,

it was shown that the Eigenvector crossover enables to increase

the efficiency of very successful adaptive jSO [11]. These

studies inspired to use the Eigenvector crossover in the very

efficient jDE100 algorithm.

V. JDE100E - JDE100 WITH EIGENVECTOR CROSSOVER

The newly proposed variant of the original jDE100 algo-

rithm is enhanced by the Eigenvector crossover from CoBiDE.

Therefore, the new method is simply denoted jDE100e. The

steps of jDE100e are illustrated in a pseudo-code of Algo-

rithm 3. The main differences between the original jDE100

and new jDE100e are highlighted by arrows.

The main aim of the jDE100e algorithm is to employ the

rotationally-invariant crossover method in the very efficient

jDE100 method. At the beginning of generation, it is checked

Algorithm 3 jDE100e algorithm

initialise big population Pb = {x1,x2, . . . ,xNb
}

initialise small population Ps = {x1,x2, . . . ,xNs
}

initialise Fi = 0.5, CRi = 0.9, i = 1, 2, . . . (Nb +Ns)
while stopping condition not reached do

if reinitialisation condition is reached then

reinitialise populations

end if

if rand < pb then

for i = 1, 2, . . . , Nb do

create yi using Eigenvector crossover ⇐
if f(yi) ≤ f(xi) then

insert yi into Qb

else

insert xi into Qb

end if

end for

else

for i = 1, 2, . . . , Nb do

create yi using binomial crossover ⇐
if f(yi) ≤ f(xi) then

insert yi into Qb

else

insert xi into Qb

end if

end for

end if

Pb ← Qb

if xbest ∈ Pb then

xbest → Ps

end if

for k = 1, 2, . . . ,m do

if rand < pb then

for j = 1, 2, . . . , Ns do

create yj using Eigenvector crossover ⇐
if f(yj) ≤ f(xj) then

insert yj into Qs

else

insert xj into Qs

end if

end for

else

for j = 1, 2, . . . , Ns do

create yj using binomial crossover ⇐
if f(yj) ≤ f(xj) then

insert yj into Qs

else

insert xj into Qs

end if

end for

end if

Ps ← Qs

end for

update matrices C and B ⇐
end while

whether the Eigenvector crossover will be used (pb < rand).

Then, all individuals of a given population are generated using

the new crossover variant. Otherwise, the standard binomial

crossover is used for the whole population. This approach is

used for Pb and also for Ps, independently. To reduce the

complexity of the proposed method, the matrices C and B
are updated only if the Eigenvector crossover is selected to be

used (3).

VI. SETTING OF THE EXPERIMENT

The newly proposed jDE100e and the original jDE100

algorithm were applied to a suite of 10 problems from the

CEC 2020 [12]. This test suite contains problems with various

complexity, and all ten problems are used with four dimension

levels D ∈ [5, 10, 15, 20]. Therefore 40 problems are used

as a benchmark in this experimental study. For each algorithm

and test problem, 30 independent runs were performed. The

search process of the algorithms is limited to a given number

of function evaluations, maxFES. For this test suite, the

maximum number of function evaluations varies for different

D (Table I).

TABLE I
MAXIMAL NUMBER OF FUNCTION EVALUATIONS PER RUN.

D maxFES

5 50000
10 1000000
15 3000000
20 10000000

Moreover, the best-achieved results of the algorithms are

stored in 15 preliminary stages, i.e. when D
k

5
−3 function

evaluations are reached, k = 0, 1, 2, . . . 15. The difference

between the real solution of the problem and the solution

provided by applied algorithm is denoted as an error, where

error = f(xbest) − f(x∗) = 0 represents a successful run.

The error value under 1×−8 is taken as zero. Further, the

authors of the CEC 2020 test problems recommended solving

all problems except problems #6, #7 and D = 5. Therefore,

the table of results for D = 5 contains only results from 9 test

problems.

The parameters of the jDE100 algorithm were set to the

values recommended by the authors of this algorithm, Nb =
1000, Ns = 25, ε = 1× 10−16, τ1 = τ2 = 0.1, myEps = 25,

Flb = 0.15, Fls = 0.15, Fu = 1.1, CRl = 0, CRu = 1.1, and

ageLmt = 0.75 ·maxFES.

The proposed jDE100e differs only in applied Eigenvector

crossover, which is controlled by two parameters - a portion

of the population ps and the frequency of using the Eigen

coordinate system pb. The authors of CoBiDE recommended

using ps = 0.5 and pb = 0.4. After the application of

several different settings of these parameters, the original

settings were found the best performing in this experimental

study. The remaining parameters of jDE100e were set to the

recommended values by the authors of the original jDE100.

Both DE variants are implemented and experimentally

tested in Matlab 2017b. All computations were carried out on

a standard PC with Windows 10, Intel(R) Core(TM)i7-4790

CPU 3.6 GHz, 16 GB RAM.

VII. RESULTS

The basic characteristics of the results of the proposed algo-

rithm from the 40 various problems are illustrated in Table II,

III, IV, and V. It is obvious that the proposed jDE100e is able

to solve seven out of eight test problems for D = 5. In one

problem, all runs were done with zero error values (problem

#1). For D = 10, jDE100e solves successfully three out of

ten problems, in two problems all runs were done with zero

error values. Naturally, the efficiency of algorithms decreases

with increasing dimensionality. Therefore, for D = 15, one

problem is solved by jDE100e with zero error value in each

of the performed runs. Finally, for the highest D = 20, zero

error values are also observed for runs of problem #1.

TABLE II
RESULTS OF PROPOSED JDE100E AND D = 5

Func. Best Worst Median Mean Std

1 0 0 0 0 0
2 0.124899 13.409 0.249798 1.342155 2.932142
3 0 5.39917 5.14823 4.518145 1.524361
4 0 0.152508 0.107173 0.086678 0.046698
5 0 0.994959 0 0.053969 0.211078
8 0 3.58492 0 0.119731 0.654471
9 0 100 100 93.33333 25.37081

10 0 347.367 300 289.5292 80.64704

TABLE III
RESULTS OF PROPOSED JDE100E AND D = 10

Func. Best Worst Median Mean Std

1 0 0 0 0 0
2 0.217986 36.9483 7.077005 10.13692 10.16872
3 6.02955 15.287 11.8056 11.77447 1.830476
4 0.063911 0.233269 0.164405 0.16535 0.041797
5 0 1.98992 0.809694 0.815107 0.575156
6 0.012744 0.853188 0.348849 0.346238 0.222441
7 3.71E-07 0.027231 0.003157 0.0065 0.007873
8 0 100 0 33.33333 47.94633
9 100 329.544 100 107.6515 41.90881

10 397.743 398.009 397.743 397.7607 0.067486

TABLE IV
RESULTS OF PROPOSED JDE100E AND D = 15

Func. Best Worst Median Mean Std

1 0 0 0 0 0
2 0.041637 10.1633 2.40161 2.595014 2.51594
3 15.567 17.0215 15.8493 16.01047 0.40246
4 0.128818 0.433341 0.257148 0.257412 0.069246
5 1.15108 9.26686 3.29711 3.876532 2.289827
6 0.185709 1.17642 0.473277 0.478963 0.212076
7 0.045567 0.528341 0.26391 0.265466 0.137924
8 100 100 100 100 0
9 100 390.308 389.678 312.1448 130.1184

10 400 400 400 400 0

Further, the time complexity of the proposed jDE100e

algorithm is estimated by a given process. At first, standard

TABLE V
RESULTS OF PROPOSED JDE100E AND D = 20

Func. Best Worst Median Mean Std

1 0 0 0 0 0
2 0.062457 5.21633 1.77 1.483665 1.496059
3 20.3872 21.8351 20.9675 20.97785 0.408856
4 0.116739 0.433288 0.365071 0.347499 0.080412
5 1.09904 4.29209 2.30217 2.370443 0.849243
6 0.069142 0.182842 0.111731 0.115486 0.03313
7 0.036796 0.423361 0.197886 0.214159 0.114189
8 100 100 100 100 0
9 399.781 407.07 404.9575 404.565 1.740636
10 399.041 413.657 413.657 412.9312 2.775854

computations are performed to estimate the current perfor-

mance of the PC (T0). After that, the complexity of the

evaluation of test problem #7 is measured repeatedly (T1).

Finally, the complexity of the proposed method is estimated

by a run of jDE100e on problem #7. This process is repeated

five times to achieve average value time-complexity T2. Then,

the true time complexity is computed by (T2 − T1)/T0. The

authors of CEC 2020 recommended estimating the complexity

only on D = 5, 10, 15. The achieved results of the complexity

for proposed jDE100e method are illustrated in Table VI. It is

obvious that the time complexity is increasing with increasing

dimensionality, the high increase of jDE100e is mainly caused

by the employed Eigenvector crossover.

TABLE VI
COMPUTATIONAL COMPLEXITY OF PROPOSED JDE100E

D T0 T1 T2 (T2 − T1)/T0

5 0.1172 0.23 0.25 0.17

10 0.11 0.25 5.5 47.72

15 0.1329 0.34 5.82 41.23

The newly proposed jDE100e variant is derived from the

original jDE100 algorithm. Therefore, a comparison of the

algorithms is performed to show the difference between the

optimisers. The non-parametric Wilcoxon rank-sum test was

applied to both algorithms, for each problem and D inde-

pendently. The difference between the methods is significant

if the achieved significance level is less than 0.05. The

results from this comparison are in Table VII. The median

values for each algorithm, function and dimension is provided

(columns ‘jDE100’ and ‘jDE100e’). For better readability, a

smaller median value for each problem is underlined. When

the difference is statistically significant, the median value is

printed in bold.

It is obvious that the original jDE100 algorithm performs

better in two problems for D = 10, two problems for D = 15,

and one problem for D = 20. However, these differences

are not significant. On the other hand, the proposed jDE100e

achieves a smaller (better) median value in 22 problems

out of 40. The difference is significant in 16 problems, i.e.

the achieved p-value from the Wilcoxon test is less than

0.05. Regarding dimensionality, jDE100e performs better than

jDE100 in five problems for D = 5, six problems and D = 10,

TABLE VII
RESULTS OF THE WILCOXON RANK-SUM TEST.

D Func. jDE100 p-value jDE100e

5 1 0 ≈ 0
5 2 4.59914 0.000788 0.249798

5 3 5.596435 1.43E-06 5.14823

5 4 0.120696 0.111987 0.107173
5 5 0 0.394133 0
5 6 0 0.041774 0

5 8 0 0.356048 0
5 9 100 0.784066 100
5 10 344.995 0.000683 300

10 1 0 ≈ 0
10 2 9.156015 0.307649 7.077005
10 3 11.57115 0.428957 11.7828
10 4 0.159046 0.190718 0.163426
10 5 5.39108 8.67E-07 0.809694

10 6 0.444535 0.067869 0.348849
10 7 0.327871 4.18E-09 0.003157

10 8 35.91645 0.021687 0

10 9 100 ≈ 100
10 10 398.0325 3.66E-07 397.743

15 1 0 ≈ 0
15 2 2.804225 0.028 2.40161

15 3 15.72265 0.220697 15.8493
15 4 0.26192 0.982307 0.257148
15 5 17.84065 5.23E-10 3.29711

15 6 0.33655 0.251881 0.473277
15 7 1.525685 3.02E-11 0.26391

15 8 100 ≈ 100
15 9 389.96 4.00E-05 389.678

15 10 400 ≈ 400

20 1 0 ≈ 0
20 2 1.848075 0.14416 1.77
20 3 21.06915 0.678161 20.9675
20 4 0.347209 0.118817 0.365071
20 5 15.7861 1.49E-10 2.30217

20 6 0.238378 5.00E-09 0.111731

20 7 0.642076 2.02E-08 0.197886

20 8 100 ≈ 100
20 9 405.93 0.028129 404.9575

20 10 413.657 0.610827 413.657

better 5 22

better sign. 0 16

five problems and D = 15, and six problems and D = 20.

Note, in the case of problem #6, D = 5, the mean value is

smaller for the jDE100e variant.

In jDE100e, successes of the binomial and Eigenvector

crossover are studied. When a newly generated individual is

better than the parent individual, the success of a currently

applied crossover variant is increased by one. The average

counts of successes of both crossover variants on each problem

and dimension level are in Table VIII, where the success of

binomial crossover is denoted by ‘bin’, and the success of

the newly used Eigenvectors crossover is abbreviated ‘Eig’.

It is clear that the efficiency of the newly used Eigenvector

crossover is rare for lower dimension levels. When dimen-

sionality increases, the success of the rotationally-invariant

crossover is rapidly higher compared with the success of

binomial crossover.

VIII. CONCLUSION

In this paper, an advanced variant of very successful jDE100

algorithms is introduced. The proposed jDE100e employs

TABLE VIII
SUCCESS OF THE BINOMIAL AND EIGENVECTOR CROSSOVER IN JDE100E.

D F bin Eig D F bin Eig

5 1 3645 3036 15 1 79523 105122

5 2 3797 2243 15 2 96304 34590
5 3 6016 3739 15 3 103507 58801
5 4 6660 4216 15 4 44215 14553
5 5 4741 3169 15 5 51303 102176

5 6 3246 2271 15 6 139502 59653
5 7 3231 2356 15 7 167943 127368
5 8 5262 3264 15 8 172954 116672
5 9 7797 4809 15 9 114439 67273
5 10 9450 7902 15 10 185363 127072

10 1 10892 10384 20 1 112771 128042

10 2 13623 5521 20 2 221919 296346

10 3 19967 10447 20 3 193698 212817

10 4 23411 9495 20 4 73935 23866
10 5 24072 43353 20 5 216100 326995

10 6 43166 32559 20 6 604485 361417
10 7 49616 39377 20 7 332686 290600
10 8 31804 24797 20 8 208404 144826
10 9 134127 91451 20 9 73645 39041
10 10 71424 62633 20 10 156158 93183

an efficient rotationally-invariant Eigenvector crossover. Both

algorithms are applied to 40 test problems of the single-

objective scenario CEC 2020 competition. The results of the

proposed jDE100e are promising, as this method is able to

solve eight problems for D = 5, three problems for D = 10,

and one problem for D = 15 and D = 20.

The performance of jDE100e was compared with the results

of the original jDE100. The results of the algorithms were

assessed statistically using the non-parametric Wilcoxon rank-

sum test. The original jDE100 performs better in five out of 40

problems, but the differences are not significant. The proposed

jDE100e achieves better results in 22 out of 40 problems,

in 16 cases the differences are significant. The proposed

advanced variant of the successful jDE100 algorithms provides

promising results compared with the original method. The

efficiency of the newly used Eigenvector crossover increases

with increasing dimensionality of the problems.

REFERENCES

[1] F. Neri and V. Tirronen, “Recent advances in differential evolution: a
survey and experimental analysis,” Artificial Intelligence Review, vol. 33,
pp. 61–106, 2010.

[2] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, pp. 27–54, 2011.

[3] S. Das, S. Mullick, and P. Suganthan, “Recent advances in differential
evolution-an updated survey,” Swarm and Evolutionary Computation,
vol. 27, pp. 1–30, 2016.

[4] K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Problem
definitions and evaluation criteria for the 100-digit challenge special
session and competition on single objective numerical optimization,”
Technical Report, Nanyang Technological University, Singapore, Tech.
Rep., 2018, http://www.ntu.edu.sg/home/epnsugan/.

[5] J. Brest, M. S. Maučec, and B. Bošković, “The 100-digit challenge: Al-
gorithm jDE100,” in 2019 IEEE Congress on Evolutionary Computation

(CEC), 2019, pp. 19–26.
[6] Y. Wang, H.-X. Li, T. Huang, and L. Li, “Differential evolution based on

covariance matrix learning and bimodal distribution parameter setting,”
Applied Soft Computing, vol. 18, pp. 232–247, 2014.

[7] R. Storn and K. V. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11, pp. 341–359, 1997.
[8] J. Brest, S. Greiner, B. Boškovič, M. Mernik, and V. Žumer, “Self-

adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-

lutionary Computation, vol. 10, pp. 646–657, 2006.
[9] S.-M. Guo and C.-C. Yang, “Enhancing differential evolution utilizing

eigenvector-based crossover operator,” IEEE Transactions on Evolution-

ary Computation, vol. 19, pp. 31–49, 2015.
[10] P. Bujok and R. Poláková, “Eigenvector crossover in the efficient jSO

algorithm,” MENDEL, vol. 25, no. 1, pp. 65–72, Jun. 2019.
[11] P. Bujok, “Competition of strategies in jso algorithm,” in Swarm, Evo-

lutionary, and Memetic Computing and Fuzzy and Neural Computing,
A. Zamuda, S. Das, P. N. Suganthan, and B. K. Panigrahi, Eds. Cham:
Springer, 2020, pp. 113–121.

[12] C. T. Yue, K. V. Price, P. N. Suganthan, J. J. Liang, M. Z. Ali, B. Y.
Qu, N. H. Awad, , and P. P. Biswas, “Problem definitions and evaluation
criteria for the cec 2020 special session and competition on single
objective bound constrained numerical optimization,” Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China And
Technical Report, Nanyang Technological University, Singapore, Tech.
Rep., 2019, http://www.ntu.edu.sg/home/epnsugan/.

