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Abstract—Practical multi-criterion decision making not only
involves the articulation of preferences in the objective space,
but also a consideration of how the variables impact these
preferences. Trend mining is a recently proposed visualization
technique that offers the decision maker a quick overview of the
variables’ effect on the structure of the objective space and easily
discover interesting variable trends. The original trend mining
approach relies on a set of predefined reference directions along
which an interestingness score is measured for each variable.
In this paper, we relax this requirement by automating the
approach to find optimal reference directions that maximize the
interestingness for each variable. Additional extensions include
the use of an Achievement Scalarizing Function (ASF) for
ranking solutions along a given reference direction, and an
updated interestingness score formulation for more appropriately
handling discrete variables. We demonstrate the working of the
extended approach on DTLZ2 and WFG2 benchmarks for up to
five objectives and on a biobjective engineering design problem.
The results show that the ability of the proposed approach to
detect variable trends in high dimensional objective spaces is
heavily dependent on the quality of the solutions used.

Index Terms—multi-objective optimization, variable trends,
objective space, decision making.

I. INTRODUCTION

The generation of a set of Pareto-optimal solutions does not
mark the end of solving a practical multi-objective optimiza-
tion problem (MOOP). The analysis of the trade-off front is
an important step before a final solution can implemented
in practice, a process referred to as multi-criterion decision-
making (MCDM).

A. Multi-Objective Optimization and MCDM

Multi-objective optimization problems involve the simulta-
neous optimization of multiple conflicting objectives and can
be formulated as:

Minimize F(x) = [f1(x), f2(x), . . . , fM (x)]T

Subject to gj(x) ≥ 0 ∀ j = 1, 2, . . . , J

hk(x) = 0 ∀ k = 1, 2, . . . ,K

x(L) ≤ x ≤ x(U)

where F(x) is a set of M (≥ 2) objective functions, gj(x)
represents J inequality constraints, and hk(x) represents K
equality constraints, x is a vector of n decision variables rep-
resenting a solution (x = [x1, x2, . . . , xn]

T ) to be optimized

within the bounds of [x(L),x(U)]. F(x) is a mapping from the
decision space to the objective space of the problem.

Multiple conflicting objectives lead to multiple optimal
solutions which lie on the so called Pareto-optimal front. In
practical MOOPs, often a decision maker (DM) with in-depth
problem knowledge is involved who can provide preference
information. The field of MCDM deals with the development
of methods that use such preference information to narrow
down the Pareto-optimal set to one or a few solutions for
further consideration or implementation. In MCDM there are
four broad classes of methods [1]: (i) no preference methods,
where the DM’s preferences are not considered, (ii) a priori
methods, where the DM’s preferences are known beforehand
and are used to focus the search towards desirable Pareto-
optimal solutions, (iii) a posteriori methods, where the DM’s
preferences are used after the generation of a representative
set of Pareto-optimal solutions to select desirable solutions,
and (iv) interactive methods, where the DM’s preferences
are incorporated into the search process to converge towards
desirable region(s) of the Pareto-optimal front.

This paper concerns a posteriori analysis of the solu-
tions generated by multi-objective evolutionary algorithms
(MOEAs), algorithms that find a representation of the Pareto-
optimal front by applying principles of natural evolution to
drive the search.

B. Decision Space and Objective Space

The presence of both a decision space and an objective
space invokes several interesting questions about the rela-
tionship between the variables and the objective functions
of the MOOP, such as “how do the preferences affect the
variable values?”. Many current MCDM methods disregard
the decision space altogether and only seek knowledge about
the objective space. However, in practical decision making, a
better understanding of the relationship between the decision
space and the objective space can benefit the decision making
process. In other words, the better informed a DM is about the
impact of variables on decisions and vice versa, the higher
are the quality of decisions, and the confidence associated
with them. With this motivation, in this paper we propose an
extension to a recently proposed approach called trend mining.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



C. Trend Mining

Trend mining was proposed as a way to identify interesting
variable trends, along predefined reference directions in the
objective space [2]. An interestingness score is defined and
calculated for each variable-reference direction pair, which
is visualized as an interactive heatmap. Selecting a cell (i.e.
a variable-reference direction pair) in the heatmap, shows
the corresponding trend line as well as a scatter plot of the
objective space color-mapped to the selected decision variable
for cases with M < 4 objectives. Thus, trend mining offers a
quick intuition to the DM about how the variables affect the
objective space. The procedure is described in more detail in
Section III.

II. LITERATURE REVIEW AND RELATED WORKS

A posteriori decision making often employs common multidi-
mensional visualization methods [3], [4] such as scatter plots,
parallel coordinate plots, bar plots, radial coordinate plots,
etc. to visualize the objective space. Graphical visualization
methods that have been specifically developed for MOOPs also
exist and a survey of these can be found in [5]. However, none
of these methods take the decision space into account. The
application of knowledge discovery techniques in the decision
space to better understand the objective space is a rather
new approach to decision making. A survey of data mining
techniques that can be used for the purpose of knowledge
discovery in multi-objective optimization can be found in [5].
In [6], the same authors propose a method for finding rules
that describe the decision space, for selected solutions in the
objective space.

Clustering is one form of knowledge discovery which has
been applied on MOOP solutions, [7] and [8] applied cluster-
ing in the analysis of the decision space of a turbine blade
cooling passage optimization problem. In [9], biclustering
was applied on a network design problem. In [10] clusters
that were separated in both the decision- and the objective
space were discovered. In [11] clustering in both the decision-
and objective space was performed on cantilever topology
optimization problems.

Manifold learning techniques can be used to learn the
structure of, and reduce the dimensionality of data. [12] uses
a method based on self organizing maps (SOMs) to visually
reveal trade-offs in the non-dominated solutions of real world
aerodynamic optimization problems. Recently, [13] used a
similar method for knowledge-extraction from a ship hull-form
design problem.

III. ORIGINAL TREND MINING PROCEDURE

The original trend mining was proposed as a method to inform
the DM about interesting variable trends in the objective
space of a MOOP and giving the DM a quick intuition about
structure of the objective space irrespective of the number of
solutions (N ), the number of objectives (M ) and the number
of variables (n). The original trend mining involves five steps
summarized in the following subsections.
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Fig. 1: P = 7 reference directions originating from the ideal
point of a two-dimensional objective space.

A. Creation of Reference Points and Reference Vectors

Trend mining accounts for the fact that different regions
of the objective space may be affected differently by each
variable. Therefore the first step is to define various regions of
interest in the objective space. To achieve this automatically
without the involvement of a real DM, reference directions
originating from the ideal point of the normalized objective
space are predefined to represent several regions of interest
on the Pareto-optimal front. Trend mining uses the technique
described in [14] to generate P uniformly spaced points
on a standard (M − 1)-simplex. The P reference directions
({λ(1),λ(2), . . . ,λ(P )}) connect the ideal point to each of the
points on the simplex. This step is illustrated in Fig. 1 for
M = 2 and P = 7.

B. Projection of Solutions Onto Reference Vectors

In order to assess the interestingness of a reference vec-
tor, the N solutions generated by a MOEA are projected
orthographically onto the reference vector after having been
normalized to lie between [0, 1]. The projected solutions are
then ordered by their distance from the ideal point along the
reference direction.

C. Generation of Variable Trend Lines

A variable’s trend is defined as the variance in the consec-
utive solutions ordered by the projection along the reference
vector. Plotting the ordered solutions on a line plot generates
the so called trend line. It is through analysis of the trend line
that an interestingness score can be determined. [2] notes that
the trend line can be treated as a time series but that a much
simpler approach was used to determine the interestingness
score.

D. Calculation of Interestingness Scores

Trend mining generates in total, n ∗ P trend lines for all
variables (n) and all reference vectors (P ). For MOOPs with
many variables, manually analyzing each trend line would be
cumbersome, so a metric to define a trend line’s interestingness
was determined.



The interestingness score is defined as a monotonic change
in the trend line, and is calculated by counting the number
of consecutive increases (upticks) or decreases (downticks) in
the variable values over different levels of smoothing. [2] notes
that any appropriate smoothing method may be used, however,
the simple moving average was selected. The range of window
sizes was chosen such that the number of non-overlapping
windows increases in powers of two. Pseudo code for the
interestingness score calculation can be found in Algorithm 1.

Algorithm 1 Calculation of Interestingness Score, Sij

Input: Variable trend lines xIj,ki for k = 1, 2, . . . N
Output: Sij

1: Sij ← 0
2: for s← 1 to blog2Nc do
3: ws← bN/2sc . window size
4: yk ∀ k ← SimpleMovingAverage(xIj,ki ∀ k,ws)
5: UpTicks← 0, DownTicks← 0
6: for k ← 1 to N − 1 do
7: if yk+1 > yk then
8: UpTicks← UpTicks+ 1

9: if yk+1 < yk then
10: DownTicks← DownTicks+ 1

11: Sij ← Sij + |UpTicks−DownTicks| ∗ 100/(N − 1)

12: Sij ← Sij/blog2Nc

The interestingness score Sij for a given variable i and a
given reference vector j is calculated for a trend line x

Ij,k
i

for all k projected solutions. The score is determined as the
mean difference between the upticks and downticks over all
blog2Nc window sizes and is expressed as a percentage.

E. Heatmap Visualization of Interestingness Scores

The interestingness score of each variable along all refer-
ence vectors can be visualized through an interactive heatmap
of n ∗ P cells, where each cell represents the score of a
variable-reference vector pair. The use of colors allows for
an easy holistic overview of the interestingness scores. By
clicking in a cell on the heatmap, the DM can select a variable-
reference vector pair and the trend line plot is shown. If the
MOOP consist of M < 4 objectives, it is also possible to
show a scatter plot of the solutions in the objective space,
color-mapped to the chosen variable.

IV. EXTENSIONS TO THE TREND MINING PROCEDURE

In this paper we extend trend mining to find the most in-
teresting general reference direction in the objective space.
Instead of using a predefined set of P reference vectors, we
use single-objective optimization to find the most interesting
reference direction for each variable.

A. Finding an Optimized Reference Direction

The original trend mining procedure allows a quick
overview of the interestingness of the variables, but is not a
rigorous metric for the true interestingness of the variables. To
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Fig. 2: Illustration of the ASF projection and ordering, x3
would be ordered before x4, and x4 before x1 and x2, however
x1 and x2 would have the same ordering.

address this, in this paper, we define a reference direction as
a reference point and a reference vector. The reference point
is constrained to the normalized objective space, mapped to
[0, 1], and the reference vector is a unit vector. To find the most
interesting reference direction for each variable, we use single-
objective optimization by the particle swarm optimization al-
gorithm [15], however, any continuous optimization algorithm
can be used.

B. Projection of Solutions onto the Reference Direction

The solutions are projected onto the reference direction to
determine their order. In the original trend mining method the
solutions are orthographically projected onto the reference vec-
tor, however in this paper we use an achievement scalarizing
function (ASF) in order to mimic the preferences of a DM.
We use the weighted Chebyshev function, however other ASF
forms may also be applied. The weighted Chebyshev function
can be formulated as:

Minimize ASF (x | zr, w) = max
1≤i≤M

fi(x)− zri
wi

for any solution x, reference point zr and weight vector w.
w determines the relative importance between the objectives
and in our case is the reference vector. Based on the ASF,
each solution x has a corresponding iso-ASF point xl on the
reference vector, which is calculated as: xl = zr + δw where
δ = max1≤i≤M [xi − zri /wi], and illustrated in Fig. 2. Using
ASF projections offers several advantages over projecting the
solutions orthographically, this approach more suited for a
greater number of objectives by avoiding the so called curse of
dimensionality which refers to distance relationships in higher
dimensions.

C. Calculation of Interestingness Scores

In this paper, we still define the interestingness score by
the monotonic change in the variables along the optimized
reference direction. However, where the original trend mining
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Fig. 3: Illustration of solutions in the objective space color-
mapped to a discrete variable xi in the decision space.

only considered consecutive increase (upticks) and decrease
(downticks) of variable values, we now also consider the case
where consecutive values remain unchanged. These zero ticks
are appropriate to consider when applying trend mining on
MOOPs with discrete variables where many consecutive non-
changing values on the trend line would signify a cluster.
Consider Fig. 3, where the discrete variable under consider-
ation determines three separate clusters. This is obviously an
interesting characteristic of the objective space that would not
be as apparent by the original interestingness calculation.

Pseudo code for the new calculation can be found in
Algorithm 2. Each trend line xIi for a variable i produces
an interestingness score Si. Si is now determined by the
median interestingness score of the different window sizes.
Algorithm 2 is expressed to handle continuous and discrete
variables, while omitting lines 8 and 10, it is also able to
handle categorical variables. The concept of monotonic change
has no meaning for categorical variables since the values they
take on cannot be compared, however, identifying separated
clusters is our interpretation.

D. Boxplot Visualization of Interestingness Score

To ensure robustness in the optimized reference direction
generated for each variable, several replications of the trend
mining procedure should be performed. Replication can be
shown graphically via an interactive boxplot to give the DM
a clear holistic overview of the results. The DM selects a
variable to investigate by clicking on a column in the plot,
which displays the corresponding variable’s optimized trend
line. For MOOPs with M ≤ 4 objectives a scatter plot of the
objective space, color-mapped to the selected variable can also
displayed, along with the optimized reference direction.

V. RESULTS AND DISCUSSIONS

We demonstrate the performance of the extended trend mining
procedure on three MOOPs, (i) DTLZ2, a test problem from
a suite of seven scalable test problems [16]. (ii) WFG2, a test
problem from a suite of nine scalable test problems [17]. And
(iii) Clutch-break design problem (CLUTCH), a mechanical

Algorithm 2 Calculation of Interestingness Score, Si

Input: Variable trend lines xIki for k = 1, 2, . . . N
Output: Si

1: Si ← 0, I ← ∅
2: for s← 1 to blog2Nc do
3: ws← bN/2sc . window size
4: yk ∀ k ← SimpleMovingAverage(xIki ∀ k,ws)
5: UpTicks← 0, DownTicks← 0, ZeroT icks← 0
6: for k ← 1 to N − 1 do
7: if yk+1 > yk then
8: UpTicks← UpTicks+ 1

9: if yk+1 < yk then
10: DownTicks← DownTicks+ 1

11: if yk+1 = yk then
12: ZeroT icks← ZeroT icks+ 1

13: Is ← (ZeroT icks + |UpTicks − DownTicks|) ∗
100/(N − 1)

14: Si ← Median(I)

design problem with an analytical problem formulation in two
objectives.

Both the DTLZ and the WFG test problems are scalable in
the number of objectives and the number of search variables,
where all variables are continuous. Both problem suites em-
ploy the concept of having k number of positional variables,
and l number of distance variables to determine the outcome
in the objective space. We apply trend mining on cases for
two, three, four and five objectives and reflect on the results
for these two problems.

The PSO algorithm used in the optimization of reference
directions take on the recommended parameter settings for all
cases, and was replicated ten times for each variable.

The solutions for all cases with two objectives were gen-
erated by NSGA-II [18] and the solutions for all remaining
cases were generated by NSGA-III [19].

A. DTLZ2

DTLZ2 has k = M − 1 positional variables, and l = 10
directional variables. For the two-objective case, the boxplot
in Fig. 4a, shows that x1 is the most interesting variable, with
a median score of 50.0. In Fig. 5a a monotonic decrease in x1
is shown along the optimized reference direction which can
be found in Fig. 6a.

Fig. 4b shows the boxplot for the three-objective case. The
two positional variables x1 and x2 are identified as the most
interesting, with a median scores of 43.7 and 24.8 respectively.
Fig. 5b shows the trend line for x1, and compared to the
trend line in Fig. 5a, the three-objective case also shows a
monotonic decrease along the optimized reference direction.
Fig. 6b shows the optimized reference direction for x1 in the
objective space.

Fig. 4c shows the boxplot for the four-objective case, which
identifies x1, x2 and x3 as the most interesting with median
scores of 42.5, 25.3 and 22.5 respectively. The boxplot shows
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Fig. 4: Boxplots of the interestingness scores for the variables of DTLZ2 with, (a) two objectives, (b) three objectives, (c) four
objectives, (d) five objectives.
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Fig. 5: Trend lines for x1 for DTLZ2 with, (a) two objectives, (b) three objectives, (c) four objectives, (d) five objectives,
along with smoothed version (black line).
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Fig. 6: Objective spaces of DTLZ2 with, (a) two objectives, (b) three objectives, with the optimized reference vector. Solutions
are color-mapped to x1 values.

a relatively large spread for x2, which suggests that that the
complexity of the problem has an affect on the outcome of the
trend mining procedure. Fig. 5c shows the trend line for x1,
which still shows a monotonic decrease, however the curve is
not as smooth as in previous cases, which may be a result of
the optimizer failure to find a diverse set of solutions.

Fig. 4d shows the boxplot for the five-objective case, which
identifies x1-x4 as the most interesting, with median scores
of 40.6, 24.4, 15.7 and 13.7 respectively. As in the four-
objective case, a larger spread can be observed for x2. Fig. 5d
shows the trend line for x1, which for this case shows a

monotonic increase, however, testing on different datasets
generated by the same optimizer revealed a sensitivity in
trend mining’s performance related to the optimizer’s ability to
converge on the Pareto-optimal front. Certain datasets resulted
in decreasing trends as well.

It is a known property of DTLZ2 that x1 determines a solu-
tions position along the Pareto-front along the M th objective,
trend mining was able to identify x1 as the most interesting
variable in all cases, suggesting proficiency in finding trends
in the variables.
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Fig. 7: Boxplots of the interestingness scores for the variables of WFG2 with, (a) two objectives, (b) three objectives, (c) four
objectives, (d) five objectives.
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Fig. 8: Trend lines for x1 for WFG2 with, (a) two objectives, (b) three objectives, (c) four objectives, (d) five objectives, along
with smoothed version (black line).
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Fig. 11: Trend line for x3 for WFG2 with five objectives along
with smoothed version (black line).

B. WFG2
The number of positional variables was chosen as k =

2(M − 1), and the total number of variables was 24 for each
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case. The boxplot for the two-objective case, shown in Fig. 7a,
illustrates how trend mining was able to identify the positional
variables x1 and x2 as the most interesting, with median scores
of 7.2 and 5.6 respectively. WFG2 is more complex than
DTLZ2, and show more spread in the results. The difference in
score between the positional variables and the distance related
variables is also much lesser. The trend line for x1 in Fig. 8a
does not show a monotonic trend, instead, there appears to be
different segments present. The objective space color-mapped
to x1 shown in Fig. 9a, confirms that x1 is responsible for
different segments in the objective space.

Fig. 7b shows the boxplot for the three-objective case, which
identifies the positional variables x1-x4 as the more interest-
ing, with median scores of 7.8, 7.0, 5.2 and 4.6 respectively.
The trend line for x1 is shown in Fig. 8b, which again does not
show a clear monotonic trend. However, past 5000 solutions,
the presence of segments can again be observed. Fig. 9b shows
that there are segments along the Pareto-optimal front, but not
further from it.

The boxplot in Fig. 7c shows that trend mining was able to
identify the positional variables x1-x6 as the more interesting
with median scores of 4.2, 4.8, 4.4, 6.1, 3.3 and 4.1 respec-

tively. In this case, x4 was the most interesting. Fig. 8c shows
that the segmented behavior present in x1 in previous cases is
not clearly be present in this case. Fig. 10 shows that the trend
for x4 is not smooth. WFG2 is known to be difficult, which
possibly explains the trends as a result of poor convergence
from the optimizer.

Fig. 7d shows the boxplot for the five-objective case, which
illustrates that trend mining is able to identify the positional
variables x1-x8 as the most interesting, with median scores of
3.8, 4.2, 5.6, 3.7, 3.7, 3.2 and 3.9 respectively. x3 was found
to be the most interesting. The trend line for x1 is shown in
Fig. 8d, which displays a similar trend to the four-objective
case. Fig. 11 shows the trend line for x3. The trends are not
very clear, which suggests that there are no clear monotonic
trends present.

Trend mining is able to identify the positional variables as
the most important ones, however the chosen configuration
does not seem to generate monotonic trends.

C. CLUTCH

The problem involves the minimization of two objectives, f1
system mass, and f2 stopping time, with five discrete decision
variables, x1: inner disk radius, x2: outer disk radius, x3: disk
thickness, x4: actuating force, and x5: number of disks. The
complete problem description can be found in [20]. Fig. 14
shows the boxplot for CLUTCH, which illustrates that x3 and
x5 are the most interesting, with median scores of 72.0 and
65.6 respectively. The trend lines for x3 and x5 can be found
in Figs. 12a and 12b. Fig. 13a shows the objective space color-
mapped to x3, and also clearly illustrates how a lower value
of x3 is leads to a more optimal solution. Fig. 13b shows the



objective space color-mapped to x5, which illustrates how x5
is responsible for a solution’s position along f2.

By considering all solutions, trend mining is able to provide
the structure of the MOOP from a representation of the entire
search space. This would not be possible by considering only
the Pareto-optimal solutions, as illustrated in Fig. 13a where if
only considering the Pareto-optimal solutions, no trend would
be found since all Pareto-optimal solutions have the same
value for x3.

Trend mining offers a holistic overview of the interest-
ingness of the variables. The relative difference of the in-
terestingness scores is more important than the actual value
since different MOOPs cannot be compared. We regard only
monotonic changes, even though other trends may be of equal
interest to the DM, as for WFG2, where no monotonic trend
was found.

VI. CONCLUSIONS

In this paper, we extended the trend mining procedure to
address several shortcomings of the original method and to
further present trend mining as a tool in decision making. The
updated method finds optimized reference directions instead of
considering only a predetermined set of vectors all originating
from the ideal point. The updated method also projects the
solutions onto the reference vector using an ASF to regard
the relationships between the objectives in the projection. The
method was updated to better regard discrete variables that
cause clusters in the objective space since many real-world
MOOPs involve both continuous, discrete and categorical
values.

Trend mining is presented as a procedure to produce
knowledge about a MOOP, by identifying which direction the
solutions will move along in the objective space, as the value
of the variable changes in the decision space.

Given that trend mining is able to autonomously find
optimized reference directions for all variables, we believe
that the method can be used online by a MOEA, during the
optimization, to effect the convergence behavior. Following
reference directions may for example help populate spares
regions of the Pareto front. Directing more computational
effort in investigating more interesting variables, may also lead
to faster convergence.

As future work, it would also be interesting to further extend
trend mining to regard different kinds of trends, such as cyclic
trends, and to perform user studies in order to assess the
practical performance of trend mining as a tool in decision
making.
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