
A biased random-key genetic algorithm using
dotted board model for solving two-dimensional

irregular strip packing problems
Bonfim Amaro Junior

Federal University of Ceará
Russas, Brazil

bonfimamaro@ufc.br

Rodrigo Lima da Costa
Federal University of Ceará

Russas, Brazil
rodrigoferlima.12@gmail.com

Plácido Rogério Pinheiro
University of Fortaleza

Fortaleza, Brazil
placido@unifor.br

Luiz Jonatã Pires de Araújo
Innopolis University

Innopolis, Russia
l.araujo@innopolis.university

Alexandr Grichshenko
Innopolis University

Innopolis, Russia
a.grishchenko@innopolis.university

Abstract—The irregular strip packing problem (ISPP) is a
combinatorial optimisation problem that has applicability in
several industrial processes since it aims for the efficient use
of material. Most of the techniques reported in the literature
for solving the ISPP employ metaheuristics as they can cope
with complex requirements that prevent the use of exact model
formulations. This paper presents a biased random-key genetic
algorithm (BRKGA) that uses the dotted board model to compute
the fitnesses of candidate solutions aiming for the minimisation
of the height of the large object. The algorithm allows the
pieces to rotate in order to achieve better layouts. Computational
experiments using instances from the literature were conducted
to demonstrate the efficiency of the proposed method, with
promising results.

Index Terms—cutting and packing, biased random-key genetic
algorithm, linear programming.

I. INTRODUCTION

Cutting and packing (C&P) are combinatorial optimisation
problems that concern the arrangement of pieces (i.e. items)
within larger objects without overlap aiming the minimisation
of the necessary space and resultant waste [1]. C&P problems
have outstanding importance in several industrial processes
including furniture production [2], clothing manufacturing [3],
shipbuilding industry [4] and container loading [5], [6], to
mention few applications.

C&P belong to the class of problems called NP-Hard, which
implies that there are no efficient algorithms for solving large
problems as those found in real-world scenarios. Hence most
of the solutions employ metaheuristics capable of finding
satisfactory results in a reasonable amount of computation
time. Examples of approaches for C&P problems include
placement policies [7], [8], linear programming [9], [10], and
combination of placement algorithms with search metaheuris-
tics [11].

This study addressed the two-dimensional irregular strip
packing problem (ISPP) - a C&P variant in which the items

are arranged in such a way that the length of the container is
minimised [1]. According to Araújo et al.’s extended taxonomy
for C&P [12], this problem is represented by the four-tuple
2|Si|Oo|A, which denotes two-dimensional problems, a single
input or container (Si) with an open dimension (Oo) with
different assortment of items (A). This paper analyses the
performance of biased random-key genetic algorithm [13]
combined with the dotted board model employed for assessing
candidate solutions. Such an approach [14] has demonstrated
reasonable results in satisfactory running time for larger in-
stances than previous methods in the literature.

The remaining part of this paper is organized as follows.
Section II reviews the literature on the two-dimensional pack-
ing algorithms. Next, section III details the implementation of
a biased random-key genetic algorithm and the data structures
to encode candidate solutions. Section IV presents the used
datasets and compare the results with other algorithmic solu-
tions from the literature. Section VI concludes by summarising
the results and limitations of the presented approach and
comments on future research directions.

II. LITERATURE REVIEW

This section presents the main algorithms solutions for
two-dimensional C&P problems in the literature, which can
be categorised into placement policies, mathematical formu-
lations, and combinations of the previous approaches with
metaheuristics [12], [15]. It also presents two packing methods
that are combined in the implemented approach: the biased
random-key genetic algorithm and the dotted board model
formulation.

A. Two-dimensional packing approaches

One of the first approaches for addressing C&P problem
is the use of placement policies such as the bottom-left (BL)
heuristic [16]. In this method, items are packed one at a time,

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Fig. 1. Example of No-fit Polygon.

being slid towards the origin and the most bottom-left available
position. Most of BL methods in the literature vary according
to criteria for determining the sequence in which items are
processed [17]–[19]. For example, some algorithms prioritize
items using properties like height or area [20].

Another method for solving C&P is the use of mathematical
formulations to ensure the feasibility of placement configura-
tions. For example, the No-fit polygon (NFP) is a method for
determining legal placements between a pair of items [18],
[21]. In this method, an item (called stationary) is fixed while
another item is translated around the latter to form a region in
which the placement leads to overlap, as illustrated in Figure
1.

Other approaches are based on Minkowski’s sum, given by
A ⊕ B =

{
a + b : a ∈ A, b ∈ B

}
. This method consists

of the combined addition of each point in two sets A and B,
each representing a piece. Through algebraic calculations, the
Minkowski’s difference, given by A ⊕ −B, is equivalent to
NFP between two figures A and B, where A is the stationary
figure and B is the orbital figure.

An alternative method is the collision free region (CFR)
illustrated in Figure 2 [22], and it has been successfully
used in the literature [11], [23]. The CFR combines IFP
and NFP techniques for generating viable layouts for placing
algorithms. Mathematically, we can define CFR between two
items as follows:

CFRP,S = IFPP,S −
N⋃
i=1

NFPSi,P (1)

In equation 1, S represents the stage, and P corresponds
the next polygon to be packed. The quantity of pieces nested
is represented by N . Si is a piece of sequence i inside S and
CFRP,S is computed by difference of feasible region for P
(IFPP,S) and the union between all the pieces arranged on
the surface, i.e. NFPSi,P for all located polygon inside S.
Figure 2 illustrates the CFR of two items.

A major drawback of approaches like NFP, IFP and CFR
is the need for a preprocessing phase before the packing
to calculate the valid placement positions for each pair of
items. Moreover, the presence of complex shapes and higher
freedom of rotation contribute to infeasible running time and
computational effort.

Fig. 2. Example of collision free region polygon.

Mixed integer linear programming models have also been
proposed to tackle C&P problems [24], [25]. In this type
of approach, the surface of the large object is typically
discretised, although there are examples of methods allowing
higher degrees of freedom in the placement of item [9].

There have been several approaches combining the strengths
of placement heuristics and mathematical formulations. For
example, [26] used a local search algorithm to minimise the
overlap between the polygons, coupled with a nonlinear model
that seeks solutions within a time limit.

Another type of solutions uses metaheuristics for finding the
most suitable sequence in which items should be processed by
a placement heuristic. Examples of metaheuristics include tabu
search and the hill-climbing method [18], beam search [20],
simulated annealing [22], guided local and cuckoo search [27].
The spectrum of sorting techniques includes random sorting
[23], [28].

The combination of genetic algorithms (GA) and BL heuris-
tic have been the prevalent approach for C&P problems [23],
[28], [29]. GA are search algorithms inspired by the natural
selection processes, in which a population of individuals
evolve through selection and reproduction of the fittest indi-
viduals, which transmit their genetic characteristics to the next
generation of individuals [30]. The literature contains several
examples of packing techniques based on such an approach
and employed into real-world problems like circuit design and
3D Printing.

B. Biased random-key genetic algorithm

Random-key genetic algorithm (RKGA) [31] are a GA
variant in which each individual is represented by an array
of real numbers in the [0, 1] interval. A function (called a
decoder) takes an individual’s chromosome of random keys
and determined one candidate solution. In short, the main
difference to original GA occurs in selection, crossover and
mutation processes. In RKGA, the population is partitioned
into two groups of individuals: a small group of Pe elite
individuals, i.e., those solutions with the best fitness values,
and the residual set of (P − Pe) non-elite individuals. To
expand the population, a new generation of individuals must
be produced. An RKGA applies an elitist strategy copying all
elite set at population k to k + 1. The mutation is implemented
by introducing Pm mutants into the population. Discounting
Pe elite individuals and Pm mutants, new individuals need
to be created to compose the P individuals that make up the

Fig. 3. Generation of a new population in BRKGA.

population of generation k + 1. This is performed by producing
P − Pe − Pm offspring through the crossover process.

An extension of the RKGA algorithm is the biased random-
key genetic algorithm (BRKGA), in which individuals are
distinguished into two sets: high-performing (or elite), and
the remaining (non-elite) individuals of the generation. Elite
individuals are copied directly to the next generation, while
random-key vectors or mutations are introduced to the remain-
ing population of the next generation.

In the BRKGA, individuals are obtained through param-
eterized uniform crossover [32], i.e. combinations of pairs
in which one parent is an elite and the other a non-elite
individual, as illustrated in Figure 3. An additional parameter,
the “probability of choice”, is applied to each allele and is used
to determine the probability of the elite parent transmitting its
genetic material.

A noteworthy work on a variant of BRKGA for packing
was proposed by Bonfim et al. [23], which employed the
CFR technique for validating placement feasibility. In this
method, each individual encompasses the position, the rotation
of a part and the CFR was used to place pieces. Moreover,
the BRKGA process was adapted to apply multiple parallel
populations though the fork-join structure. Due to the parallel
aspect populations, an information exchange mechanism was
applied. This work was later extended by Mundim et al. [28],
which differs in how viable layouts are generated using a
discretisation of the packaging surface.

C. The dotted board model

The dotted board model is a mixed linear programming
model that considers an item as a projection on a grid of
rows and columns, i.e. a set of feasible points in a mesh data
structure [14]. The stage is represented by a discrete grid of
points. Take into consideration, the reference point of each
item is arranged at a given point of this, aforementioned, grid
and the cost of having precision lean on board discretization.
In short, this model represents mathematically a needed length
to generate a feasible layout however, it does not consider
polygon rotations.

In the model above, c is the column of grid where a piece
has it reference point chosen, while gx indicates the dotted

board resolution for x asis, i.e. the distance between each
column. XM

t is the horizontal range of reference point for a
piece of a type t, considering its rightmost point. δdt is 1 if
each piece of type t has it reference point nested over d of
grid, and 0 otherwise. qt is the quantity of type pieces t that
should be packed.

The objective function (equation 2) aims the minimal height
to accommodate all the items. The constraint 3 ensures that
the length is sufficient to pack all pieces of initial demand. The
placement of all types of pieces t ∈ T and their quantities qt
are guaranteed by constraint 4. The constraint 5 prevents the
overlap of any pair of items u and t, placed at points e and d
respectively. The constraint 6 sets a binary δ to be associated
to each place possibility to pieces of type t ∈ T , for each d
feasible. Lastly, the constraint 7 prevents negative values to be
assigned to the best length.

The dotted board model for ISPP is formulated as follows.

Min z (2)
Subject to:

c× gx ×XM
t × δdt ≤ z ,∀d ∈ IFPt,∀t ∈ T (3)∑

d∈IFPt

δdt = qt,∀t ∈ T (4)

δeu + δdt ≤ 1,∀e ∈ NFP d
t,u,∀t, u ∈ T ,∀d ∈ IFPt (5)

δdt ∈ 0, 1,∀d ∈ IFPt,∀t ∈ T (6)
z ≥ 0 (7)

III. A BIASED RANDOM-KEY GENETIC ALGORITHM USING
DOTTED BOARD MODEL

This study implements and extends some of the computa-
tional techniques presented in section II. First, the algorithm
used in this study extends the BRKGA variant presented by
Bonfim et al. [23] for selecting a promising sequence of
items and their rotations. This BRKGA variant produces each
generation by selecting not only the fittest but also randomly
selected individuals from the previous iteration. Two main
reasons justify this choice. First, as shown by [13], BRKGA
evolves faster than other random key algorithms. In addition,
this heuristic is based on random keys, a strategy that allows
mapping a problem on a set of keys (chromosomes) so that
it becomes practical to perform operations on them and thus
generate new solutions.

The implemented algorithm also uses the dotted board
model for assessing individuals’ fitness values, one of the most
promising exact methods for resolving the ISPP and which
has been the basis for several outstanding works. Together,
the NFP, IFP and CFR techniques ensure layout satisfaction.
The next sections discuss the encoding or representation
of solutions, implementation of the BRKGA and feasibility
validation.

A. Encoding and decoding process

A coding and decoding process is required by the algorithm
to construct the solutions. The coding process is done at the
beginning of each iteration to allow the application of the

Fig. 4. Enconder and Decoder processes.

genetic operators. In this process, each solution is represented
as a vector of real values in the [0, 1) interval. Each position
of the vector that encodes a solution encompasses information
on the place in the sequence and rotation of an item to be
packed. In the decoding process, these values are sorted by the
real value of the positioning chromosome part, so that their
position in the rearranged vector defines the sequence in which
each corresponding piece will be inserted on the surface, as
illustrated in Figure 4.

The decimal part of the value of each allele describes the
rotation of the designated item. Decimal parts in [0, 0.25)
denote that the item is not rotated. For values in [0.25, 0.5),
[0.5, 0.75) and [0.75, 1), the item is rotated by 90º, 180º and
270º respectively.

B. Evolution of generations

BRKGA receives as an input the size of the population
(p), the size of the elite (e), probability of crossover (pc) and
mutation (pm), probability of choice pch, and the number of
generations without improvement (n) used as the stop crite-
rion. The proposed BRKGA interactively evolves an initial
randomly generated population of individuals until there is no
improvement in the fitness of the overall best solution for n
generations. This pseudocode is shown in Algorithm 1.

In each iteration, the elite and non-elite are combined
as explained in section II-B. In the crossover operator of
BRKGA, the allele of the elite parent is transmitted to the
offspring with probability pc. Otherwise, the allele from the
non-elite parent is transmitted, illustrated in Figure 5. While
the elite population is selected as a whole to compose the
next generation, the mutant population is obtained from the
generation of a vector of random keys.

C. Layout Generation

In the last stage, all pieces are positioned. As you can see in
Figure 6, each piece has a positioning order and rotation de-
fined according to an associated chromosome. Following this
order, the parts are rotated and their positioning possibilities
are calculated by CFR. Among them, the piece is positioned in

Algorithm 1 Biased random-key genetic algorithm
Input: p, e, pc, pm, pch, n
Output: bestSolution

1: numberMutated ← p ∗ pm
2: crossSize ← p - tamElite - numberMutated
3: generation ← 1
4: POPULATION ← generateRandomPopulation(p)
5: bestSolution ← min(POPULATION, by = layoutLength)
6: while (stopcriteria) do
7: sort(POPULATION, by = layoutLength)
8: ELITEPOP ← POPULATION[:eliteSize]
9: RESIDUALPOP ← POPULATION[eliteSize:]

10: CROSSOVERPOP ← crossover(ELITEPOP, RESIDU-
ALPOP, c, crossSize)

11: MUTANTPOP ← mutate(numberMutated)
12: POPULATION ← join(ELITEPOP, CROSSOVERPOP,

MUTANTPOP)
13: newSolution ← min(POPULATION, by = layout-

Length)
14: if (newSolution < bestSolution) then
15: bestSolution ← newSolution
16: generation ← 0
17: end if
18: generation ← generation + 1
19: end while
20: return bestSolution

Fig. 5. Generating a new individual with the crossover operator

the with the smallest coordinate x. In case of ties, the smallest
coordinate y is selected.

In Figure 6a is shown the CFR for the first piece, equivalent
to its IFP, since there are no other pieces positioned to overlap.
The following pieces are positioned towards the upper left
corner, as illustrated in Figure 6b,c. After all the items are
packed, the value of the total length is calculated and assigned
to the candidate solution.

IV. COMPUTATIONAL EXPERIMENTS

Computational experiments to assess the effectiveness of the
proposed heuristic were performed on an Intel i3 2.2GHz with
4 GB of RAM. The Gurobi and Cplex were used for solving
the dotted board model. The BRKGA was implemented in
the programming language Julia to leverage of the JuMP

Fig. 6. The layout generation procedure.

package, which provides a level of abstraction to represent
a mathematical model and solvers.

The following instances available in the literature have been
selected: RCO [14], BLAZ [33]. For these datasets, a fitting
surface of width 15 and length 60 was used. For the datasets
SHAPES2 and SHAPES4 [34], a fitting surface of 40 (width)
x 100 (length) was used. These values are considered in [14].
The execution is interrupted after it reaches a timeout of
36,000 seconds (TL).

Hence, we divide the computational experiments into two
parts. First, a comparison of the proposed algorithm and the
original dotted board model, aiming to ensure that the optimal
solution is also found. In the second part, the algorithm is
performed for all the instances, including those which the
dotted board model could not find optimal results. The results
of each run have been publicly available [35].

Firstly, the dotted board model was executed against the
selected datasets to provide baseline results for the introduced
packing approach. For each used solver (Gurobi and Cplex),
Table I presents the mean running time, the best length found
and the gap (the difference between solution found and the
known optimal value) of each execution. Table I shows only
the instances for which the solver could obtain the optimal
value in less than 36,000 seconds. In the original dotted board
model [14], only the Cplex solver was used. In this study, we
also consider the gurobi solver to check the resolution speed.
Changing the adopted solver can be easily implemented by

TABLE I
MEAN TIME, BEST LENGTH AND GAP PER SOLVED INSTANCE PER SOLVER

USED IN THE DOTTED BOARD MODEL.

Instance Gurobi CPLEX

Time (s) L Gap (%) Time (s) L Gap (%)
RCO1 1.74 8 0 1.22 8 0
RCO2 37.83 15 0 2.74 15 0
RCO3 857.09 22 0 778.18 22 0
BLAZ1 1.38 8 0 1.52 8 0
BLAZ2 41.85 14 0 36.20 14 0
BLAZ3 1657.20 20 0 23452.03 20 0
SHAPES2 6.74 14 0 2.17 14 0
SHAPES4 36000 27 44 36000 25 4

the directive change in the JuMP library for Julia Language.
Table I provides baselines results for the proposed algorithm,
and it can be observed that for all the tested instances (except
SHAPES4), the optima values could be found.

Next, the BRKGA with dotted board model was executed
against the datasets. In turn, more instances are considered
even assuming that the model did not find optimal value
in its execution. Based on preliminary tests, the following
parameters are selected as they lead to overall better results:
population size of 40 individuals; elite population percentage
of 20% (8 individuals); the probability of mutation of 30%
(12 possible individuals). The remaining individuals (20), for
instance, make up the population, possibly, with genetic infor-
mation exchanged. The algorithm ends after 150 generations
without improvement of the best solution or after a timeout of
36,000 seconds (TL).

Table II show all chosen instances, the required lead time,
length and, gap for dotted board model in comparison with
our heuristic. It can be observed that the time shown is that
when the optimal solution was first found. Because of this, the
SHAPES9 instance has a longer time than SHAPE15, even
though it is more complex to solve because of its larger size.
Also, the results of RCO3,4,5 and BLAZ3,4,5 exposed refer to
the second test performed, with the population size doubled.

These results confirm that some solutions were found just
for heuristic procedure. Interestingly, for RCO4, the proposed
algorithm could find a result very close to the optimum in
reduced running time. In RCO5 the best length was found; on
the other hand, the dotted board model stop after time limit
situation with 8.1% of the gap.

Figures 7 and 8 present the resultant layouts generated
for instances SHAPES4 and SHAPES9, respectively. The
evolution of the solutions with the genetic algorithm can be
observed in the graph illustrated in Fig 9. Solution populations
for some instances have evolved over the 150 established
generations and for others even longer, as finalization only
occurs when that number is reached without improvement.
However, the instances SHAPES9,15 did not reach this mark,
which is due to the complexity of the polygons that compose
it and the number of pieces demanded. Because of this, layout
generation takes longer, so the time limit is reached after fewer
iterations.

TABLE II
COMPARISON BETWEEN HEURISTIC AND DOTTED BOARD MODEL

Instance dotted board model heuristic

Time (s) L GAP (%) Time (s) L
RCO1 0.62 8 0 0.76 8
RCO2 6.28 15 0 292.48 15
RCO3 2393,42 22 0 666.11 22
RCO4 TL 29 3.5 277.79 30
RCO5 TL 37 8.1 420.39 37
BLAZ1 0.69 8 0 0.98 8
BLAZ2 15.98 14 0 486.52 14
BLAZ3 5583.82 20 0 35.86 22
BLAZ4 TL 28 10.7 545.19 29
BLAZ5 TL 35 14.3 55.20 37
SHAPES2 0.45 14 0 10.28 14
SHAPES4 17951.33 25 0 6265.11 25
SHAPES5 TL 30 13.3 2506.72 30
SHAPES7 TL 45 39.4 10523.56 41
SHAPES9 TL 54 40.4 16599.28 50
SHAPES15 TL 67 40.8 9271.36 64

Fig. 7. Layout for SHAPES4

Fig. 8. Layout for SHAPES9

Fig. 9. Evolution of solutions by the heuristic

Fig. 10. Optimal values found by each approach

The results show that the CPLEX solver was the only one
able to find the optimal value indicated by [14] for all instances
tested. The Gurobi solver did not find the optimal value for
the SHAPES4 instance, due to the time limit set. The heuristic
could not find the optimal value for the instance BLAZ3. The
graph in Fig 10 presents a comparison between the optimal
values obtained with the three approaches, considering only
the instances with proven optimal value.

Regarding time, CPLEX achieved the best performance in
half of the cases and the heuristic in the rest. The graph in
Fig 11 illustrates the time taken by CPLEX and Gurobi solvers
and heuristics to find the optimal value, with a log scale. Only
instances with known optimal value are considered.

Figure 12 presents a comparison between the optimal values
obtained from the heuristic and the results given by [14]. It
is possible to observe that the heuristic found the same or a
better solution as [14] in 75% of instances. Moreover, 25%
of instances (SHAPES4,7,9,15) presented better results. The
results of the remaining instances were very close, exceeding
a maximum of 2 units.

Despite the disadvantage of computational power, heuristics
found optimal values with a competitive time advantage, in the
case of some instances. In Fig 13, a log-scale graph shows a
comparison between heuristic and model times for instances
whose heuristic optimal values were equal or better. In it, it
can be observed that in most of these instances (7 of 12), the
heuristic was faster.

The results indicate that the heuristic performs better with

Fig. 11. Solvent and heuristic times to find the optimal value

Fig. 12. Optimal values found by each approach

the SHAPES instance group since all of them obtained equal
or better results and in less time than [14]. The BLAZ group
presented low performance, since only 40% of the group
instances were resolved optimally and in a longer time. In the
RCO group, only one instance did not reach optimality and
time performance was better for larger instances and worse
for smaller ones.

Fig. 13. dotted board model and heuristic times to find the optimal value

V. DISCUSSION

C&P are practical combinatorial optimisation problems
faced by several types of companies such as, for example,
in the construction sector, furniture manufacturing, clothing
and shipbuilding business. Hence algorithmic solutions aiming
the reduction of waste, increased profit and the automation
of existing complex human task-driven manufacturing have
gained strategical relevance.

The choice of the most suitable packing algorithm among
the many introduced in the academic literature depends on
aspects such as time constraints and the availability to in-house
resources. Exact approaches such as mathematical formula-
tions for C&P problems have demonstrated limited feasibility,
especially in the presence of a large number of required
items. Hence, recent packing algorithms employ metaheuris-
tics, which are optimisation techniques for delivering satisfac-
tory solutions in a reasonable time.

The algorithm approach for the ISSP showed in this study
combines the BRKGA with the dotted board model. The
motivation is to leverage from search mechanisms in the
BRKGA that exploit promising areas of the search space with
constrained global optimisation methods like the dotted board
model. The results achieved in this study demonstrates the
efficiency of the proposed method, especially for solving larger
solutions that resemble more closely to demands observed in
real-world demands.

VI. CONCLUSIONS AND FUTURE WORK

C&P are hard combinatorial optimisation problems that
can be found in several manufacturing processes such as,
for example, clothing manufacturing [3] and ship container
loading [6]. The spectrum of C&P algorithms in the literature
is diverse, often sharing the trade-off between computationally
expensive computation for finding global optima solutions and
efficient running time. Hence most of the literature employs
metaheuristics capable of selecting good-enough solutions in
a reasonable time.

This paper presented a variant for the BRKGA which uses
the dotted board model combined with the CFR technique
for solving the two-dimensional ISSP problem. Computational
experiments against datasets in the literature demonstrated the
efficiency of the proposed method, which presented compet-
itive results for most of the instances. The proposed method
obtained equal or better results than other methods for 75% of
the tested instances. For the remaining instances, it obtained
near-optimal solutions in significantly less running time.

In future research, the authors expect to exploit the results
from different packing algorithms combined with features of
the input data. Such information enables the use of data
science techniques and statistical models (e.g. deep learning)
that can predict the most suitable packing algorithm, packing
performance and relevant features in C&P problems.

REFERENCES

[1] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology
of cutting and packing problems,” European journal of operational
research, vol. 183, no. 3, pp. 1109–1130, 2007.

[2] I. Elamvazuthi, S. Kamaruddin, and M. S. Azmi, “Automation of nesting
and cutting processes of leather furniture production: a case study,” In-
ternational Journal of Mechanical & Mechatronics Engineering, vol. 9,
no. 10, pp. 25–29, 2008.

[3] J. Heistermann and T. Lengauer, “The nesting problem in the leather
manufacturing industry,” Annals of Operations Research, vol. 57, no. 1,
pp. 147–173, 1995.

[4] K. Hamada, Y. Ikeda, H. Tokumoto, and S. Hase, “Development of
automatic nesting system for shipbuilding using the branch-and-bound
method,” Journal of Marine Science and Technology, vol. 24, no. 2, pp.
398–409, 2019.

[5] Z. Jin, K. Ohno, and J. Du, “An efficient approach for the three-
dimensional container packing problem with practical constraints,” Asia-
Pacific Journal of Operational Research, vol. 21, no. 03, pp. 279–295,
2004.

[6] L. J. P. de Araújo and P. R. Pinheiro, “Combining heuristics backtracking
and genetic algorithm to solve the container loading problem with weight
distribution,” in Soft Computing Models in Industrial and Environmental
Applications, 5th International Workshop (SOCO 2010), E. Corchado,
P. Novais, C. Analide, and J. Sedano, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 95–102.

[7] K. A. Dowsland, S. Vaid, and W. B. Dowsland, “An algorithm for
polygon placement using a bottom-left strategy,” European Journal of
Operational Research, vol. 141, no. 2, pp. 371–381, 2002.

[8] B. K. Nielsen and A. Odgaard, “Fast neighborhood search for the nesting
problem,” Sci. Report, University of Copenhagen, 2003.

[9] A. A. Leao, F. M. Toledo, J. F. Oliveira, and M. A. Carravilla, “A
semi-continuous mip model for the irregular strip packing problem,”
International Journal of Production Research, vol. 54, no. 3, pp. 712–
721, 2016.

[10] L. H. Cherri, L. R. Mundim, M. Andretta, F. M. Toledo, J. F. Oliveira,
and M. A. Carravilla, “Robust mixed-integer linear programming models
for the irregular strip packing problem,” European Journal of Opera-
tional Research, vol. 253, no. 3, pp. 570–583, 2016.

[11] T. de Castro Martins and M. d. S. G. Tsuzuki, “Simulated annealing
applied to the rotational polygon packing,” IFAC Proceedings Volumes,
vol. 39, no. 3, pp. 475–480, 2006.

[12] L. J. P. de Araújo, E. Özcan, J. A. Atkin, and M. Baumers,
“Analysis of irregular three-dimensional packing problems in additive
manufacturing: a new taxonomy and dataset,” International Journal of
Production Research, vol. 57, no. 18, pp. 5920–5934, 2019. [Online].
Available: https://doi.org/10.1080/00207543.2018.1534016

[13] J. F. Gonçalves and M. G. Resende, “Biased random-key genetic algo-
rithms for combinatorial optimization,” Journal of Heuristics, vol. 17,
no. 5, pp. 487–525, 2011.

[14] F. M. Toledo, M. A. Carravilla, C. Ribeiro, J. F. Oliveira, and A. M.
Gomes, “The dotted-board model: a new mip model for nesting irregular
shapes,” International Journal of Production Economics, vol. 145, no. 2,
pp. 478–487, 2013.

[15] B. A. Júnior and P. R. Pinheiro, “Approaches to tackle the nesting
problems,” in Artificial Intelligence Perspectives in Intelligent Systems.
Springer, 2016, pp. 285–295.

[16] B. Chazelle, “The bottomn-left bin-packing heuristic: An efficient im-
plementation,” IEEE Transactions on Computers, no. 8, pp. 697–707,
1983.

[17] J. A. Bennell, K. A. Dowsland, and W. B. Dowsland, “The irregular
cutting-stock problem—a new procedure for deriving the no-fit poly-
gon,” Computers & Operations Research, vol. 28, no. 3, pp. 271–287,
2001.

[18] E. K. Burke, R. S. Hellier, G. Kendall, and G. Whitwell, “Complete and
robust no-fit polygon generation for the irregular stock cutting problem,”
European Journal of Operational Research, vol. 179, no. 1, pp. 27–49,
2007.

[19] A. M. Gomes and J. F. Oliveira, “Solving irregular strip packing
problems by hybridising simulated annealing and linear programming,”
European Journal of Operational Research, vol. 171, no. 3, pp. 811–829,
2006.

[20] J. A. Bennell and X. Song, “A beam search implementation for the
irregular shape packing problem,” Journal of Heuristics, vol. 16, no. 2,
pp. 167–188, 2010.

[21] S. Jakobs, “On genetic algorithms for the packing of polygons,” Eu-
ropean journal of operational research, vol. 88, no. 1, pp. 165–181,
1996.

[22] A. K. Sato, T. C. Martins, and M. S. G. Tsuzuki, “An algorithm for
the strip packing problem using collision free region and exact fitting
placement,” Computer-Aided Design, vol. 44, no. 8, pp. 766–777, 2012.

[23] B. Amaro Júnior, P. R. Pinheiro, and P. V. Coelho, “A parallel biased
random-key genetic algorithm with multiple populations applied to ir-
regular strip packing problems,” Mathematical Problems in Engineering,
vol. 2017, 2017.

[24] M. Fischetti and I. Luzzi, “Mixed-integer programming models for
nesting problems,” Journal of Heuristics, vol. 15, no. 3, pp. 201–226,
2009.

[25] M. O. Rodrigues and F. M. Toledo, “A clique covering mip model for
the irregular strip packing problem,” Computers & Operations Research,
vol. 87, pp. 221–234, 2017.

[26] S. C. Leung, Y. Lin, and D. Zhang, “Extended local search algorithm
based on nonlinear programming for two-dimensional irregular strip
packing problem,” Computers & Operations Research, vol. 39, no. 3,
pp. 678–686, 2012.

[27] A. Elkeran, “A new approach for sheet nesting problem using guided
cuckoo search and pairwise clustering,” European Journal of Opera-
tional Research, vol. 231, no. 3, pp. 757–769, 2013.

[28] L. R. Mundim, M. Andretta, and T. A. de Queiroz, “A biased random
key genetic algorithm for open dimension nesting problems using no-fit
raster,” Expert Systems with Applications, vol. 81, pp. 358–371, 2017.

[29] L. J. P. de Araújo and P. R. Pinheiro, “Applying backtracking heuristics
for constrained two-dimensional guillotine cutting problems,” in Infor-
mation Computing and Applications, B. Liu and C. Chai, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 113–120.

[30] H. John, “Holland. adaptation in natural and art cial systems,” 1975.
[31] J. C. Bean, “Genetic algorithms and random keys for sequencing and

optimization,” ORSA journal on computing, vol. 6, no. 2, pp. 154–160,
1994.

[32] W. M. Spears and K. D. De Jong, “On the virtues of parameterized
uniform crossover,” Naval Research Lab Washington DC, Tech. Rep.,
1995.

[33] J. Błażewicz, P. Hawryluk, and R. Walkowiak, “Using a tabu search
approach for solving the two-dimensional irregular cutting problem,”
Annals of Operations Research, vol. 41, no. 4, pp. 313–325, 1993.

[34] J. F. Oliveira, A. M. Gomes, and J. S. Ferreira, “Topos – a new
constructive algorithm for nesting problems,” OR-Spektrum, vol. 22, pp.
263–284, 2000.

[35] B. A. Junior. Experiment data. [Online]. Available: https://drive.google.
com/open?id=14RbabDOsOCw TsXlLJcLHRAN5gIB vSV

