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Abstract— In recent years, Multifactorial Optimization (MFO)
has gained a notable momentum in the research community.
MFO is known for its inherent capability to efficiently address
multiple optimization tasks at the same time, while transferring
information among such tasks to improve their convergence
speed. On the other hand, the quantum leap made by Deep
Q Learning (DQL) in the Machine Learning field has allowed
facing Reinforcement Learning (RL) problems of unprecedented
complexity. Unfortunately, complex DQL models usually find
it difficult to converge to optimal policies due to the lack of
exploration or sparse rewards. In order to overcome these
drawbacks, pre-trained models are widely harnessed via Transfer
Learning, extrapolating knowledge acquired in a source task to
the target task. Besides, meta-heuristic optimization has been
shown to reduce the lack of exploration of DQL models. This
work proposes a MFO framework capable of simultaneously
evolving several DQL models towards solving interrelated RL
tasks. Specifically, our proposed framework blends together the
benefits of meta-heuristic optimization, Transfer Learning and
DQL to automate the process of knowledge transfer and policy
learning of distributed RL agents. A thorough experimentation
is presented and discussed so as to assess the performance of
the framework, its comparison to the traditional methodology
for Transfer Learning in terms of convergence, speed and policy
quality , and the intertask relationships found and exploited over
the search process.

Index Terms—Multifactorial Optimization, Deep Reinforce-
ment Learning, Transfer Learning, Evolutionary Algorithm.

I. INTRODUCTION

Since its inception in the literature mainstream, Deep Learn-
ing has been typically used for modeling (i.e. generative
distribution learning and predictive approaches) and actua-
tion (correspondingly, Reinforcement Learning, RL). While
much attention has been traditionally paid to the former,
the irruption of multi-layered complex neural architectures
to the RL paradigm marked a milestone in regards to the
capability of artificial agents learn to optimally interact with
a given environment. Among them, Deep Q Learning (DQL)
introduced the use of Deep Neural Networks to predict the
total reward expected to be gained after a particular action
was taken on the environment. By leveraging this increased
reward modeling capability along with other improvements
(e.g. experience replay), DQL has since then excelled at
learning over challenging RL domains, in some of them
attaining near-human levels of performance.

Since the evaluation budget to solve a RL task is often as-
sumed to be unlimited, the complexity of the environment does
not have much relevance, given that the algorithm guarantees
convergence to a sub-optimal solution. In this context, it has
been proven that Deep Reinforcement Learning can achieve
impressive results with a proper number of evaluations. In
recent works such as the HideAndSeek game from OpenAI
Labs [1], billions of evaluations are needed to make interesting
behaviors emerge among the agents. Nevertheless, in such
complex environments, or even in contexts where the amount
of evaluations is limited, Transfer Learning is instead used to
exploit the knowledge captured by models trained beforehand
for other related tasks. This transferred knowledge is adopted
as the initial state for the agent to be learned in the target
scenario, which allows reducing the time needed to grasp and
acquire sophisticated behavioral skills.

Although Transfer Learning has a straightforward applica-
tion among Deep Learning models, its effectiveness is strin-
gently subject to the similarity between origin and destination
tasks [2]. Unfortunately, it is not always the case in which
two tasks can be claimed to be similar to each other and
suitable for Transfer Learning before actually testing their
empirical performance. For instance, in the HideAndSeek
scenario tackled in [1], Transfer Learning is used to make
agents perform different complex tasks departing, as start-
ing state of the Deep RL model, knowledge captured for
other tasks such as ObjectCounting, LockAndReturn,
ShelterConstruction or SequentialLock, among
others (i.e. pretrained on these tasks). Despite the benefits of
Transfer Learning for the RL realm, determining the trans-
ferability of knowledge among tasks is, to date, delegated to
common sense and intuition held on the scenarios at hand.

The work presented in this paper aims to take a step forward
in this direction. Specifically, we propose a framework for
simultaneously learning multiple DQL models for RL tasks,
leveraging the existing relationships and complementarities
among such tasks during the training phase. To this end, the
learning process is formulated as an optimization problem
defined on a common search space, from which solutions to
specific DQL models for every task can be decoded. Efficiently
solving this optimization problem is done by means of Transfer
Optimization, an emerging paradigm for tackling different
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problems by automatically exploiting synergies among them
learned over the optimization process [3]. Several categories
can be established under this paradigm (e.g. sequential transfer
[4]). In this work we select multitasking to dynamically
optimize multiple DQL models, and to capitalize on the
relationships between RL scenarios during the search [5],
[6]. In particular, we resort to the so-called Multifactorial
Evolutionary Algorithm (MFEA, [7]), a specific multitasking
algorithm that relies on evolutionary search operators (also
known as Evolutionary Multitasking [8]). The intrinsic knowl-
edge transfer capability between candidates featured by MFEA
allows for a simultaneous co-evolution of multiple DQL mod-
els, achieving faster convergence and better performance levels
by virtue of similarities among RL tasks.

A experimental setup is devised to analyze and validate
the performance of the proposed framework when undertaking
several simple RL scenarios. As discussed from the obtained
results, MFEA not only renders an excellent performance
when learning all DQL models at the same time in terms of
accuracy and convergence speed, but also evinces whether the
search algorithm identifies and exploits the inherent relation-
ships between the defined RL scenarios. The results stemming
from this research work can buttress the idea that a unique
search process can face the main drawbacks of DQL: i) on the
one hand, sharing a unique search space avoids the evolution
process to get stuck in local optima; and ii) on the other
hand, knowledge is shared between different tasks without any
information on whether they are related anyhow, hence acting
as an adaptive transfer learning mechanism.

The rest of the paper is organized as follows: first, Section
II introduces key concepts on MFEA, DQL and Transfer
Learning that are required for a proper understanding of the
present contribution. Next, Section III describes in detail the
proposed framework. Experiments and results are presented
and discussed in Section IV. Finally, conclusions and prospects
towards future research lines are given in Section V.

II. BACKGROUND

As stated above, this section introduces background con-
cepts related to the present work. To begin with, Subsection
II-A formally exposes the MFEA algorithm adopted in this
work. Then, Subsection II-B provides an introduction to DQL,
while Subsection II-C explains how Transfer Learning is
usually performed on RL scenarios.

A. Multifactorial Evolutionary Algorithm

MFEA is a recently proposed evolutionary algorithm for
addressing multiple optimization problems using bio-cultural
schemes of multifactorial inheritance [7]. Briefly explained,
MFEA considers an scenario with K optimization problems
(tasks), defined as {T1, . . . , TK} = {Tk}Kk=1. Without loss
of generality we assume that these tasks are minimization
problems, each defined over a search space X k and Dk =
|X k| (dimensionality). The goal is to find solutions {x∗k}Kk=1

such that x∗k = argx∈Xk
minFk(x) ∀k ∈ {1, . . . ,K}, where

Fk : X k 7→ R is the objective function of task Tk.

Some concepts must be posed before continuing further.
Firstly, it is necessary to define a unified search space XU for
all tasks, wherein solutions to each of such problems can be
encoded and decoded. The form taken by this unified search
space XU depends roughly on the optimization problems to
be solved, with several alternatives contributed to date (e.g.
Random Keys [9]). The dimensionality of the unified search
space is usually1 set to be the maximum among the dimensions
of the tasks under consideration, i.e. |XU | = maxkDk.

In order to be able to compare among candidate solutions
in the unified space, it is necessary to establish a global search
method. According to evolutionary computation principles, a
population of candidates {xp}Pp=1 is defined, wherein each
individual xp can be decoded to xpk ∈ X k related to task Tk.
Once decoded, several concepts are defined to rank and evolve
the individuals within the population:
• Factorial cost (Ψp

k ∈ R): The factorial cost of candidate xp

in task Tk is given by Ψp
k = λ · δpk + Fk(xpk), where λ

is a penalizing multiplier, δpk represents the total constraint
violation of xp at task Tk, and Fk(xpk) denotes the objective
value once xp has been decoded to xpk. If there is not
constraint violation, Ψp

k = Fk(xpk).
• Factorial rank (rpk ∈ {1, . . . , P}) is defined as the position or

rank of candidate xp in task Tk after sorting the population
in ascending order of Ψp

k.
• Scalar fitness (ϕp ∈ R[0, 1]) is given by the inverse of the

factorial rank rpk of candidate xp in the task in which it
performs best, i.e., ϕp = 1/

(
mink∈{1...K} r

p
k

)
.

• Skill factor (τp ∈ {1, . . . ,K}) is the task in which xu

performs best, i.e., τp = argk∈{1,...,K}min rpk.
When the scalar fitness ϕp has been computed ∀xp, they can

be compared to each other by assuming that xp dominates xp′

if ϕp > ϕp′. Based on this relationship of dominance and the
encoding/decoding procedure from XU to each X k and vice
versa, an evolutionary optimization algorithm can be defined,
comprising crossover, mutation and selection operators oper-
ating on the aforementioned population of individuals.

Algorithm 1: Multifactorial Evolutionary Algorithm

1 Initialize at random a population {xp}Pp=1

2 Compute factorial costs Ψp
k ∀k, p

3 Assign a skill factor τp to each xp

4 while termination criterion not reached do
5 Apply operators to {xp}Pp=1, yielding {xp,M}PM

p=1

6 Evaluate each xp,M on its parents’ skill factor
7 Merge {xp,M}PM

p=1 and {xp}Pp=1

8 Update ϕp and τp of merged candidates
9 Select P best candidates in terms of

10 end
11 Return the best candidate for each of the K tasks

This is indeed the approach followed by MFEA, whose
search procedure is described in Algorithm 1. Apart from the

1This depends on how solutions belonging to the unified search space are
decoded to solutions of each problem Tk .



concept of unified search space and the selection based on
factorial ranks and factorial costs, MFEA differs from standard
evolutionary heuristics also in terms of search operators, fea-
turing novel methods (namely, Assortative Mating and Vertical
Cultural Transmission) that favor the exchange of knowledge
among tasks. On one hand, Assortative Mating (Algorithm 2)
imposes that candidates with the same skill factor mate more
likely than two candidates excelling at two different tasks.

Algorithm 2: Assortative mating in MFEA

1 Define a threshold ϕ ∈ R[0, 1]
2 Draw a random number r ∼ Uniform(0, 1)
3 Select two parents xp1 and xp2 from the population
4 if τp1 = τp2 or r < ϕ then
5 Apply crossover and mutation on xp1 and xp2 to

generate two offspring xp1,M and xp2,M

6 else
7 Apply mutation on xp1 to yield xp1,M

8 Apply mutation on xp2 to yield xp2,M

9 end

On the other hand, Vertical Cultural Transmission enforces
that candidates are not evaluated in all optimization tasks
{T1, . . . , TK}, but only on one of their parents’ skill factors.
This specific aspect makes MFEA competitive in terms of
computational complexity. In addition to these two search
operators, MFEA implements a local search method before
evaluating a candidate, which we will not consider in our
study for reasons disclosed later. Finally, once the produced
offspring have been evaluated and merged with those from
the previous generation, selection based on scalar fitness ϕp

is applied, by which the best P individuals in terms of this
fitness are retained in the population for the next generation.

B. Deep Reinforcement Learning

As mentioned in the introduction, the proposed framework
deals with distributed RL problems undertaken by means
of DQL models, whose learning process is formulated as
an optimization problem and solved jointly via evolutionary
multitasking. DQL has gained a growing popularity during
recent years for their superior modeling [10] and multi-
agent cooperation capabilities [1]. However, what makes DQL
models particularly interesting for the purpose of this study is
their suitability to be trained by using metaheuristic algorithms
[11], showing competitive results when compared to traditional
back-propagation. For the sake of completeness, we next
elaborate briefly on the concepts underneath DQL.

In general, the goal of RL is to learn a policy, usually
denoted as πθ(s) (with θ denoting the parameters defining
the policy itself), to efficiently perform a task depending on
a state s ∈ S . In general terms, a RL approach is described
by an agent in charge of taking an action at = πθ(st) from a
set of actions A, every time a new state st ∈ S is presented
to it. The environment, where the task is defined, returns a
reward of performing action at in state st, and informs the

agent with the next state st+1 of the environment. The search
for a policy πθ(s) capable of maximizing this reward and
optimally solving the RL task is not trivial, unchaining a
flurry of different algorithmic approaches and heuristics for
this purpose [12].

Agent EnvironmentEnvironment

πϑPolicy (s,a)
action

New Observation

reward

Fig. 1. General architecture of DQL, in which the policy to be learned is
implicitly embedded in the trainable parameters of a Deep Neural Network.

One of such different policy learning methods is DQL, in
which the policy is represented by the weights and biases of a
Deep Neural Network (Figure 1). The Q in DQL comes from
the traditional Q learning, and refers to the long-term return
Q(st, at) predicted for every state-action pair at instant t. This
value is updated every time the agent takes an action, as per:

Q(st, at)←Q(st, at) +α[Rt + γmax
a∈A

Q(st+1, a)−Q(st, at)],

where Q(st, at) denotes the current Q value associated to
taking the action at at state st, Rt is the reward received when
moving from state st to state st+1, α ∈ R[0, 1] is a learning
rate, and γ is a discount factor that lowers the contribution of
future rewards in the computation. As opposed to this update
rule, DQL resorts to a Deep Neural Network to approximate
the Q value associated to every task (outputs) given the current
state (input). As a result, the need for computing and updating
Q for every (state, action) pair is overridden, making it suitable
for RL problems of high dimensionality.

Since the learned policy πθ(s) is implicitly encoded in
the weights and biases of the Deep Neural Network (θ),
the behavior of the agent when acting on the environment
only depends on the values of such neural parameters. To
set optimally these values, gradient descent is often utilized2

to minimize a Q-dependent squared error loss function with
respect to θ:

min
θ

1

2

(
Mθ(st, at)− [Rt + γmax

a∈A
Mθ(st+1, a)]

)2

, (1)

where Mθ(s, a) the output of the neural network with param-
eters θ corresponding to action a when observing state s.

Indeed, the training problem can be seen as an optimization
task wherein parameter values act as decision variables, and
the loss function as the objective to be minimized. This fact
underlies the reason why metaheuristic algorithms have been
proposed to evolve DQL models, with the goal of harnessing

2Due to the lack of space we skip specific aspects of DQL model training
such as experience replay, target network and reward clipping.



the highly parallel nature of these solvers towards finding good
policies at a lower computational cost [11], [13]–[15]. More
recently, alternative techniques such as Novelty Search have
been hybridized with metaheuristic methods to reach even
better results for evolving DQL models [16]. Neuroevolution
for DQL models has been approached with evolutionary
algorithms as well [17].

C. Transfer Learning

Finally, a third ingredient involved in our framework is
Transfer Learning, which refers to the knowledge transfer
between models solving tasks that share some similarities [18].
Conforming to intuition, the most closely tasks are related
to each other, the most effective the transfer of knowledge
between models will be. This statement also holds in Transfer
Optimization, in which the relationship between the problems
being solved also drives the potential benefit of exchanging
knowledge among them. The main rationale of Transfer Learn-
ing when utilized in the context of data modeling tasks is
to quickly adapt a model for performing well in different
environments, with a lower demand for training data or at
a lower training cost.

While Transfer Learning has been a thoroughly addressed
matter of study, the simplicity by which Transfer Learning
can be realized between Deep Learning models has allowed
them to dominate this research arena, particularly in image
recognition and reinforcement learning scenarios [19], [20].
The most common approach is to reuse pre-trained models
learned for the source task(s) as a initialization point of the
model of the target task. To this end, the most straightforward
approach is to copy a fraction of the parameter values of the
pre-trained model to the model that faces the target task. Once
this is done, some layers of the model of the target task are
frozen, whereas parameter belonging to the rest of the layers
are trained via back-propagation.

Despite this apparent simplicity, it is not trivial to determine
how many layers/parameters to transfer between models: the
more similar the tasks are, the higher the number of parameters
that can be transferred to the model of the target task will
be. Furthermore, it still remains unclear whether the degree
of similarity between origin and target task can be easily
quantified in complex modeling problems, specially in those
where no intuition can be held in this matter. In addition, the
mapping between the degree of similarity among tasks and
the amount of parameter values transferred between models is
still open to further research. With all this been said, Transfer
Learning can be useful between DQL to develop general con-
trollers that can adapt themselves to different environments,
and solve accurately RL problems therein. The framework
presented in the next section aims precisely at this goal, further
complementing it with its capability to enforce information
transfer among RL tasks during the learning process.

III. PROPOSED FRAMEWORK

The framework proposed in this paper simultaneously
evolves DQL models aimed at solving distinct albeit inter-

related RL tasks. To perform this efficiently, we adopt MFEA
as the method in charge of solving the different task bunch.
Besides, a novel encoding scheme is devised, whose design is
inspired by the way Transfer Learning is implemented among
neural networks.

To begin with, the optimization problems {T1, . . . , TK}
represent RL tasks defined on a set of different environments
E = {E1, . . . , EN}, such that the environment index on which
problem Tk is defined is given by ξ(k), with ξ : {1, . . . ,K} 7→
{1, . . . , N}. Furthermore, each of such environments can be
configured with a set of parameters β that permit to tailor
different configurations of the environment for the task to
be solved. For instance, in a cartpole game, β could
represent the gravity force or the length of the pole to be kept
upright3. Therefore, tasks to be solved may belong to different
environments, wherein tasks defined on the same environment
may operate under different configurations. Ideally, knowledge
transfer should occur more likely among tasks defined on
the same environment (intra-environment transfer), as long
as the configurations β do not make the tasks radically
different to each other. When extrapolating this statement
to the knowledge exchange among different environments
(corr. inter-environment transfer), greater differences among
the tasks can be expected, yet still leaving room for knowledge
exchange (e.g. levering a pole in cartpole should contribute
to swinging up a two-link robot in the acrobot game).

Automating this knowledge transfer among DQL models
aimed to solve different tasks is what motivates the adoption
of MFEA. To this end, for each task k ∈ {1, . . . ,K} a DQL
model Mk

θk
is sought, whose parameters θk (weights, biases)

constitute the local decision variables that MFEA aims to
optimize via a single exploration over a unified search space.
Therefore, according to the notation introduced for MFEA in
Subsection II-A, θk ≡ xk and X k is given by RDk , with
Dk = |θk|. Based on this notation, the problem Tk to be
solved is formulated as the maximization of the final reward
of the DQL model Mk

θk
averaged over a number Ntst of test

episodes run over environment ξ(k):

Problem Tk : max
θk∈RDk

1

Ntst

Ntst∑
t=1

R(Mk
θk

;Eξ(k), t), (2)

where R(M ;E, t) denotes the final reward achieved by model
M on environment E at test episode t. We note here that the
above objective differs from the one pursued in the traditional
DQL training approach, given in Expression (1). The reason
is that we do not seek to learn ϕk online over epochs by
interacting with the environment, but rather to optimize them
off-line. Nevertheless, this clarification stimulates research
lines further exposed in Section V.

In order to realize a unified search space XU on which
to perform the multifactorial search, two important factors
must be taken into account when designing the encoding and
decoding procedures between XU and X k: i) they must be

3Further information about these exemplifying games, which are also used
in the experiments, can be found in the OpenAI Gym Library [21].



computationally efficient; and ii) they must harness any a
priori knowledge on the type of tasks to be solved. Indeed,
when Transfer Learning is applied to RL, there are some
considerations that can be taken into account in order to
obtain a better performance [19]. It is known that neural
networks learn general patterns in their first layers, while the
last ones retain specialized information about the task under
consideration. Consequently, as mentioned in Subsection II-C,
Transfer Learning among Deep Neural Networks is mostly
made by sharing network parameters corresponding to the first
layers of the network, while delegating the specialization for
the task to be solved to the parameters of the last layers of
the neural architecture.

Bearing these observations in mind, it seems natural to
embrace them when designing XU . Specifically, we partition
any given solution xp ∈ XU in two parts:
• A first part XU

sh representing the parameters of the Lsh first
layers of all models {Mk

θk
}Kk=1, whose values will be the

same across tasks; and
• K parts {XU

k }Kk=1, each embedding the parameters of the
last layers of Mk

θk
that are specialized for Tk and hence,

not shared across different tasks.

M1 M2 Mk...

... M1Ln
M2Ln

+ + ...
Shared Layers

(TL)
Individual Layers

(No TL)

M2Ln

Task domain

Unified Space (  )

Decode

χU

Fig. 2. Encoding and decoding scheme of the proposed MFEA framework.

The decoding process is graphically depicted in Figure 2,
where it can be observed that candidate solutions θk ≡ xk
are built by extracting the shared weights and biases in XU

sh,
followed by those in XU

k . Therefore, the dimensionality of the
unified search space is given by:

|XU | =
Lsh∑
l=1

max
k
{|ϕk| : ϕk ∈ layer l of Mk

θk
}

+

K∑
k=1

Lk∑
l=Lsh+1

|ϕk| : ϕk ∈ layer l of Mk
θk
, (3)

where Lk denotes the number of layers of Mk
θk

. Once XU

has been defined, knowledge among {Tk}Kk=1 is intrinsically
shared via the unified search space and the MFEA evolutionary
operators (Algorithm 1). As such, the population of individuals
{xp}Pp=1 defined on the unified search space is evolved over

generations by successively applying crossover and mutation
operators through the assortative mating procedure of Algo-
rithm 2. This operator favors the implicit genotype transfer
between tasks, allowing a RL problems to benefit from the
knowledge gained to solve other RL problems embedded in
the weights and biases belonging to the shared partition XU

sh

of the search space XU . As per the evolutionary operators,
we utilize, at no loss in generality, those prescribed in [22]:
Simulated Binary Crossover (SBX) and polynomial mutation.

Once all details of the proposed framework have been given,
we are in a position to assess its performance via computer
simulation. The next section elaborates and discusses on the
results obtained therefrom.

IV. EXPERIMENTS AND RESULTS

We proceed by evaluating the performance of the proposed
MFEA-based framework when evolving multiple DQL models
simultaneously. To this end, we structure the experiments and
discussion to provide an informed answer to several research
questions (RQ):
• RQ1: Can MFEA optimize DQL models individually? Do

they efficiently solve the considered RL tasks?
• RQ2: Can MFEA optimize DQL models simultaneously,

exploiting their synergies to achieve a better performance?
• RQ3: Can we quantify the intra- and inter-environment

knowledge transfer between RL tasks realized by MFEA?
To elaborate on these questions, we first establish the N = 3

RL environments {En}3n=1 involved in the experimentation.
From the set of environments provided by OpenAI Gym Li-
brary we select two environments with a discrete action space
(E1 = cartpole and E2 = acrobot), and a third envi-
ronment with continuous action space (E3 = pendulum).
The configuration β of these environments has been manip-
ulated in order to yield a total of K = 12 tasks {Tk}12k=1,
which we will hereafter refer to as environment(α), with
α ∈ {A,B,C,D} indicating the configuration set. Environ-
ments and configurations considered in the experiments are
summarized in Table I.

TABLE I
ENVIRONMENTS AND CONFIGURATIONS OF THE EXPERIMENTS

Environments Configuration α = A α = B α = C α = D

cartpole(α) Pole length 0.5 0.6 0.7 0.4
acrobot(α) Joints’ length 1 1.2 1.4 1.6
pendulum(α) Max speed/Max torque 8 / 2.0 6 / 2.0 10 / 2.0 8 / 2.5

In order to solve the aforementioned tasks, the Deep Neural
Networks {Mk

θk
}Kk=1 used for DQL are set with the same

number of layers, parameters and overall architecture. Figure
3 (next page) depicts this common neural architecture, as well
as the number of parameters on each layer. We further set
Lsh = 3 shared layers among the tasks, yielding a unified
search space XU with dimensionality |XU | = 962 decision
variables (weights and biases) as per Expression (3). As for
the MFEA, it is relevant to emphasize that its configuration is
kept fixed for all experiments: a population size of P = 100



candidates, random initialization, assortative mating operator
controlled by threshold ϕ = 0.3 (see Algorithm 2), and stop-
ping criteria given by a total of 60 generations (namely, 6 ·103

fitness evaluations). Furthermore, the fitness of candidates is
computed as the average of the final reward achieved by
the candidate over Ntst = 50 episodes of the corresponding
environment.

...

n. params: 
activation: linear

n. params: 272 
activation: relu

n. params: 272
activation: relu

n. params: 64-112   
activation: relu

n. params: 0 

Action

Observation

Flatten

Dense - 16

Dense - 16

Dense - 16

Output dependent on 
environment

Fig. 3. Deep Neural Network architecture and number of parameters of every
layer in charge of solving the environments under consideration.

To account for the statistical variability of the results, 5
independent runs of every experiment have been executed,
reporting on performance statistics averaged over such runs.
Each model, once optimized by the proposed framework, is
tested on 250 episodes of its corresponding task, from which
the performance statistics mentioned previously are computed.
All the tests conducted in this experimentation have been run
on an Intel(R) Xeon W-2123 processor running at 3.6 GHz
with 32 Gb RAM. The source code producing the results
presented in what follows has been made available at [23].

RQ1: Can MFEA optimize DQL models individually? Do they
efficiently solve the RL tasks?

First, MFEA is tested on each of the tasks individually,
i.e. by just considering one single task (K = 1). This
is expected to yield the best models MFEA can achieve,
setting the highest reward that can be reached on every task.
Figure 4 exemplifies the evolution of the average reward
attained by MFEA as a function of the number of evaluations
for tasks cartpole(B), acrobot(B) and pendulum(B).
The shaded area represents the ±std range centered on the
mean (bold line), computed over 5 independent runs and 250
test episodes per every run.

Some interesting aspects can be drawn from these plots:
to begin with, the evolutionary operators defined in MFEA
succeed at converging fast and effectively towards well-
performing models, characterized by the mean and standard
deviation of their reward shown at the right bottom corner
of each plot. In terms of convergence, acrobot(B) and
cartpole(B) are able to reach the highest performance
in approximately 10 generations, whereas pendulum(B)
converges in around 20 generations. This relatively worse
convergence featured by pendulum(α), which was indeed

observed ∀α ∈ {A,B,C,D}, will have a strong implication
in the results obtained to gain insights on RQ3.

mean std
cartpole(B) 299.785 0.43

mean std
acrobot(B) -87.717 1.628

mean std
pendulum(B) -174.643 19.543

Fig. 4. Evolution of MFEA when individually evolving DQL models aimed
to solve tasks cartpole(B), acrobot(B) and pendulum(B). Mean and
standard deviation values of the evolved model tested on 500 episodes of their
correspondent environment is shown.

RQ2: Can MFEA optimize DQL models simultaneously, ex-
ploiting their synergies to achieve a better performance?

We proceed by inspecting the multi-environment evolving
capabilities of MFEA. A single population of solutions defined
on the unified search space XU is shared between all tasks,
while the evolution of each individual task is performed
with the addition of the intrinsic knowledge transfer endowed
by MFEA. The main goal of this experiment is to check
whether MFEA is a good solver for multiple environments,
giving quantitative metrics of the quality (reward) achieved
by models evolved via a single search process. Therefore, we
retrieve the reward statistics obtained for every task when the
corresponding DQL model is evolved by MFEA in isolation
with respect to the other tasks (RQ1). We then compare these
scores to those obtained when all tasks corresponding to a
given environment are jointly evolved, potentially promoting
intra-environment knowledge transfer. Since the number of
fitness evaluations is kept fixed to 60 · 103 in all cases, the
difference among such scores will evince the performance



degradation when all models are jointly optimized via MFEA.

TABLE II
AVERAGE AND STANDARD DEVIATION OF REWARDS OBTAINED BY MFEA
ON DIFFERENT ENVIRONMENTS WHEN OPTIMIZING MODELS SEPARATELY

OR SIMULTANEOUSLY (INTRA-ENVIRONMENT TRANSFER)

Separately Simultaneously

Mean Std Mean Std

Exp. 1
cartpole

cartpole(A) 299.95 0.10 261.944 48.094
cartpole(B) 299.79 0.43 280.098 38.178
cartpole(C) 299.97 0.05 274.072 36.804
cartpole(D) 300.00 0.00 287.082 15.272

Exp. 2
acrobot

acrobot(A) -77.75 1.13 -82.732 2.651
acrobot(B) -87.72 1.63 -95.412 5.634
acrobot(C) -96.91 3.51 -101.836 4.588
acrobot(D) -103.07 2.32 -112.96 4.861

Exp. 3
pendulum

pendulum(A) -270.39 99.44 -800.915 171.822
pendulum(B) -174.63 19.54 -562.826 138.927
pendulum(C) -176.83 19.65 -722.138 220.063
pendulum(D) -161.58 9.81 -516.174 37.71

Table II lists the results obtained for addressing RQ2, com-
prising three experiments (one per environment). By analyzing
them, it can be claimed that MFEA allows evolving multiple
DQL models efficiently by using the designed unified search
space. When optimizing for the cartpole environment (Exp.
1), it can be seen that the DQL models evolved can perform
competitively with their individually evolved counterparts,
even if being granted the same computational budget. Like-
wise, the acrobot environment (Exp. 2) does not undergo
a strong degradation either, reaching rewards close to those
of the individually evolved models. However, in pendulum
(Exp. 3) notably worse results were obtained. This fact unveils
that the complexity of the environment to be solved directly
impacts on the quality of the multifactorial evolution. The
spotlight must be placed on the reasons for this degradation,
reason for which an study on the transferability of knowledge
among tasks (RQ3) is addressed in the next section.

RQ3: Can we quantify the intra- and inter-environment knowl-
edge transfer among RL tasks promoted by MFEA?

We end our discussion on the performance of the proposed
framework by delving into the genetic knowledge transfer of
MFEA. In general, Transfer Learning is applied among Deep
Neural Networks by copying weights and biases from a pre-
trained network in a origin task Tk to a network aimed to
solve a target task Tk′ . In MFEA, however, the knowledge
transfer is done throughout the evolution process, sharing
the knowledge acquired by the population and embedded in
the genotype of the search space XU . To undertake this
knowledge transferability study, we set MFEA to evolve
simultaneously K = 9 tasks corresponding to 3 different
configurations (namely, A, B and C as per Table I) of each of
the N = 3 environments considered in our experiments. Once
this experiment is designed and run, we record similar final
reward statistics to those reported for RQ1 and RQ2.

Results are listed in Table III, which must be analyzed
by comparing them to those in Table II. Relatively lower

TABLE III
AVERAGE AND STANDARD DEVIATION OF REWARDS OBTAINED BY MFEA

WHEN EVOLVING JOINTLY DQL MODELS AIMED AT DIVERSE RL TASKS
(INTRA- AND INTER-ENVIRONMENT TRANSFER)

α = A α = B α = C

Mean Std Mean Std Mean Std

cartpole(α) 229.21 57.6 273.87 32.25 218.82 57.21
acrobot(α) -84.52 3.11 -95.86 2.47 -116.221 5.79
pendulum(α) -1086.02 69.52 -580.34 72.80 -721.88 144.43

average reward values are reached for all the tasks when
evolved jointly, with gaps being narrower for acrobot tasks.
Despite this worse performance, it is important to bear in
mind that in this case, more – and more diverse – tasks are
evolved simultaneously with the same evaluation budget and
population size. This demonstrates the potential of MFEA to
evolve DQL models for complicated RL tasks at the same
time. On the other hand, it provides evidence that the MFEA
operators devised to promote genetic transfer among tasks
do not outweigh the limited computational budget allocated
for all RL problems. It is appropriate to examine the reasons
for this lack of effectiveness, and discriminate whether the
joint evolution of tasks defined in these three environments
undergoes negative information transfer among such tasks that
cannot be evaded by MFEA.
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Fig. 5. Effective crossover percentage between tasks, denoting the percentage
of times that a crossover with the task denoted in the row has been effective
for the task denoted in the column.

To this end, we check the times an effective crossover
has occurred among tasks, referring as such to the crossover
event in which a candidate with skill factor equal to task
k, when recombined with another candidate with skill factor
k′, improves the performance of the latter in task Tk′ . The
heat map depicted in Figure 5 indicates the ratio of effective
crossovers for every pair of tasks as per row and column labels.
For instance, a highly intense color in the cell with coordinates
(row,column)= (Tk, Tk′) indicates that the crossover operation
between an individual with skill factor k, when mating with
an individual with skill factor equal to k′, has positively
contributed to solving Tk′ . Interesting relationships emerge
from this plot, such as a remarkably positive knowledge trans-



fer between cartpole(C) and acrobot(A), followed by
lower yet equally notable contributions from cartpole(B)
and cartpole(A). On the contrary, tasks whose average
reward as per Table III was found to be poor seem not to
contribute significantly to the convergence of tasks defined
on other environments (i.e. low inter-environment transfer), as
can be read for e.g. pendulum(C). However, for this latter
example a higher intra-environment transfer is noted, with
pendulum(B) having received a positive push recurrently
when mating with pendulum(C).

V. CONCLUSIONS AND FUTURE RESEARCH

This work has presented the application of Multfactorial Op-
timization to simultaneously optimize multiple DQL models
devised for a set of interrelated RL tasks. The goal is to evolve
jointly the weights and biases of the Deep Neural Networks
inside the aforementioned DQL models by formulating it as
a single optimization problem defined on an unified search
space, whose design is inspired by the usual way of per-
forming Transfer Learning among Deep Neural Networks. A
framework relying on the so-called Multifactorial Evolutionary
Algorithm (MFEA) has been designed to efficiently explore
this unified search space, incorporating further operators to
probabilistically exploit possible synergies among the tasks
under consideration during the search process.

We have empirically gauged the performance of MFEA to
solve multiple RL scenarios at the same time. MFEA has been
shown to perform well for this scenario, evolving up to nine
tasks by using a unique evolution process and just one popula-
tion, which is shared between all the environments/tasks. We
have also evaluated the effectiveness of the knowledge transfer
when evolving DQL models, with interesting insights between
the complexity of the RL task and its contribution in terms of
knowledge transfer to the rest of the tasks.

Future work will be devoted to the design of innova-
tive knowledge sharing strategies, as well as new encoding
schemes that extend the capabilities of the devised frame-
work, i.e. evolution of larger networks and more complex
environments. Efforts will be also invested towards optimizing
DQL tasks by MFEA in an on-line fashion, i.e. while partially
optimized DQL models interact with the environment.
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