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Abstract—Several Variants of the Differential Evolution (DE)
algorithm have been among the winners of competitions on
bound constrained optimization problems in distinct editions of
the Congress on Evolutionary Computation (CEC). This paper
compares some of those variants presented in the last five years.
Those algorithms are also combined in two adaptive dynamic
Island Models (IM), which adjust the topology according to the
algorithms applied in their islands. The Island Models are able to
adaptively direct more solutions to the islands with more qualified
algorithms to solve the problem. The results allow to verify
whether the combination of the recently proposed DE variants
in an adaptive dynamic structure is better than using each one
individually.

Index Terms—Differential Evolution, Competition of Evolu-
tionary Algorithms, Adaptive Dynamic Island Model.

I. INTRODUCTION

Differential Evolution (DE) is a simple and efficient Evolu-
tionary Algorithm (EA). Since it was proposed, DE attracted
attention of many researchers. Many variants and improve-
ments for DE were proposed over the years.

Periodically, the good performance of DE and its variants
is reinforced in the competition of EAs, to solve bound
constrained optimization problems, promoted in the Congress
on Evolutionary Computation (CEC). At each edition of CEC,
DE variants which participate of the competition, generally
take position among the winners. However, the benchmark
problems used in the competition are usually changed at
each CEC edition and winner algorithms of previous editions
are not necessarily compared with competitors of the current
edition.

It is important to know the impacts promoted to DE by good
variants proposed over the years. An alternative to evaluate
those algorithms is to compare the quality of the solutions
produced by them, as generally done in CEC competitions.
However, it is also interesting to check which features of the
base algorithm are changed by the new variants. It is pertinent
to verify the reasons for the improvements promoted to DE
performance.

This paper performs an additional evaluation of some vari-
ants of DE, proposed in the last 5 years, included among
the winners of CEC competitions on bound constrained op-
timization problems. Those algorithms are also incorporated
in two adaptive dynamic Island Models (IM). In this way,

it is possible to evaluate if combining some DE variants is
better than just choosing and using one of them individually.
The algorithms are compared under the same benchmark
problems.

II. DIFFERENTIAL EVOLUTION

The DE and some of its variants were proposed in [1] and
became one of the most studied and used EAs in the literature
[2]–[4]. In DE, the set of candidate solutions (population)
is composed by NP D-dimensional vectors, where D is
the dimension of the problem and NP is defined by the
user. At each DE iteration, three operations are applied to
each candidate solution: mutation, crossover and selection. In
mutation, for each vector xi, i = 1, 2, ..., NP is produced a
mutant vector vi given by

vi = xr1 + F × (xr2 − xr3), i = 1, 2, ..., NP, (1)

where r1, r2 and r3 ∈ {1, 2, ..., NP} are indexes of vectors
randomly chosen, mutually different and also different from i,
F ∈ (0, 2] is a DE parameter, whose value is defined by the
user [1].

In crossover, the solutions vi and xi are combined, produc-
ing the solution ui as

ui,j =

{
vi,j , if rand(j) ≤ CR or j = rand(i)
xi,j , if rand(j) > CR and j 6= rand(i) , (2)

where rand(j) is the j-th random real value ∈ [0, 1], rand(i)
is a random integer value ∈ {1, 2, ..., D}. In (2), CR ∈ [0, 1]
is another parameter of DE whose value is defined by the user
[1].

The selection defines which solution between ui and xi will
compose the population. Thus, the values of objective function
f(·) of these solutions are compared in a greedy criterion. For
a minimization problem, if f(ui) < f(xi), xi will be replaced
by ui, otherwise xi will be kept in population [1].

In [1], it was also proposed different alternatives to imple-
ment the DE and a scheme to name such variants. In this way,
an instance of DE is identified as DE/x/y/z, where x is the
strategy adopted to define the vectors involved in mutation, y
is the number of difference operations in mutation and z is
the crossover scheme.
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A. Recent variants of Differential Evolution

As mentioned above, the DE has three parameters to be de-
fined by the user: NP , F and CR. Evidently, its performance
depends on the adjustment of these parameters.

Over the years some studies have proposed methodolo-
gies for dynamic and adaptive adjustment of DE parameters,
mainly F and CR, as can be exemplified in [5], [6]. Particu-
larly, in [7] it was proposed the methodology which resulted
in the algorithm called JADE.

In JADE, each vector xi has its own parameters Fi and
CRi and they are adjusted at each iteration. The adjustment
of each Fi and CRi, i = 1, 2, ..., NP , is based on the mean
values defined for these parameters that improved solutions in
previous iterations. JADE also applies a new mutation known
as current-to-p-best.

The JADE was the basis for the proposal of new op-
timization algorithms such as those described in [8]–[12].
An important algorithm based in JADE, called SHADE, was
proposed in [10].

The main difference between JADE and SHADE is that
in SHADE the adjustment of each Fi and CRi is based in
two sets of values corresponding to weighted means of Fi

and CRi which improved solutions in previous iterations.
Additionally, in SHADE, the parameters inherited from JADE
were individualized for each candidate solution, such as the
parameter pi, used in mutation operation, adjusted randomly
in a specific domain at each iteration.

SHADE performed well when compared to other DE based
algorithms in the edition 2013 of CEC competition [13].
Since then, SHADE has been the basis for proposal of new
algorithms that has also taken place among the winners of
CEC competitions in the last years. The following paragraphs
present a brief description of some of those algorithms.

In [14], the algorithm called L-SHADE, winner of CEC
competition in 2014, was proposed. The main innovation of L-
SHADE for SHADE was the linear reduction of the population
as a function of the number of fitness evaluations.

Then, in 2015, the algorithms called SPS-L-SHADE-EIG
[15] and DEsPA [16] were proposed, being respectively the
winner and second place in the 2015 CEC competition.
The SPS-L-SHADE-EIG [15] applies a mutation based on
eigenvectors of the covariance matrix of the population. In ad-
dition, the choice of parent vectors for mutation and crossover
operations favors recently improved solutions. DEsPA [16]
seeks to manage the greediness in mutation and the adjustment
of DE parameters in a optimized way. The main innovation
of DEsPA, regarding L-SHADE, was the variation in the
population size. In DEsPA, the population size increases,
remains stable and is reduced in three distinct phases [16].

In [17], the algorithm called CCLSHADE was proposed and
won the second place in CEC Learning-Based competition in
2016. In CCLSHADE, the evolution of candidate solutions
occurs cooperatively. Mutation and crossover operations are
applied separately in distinct groups of variables, each one
formed by a set of non-separable problem variables.

The algorithm called jSO, second place in the 2017 CEC
competition, was proposed in [18] as an extension of algorithm
iL-SHADE [19]. The jSO, like iL-SHADE, applies a strategy
to control the values assigned to parameters Fi and CRi,
especially in the early stage of the evolutionary process. High
values for Fi and low values for CRi are not allowed. In
addition, the mutation greediness is manipulated along the
fitness evaluations. The algorithm jSO also proposed to weight
an occurrence of Fi in mutation, according to the stage of the
evolutionary process [18].

The second place in the 2018 CEC competition was
the algorithm called LSHADE-RSP, proposed in [20]. The
LSHADE-RSP uses the mutation of jSO with an extension,
where the random solutions have a choice probability accord-
ing to its position in a ranking based on the quality of the
solutions. LSHADE-RSP, as jSO, also controls the values of
Fi and CRi for each phase of the evolution.

III. ADAPTIVE DYNAMIC ISLAND MODEL

Island Model (IM) is an alternative to implement EAs to
run in parallel computational environments. In IM [21], the
population is partitioned into subsets called islands, which
evolves in parallel by its own algorithm. Along iterations of the
algorithm, the islands exchange solutions by a process called
migration, using the topology connections.

It is possible to implement the IM in a hybrid way. In this
case, a different algorithm is applied in each island. Other
decisions to implement the IM are basically [22], [23]:

• Number of islands: Number of algorithms or sub-
populations.

• Migration topology: Defines how the islands are con-
nected, meaning the available paths for migration. Also,
each connection can be uni- or bi-directional and the
topology can be static or dynamic [23]–[25].

• Migration rate: Value used to define how many candidate
solutions will migrate from each island.

• Migration frequency: Defines the number of migration
that will be performed in IM.

The migration also depends on the migration policy defined
by the user. In this sense, the user should decide, for example,
how the migrant solutions are chosen and what island will
be the destination for each one. Besides, the migration can
be synchronous or asynchronous, point to point or broadcast
[24], [26].

A. Adaptive Dynamic Island Model

In [27], it was proposed a dynamic hybrid IM identified
in this work as D-IM. Initially, the topology of D-IM is
fully connected, composed by weighted uni-directional con-
nections. Along migrations, the weights of the connections are
dynamically adjusted in [0, 1] according to the attractiveness
of the destination island to the source island. In D-IM, the
attractiveness of an island to another is calculated according
to informations of its population, provided by its algorithm.

In D-IM, at each migration, the solutions are actually moved
from the source island to the destination island. In this case, the



number of solutions directed to each island may be different.
The idea is that islands with algorithms more qualified to solve
the problem maintain a larger number of candidate solutions
to evolve.

In [28], it was proposed a new strategy to evaluate the
attractiveness of an island to another in D-IM. By the strat-
egy proposed in [27], an island becomes more attractive if
its algorithm has fast convergence. On the other hand, by
the strategy proposed in [28], islands which produce better
solutions become more attractive.

In [28], it was found that by the strategy proposed in [27]
for topology adjustment, islands with exploratory algorithms
become more attractive in D-IM. Differently, by the strategy
proposed in [28], islands with intensifying algorithms attract
more solutions to their populations. In this case, according to
the strategy used, the topology adjustment in D-IM can also
indicate the nature of the algorithms applied in its islands.

IV. EXPERIMENTS

For the evaluation of EAs considered in this work, it was
used the set of problems proposed in [29] for the competition
on bound constrained optimization problems in edition 2015
of CEC. In that year, it was accepted that the competitors
algorithms had their parameters adjusted differently to solve
each problem, which justifies the term learning-based in the
competition name [29]. The benchmark is composed by 15
minimization problems, identified in this work as Fi, where
i = 1, 2, ..., 15. In [29], the problems were divided into 4
distinct groups. Problems F1 and F2 are Unimodal Functions,
while problems F3, F4 and F5 are Simple Multimodal
Functions. Problems F6, F7 and F8 are Hybrid Functions.
They combine problems like the last seven problems, classified
as Composition Functions [29]. In this work, dimensions
D = 10 and D = 30 were considered for the evaluation of
the algorithms.

The DE based algorithms compared in this work were
winner or second place in CEC competitions in the last
5 years: L-SHADE [14], SPS-L-SHADE-EIG [15], DEsPA
[16], CCLSHADE [17], jSO [18] and LSHADE-RSP [20],
briefly presented in Section II-A. For comparison purposes,
two configurations of original DE were considered and the
algorithms JADE [7] and SHADE [10], predecessors of most
DE based winners in the last CEC competitions.

Regarding the parameters of each algorithm, the values
recommended by the authors in their respective works were
used. Regarding the two configurations of DE, the following
settings were used:

• DE-1: (i) V ariant = DE/best/1/bin, (ii) F = 0.5, (iii)
CR = 0.9, (iv) NP = 50.

• DE-2: (i) V ariant = DE/rand/1/bin, (ii) F = 0.5,
(iii) CR = 0.9, (iv) NP = 50.

The evaluated algorithms were also combined in the D-
IM described in Section III, under both strategies proposed
in [27] and [28] for topology adjustments. In this work, the
D-IMs were identified as DIM-1 and DIM-2 according to the
strategies proposed in [27] and [28], respectively.

Regarding the parameters of DIM-1 and DIM-2, they were
defined as follows [27], [28]: (i) Migration rate: 10%; (ii)
Migration frequency: 50; (iii) M = 5; (iv) θ = 0.05 (v)
POP = 200 for D = 10 and POP = 300 for D = 30,
initially divided equally between islands, where POP =
population size.

The algorithms that change the population size along their
run had such operations disabled when combined in DIM-1
and DIM-2. In this case, due to the fact that the algorithms
are applied in islands of DIM-1 and DIM-2, their population
size are now controlled by the the migration processes of the
models.

For each problem, DIM-1, DIM-2 and each individual algo-
rithm were performed using 30 independent runs. The Max-
imum Number of Function Evaluations was set as MFE =
10000×D.

Usually, the performance difference between EAs is verified
by comparing the objective function values of solutions ob-
tained for each problem in the runs. Generally, the comparison
is also guided by statistical metrics as mean, median and
standard deviation defined on these values.

In this work, the performance of the algorithms regarding
the quality of solutions was compared by the systematic
methodology called Performance Profile, proposed in [30].
This technique is applicable in evaluations where there are a
set of algorithms and a set of problems. The analysis is based
on a performance measurement of the algorithms defined by
the user.

For a brief description of the Performance Profile technique,
suppose a set S with ns algorithms and a set P with np prob-
lems. Also suppose the computational time of each algorithm
as the performance measure. Thus, for each problem p ∈ P
and s ∈ S is defined the value

tp,s = computational time required to solve p with s. (3)

Then, for each problem p, the performance of each algo-
rithm s is compared to the best one in S by the metric rp,s
given by

rp,s =
tp,s

min {tp,s : s ∈ S}
, (4)

where min {tp,s : s ∈ S} is the tp,s of the algorithm in S that
solved the problem p in shortest time. In the procedure is
necessary to assume the value rM ≥ rp,s ∀ rp,s, such that
rp,s = rM , if and only if s did not solve p.

Finally, the value ρs(τ), which provides a performance
overview of each s ∈ S is given by

ρs(τ) =
1

np
|p ∈ P : rp,s ≤ τ |, (5)

where τ ∈ [1, rM ]. In these terms, ρs(τ) is the portion of
problems that s can solve under cost τ . The value ρs(1)
value is the portion of problems where s performed better.
The algorithm s which produced the smallest value of τ , such
that ρs(τ) = 1 is considered the most robust in S.

In this work, the mean value of the objective function
of solutions obtained for the problems by the algorithms



in their runs was defined as the performance measure for
the Performance Profile. This value gives a representation of
performance for each algorithm in all its runs.

V. RESULTS

One of the known characteristics of DE is its fast conver-
gence and intensification trend. Figure 1 exemplifies the mean
variation of the objective function in the population along the
first 200 iterations for the studied algorithms.

Figure 1 illustrates that most of the algorithms, besides the
differences of their population quality, presents similarities
regarding the convergence rates, which can vary according to
the problem. In Fig. 1, it can be observed that some algorithms
promoted a more relevant impact in DE convergence. This
is the case of algorithms DEsPA (certainly for stimulating
exploration by inclusion of new solutions in the population in
the initial iterations), SPS-L-SHADE-EIG (relatively slower
convergence, use crossover based on covariance of variables)
and CCLSHADE (convergence considerably faster, population
evolves based on separability of variables).

Regarding the problems not illustrated in Fig. 1, for both
D = 10 and D = 30, it was verified that the algorithms
convergence were similar to those illustrated in Fig. 1(a).
In this case, generally only 50 iterations were needed for
the algorithms to reach a level of population quality that
would define the final solution. This fact demonstrate that
the evaluated algorithm tends to maintain the well-known
convergence characteristics of DE. However, each algorithm
tends to assume a different condition regarding its popula-
tion convergence if compared to others. Among the studied
algorithms, winners in recent editions of CEC competition,
DEsPA was the algorithm that most impacted regarding the
DE convergence.

One of the characteristics proposed in L-SHADE is the
reduction of the population size, also present in the algorithms
that followed it. Figure 2 illustrates the difference in variation
of the population size along the first 200 iterations of the
algorithms to solve some problems.

As can be observed in Fig. 2, the variation of the population
size of CCLSHADE can considerably differ according to
the problem. This feature is due to the grouping of non-
separable variables. As the population size varies according to
the number of functions evaluations and that at each iteration
each variable group run the algorithm in all the population
separately, it consumes evaluations. So, a large number of
groups imply in a large number of evaluations at each iteration
and consequently in a greater reduction in the population size.
For this reason, the population reduction of CCLSHADE is
faster when compared to other algorithms.

Usually, the computational cost for run EAs is defined as
a maximum number of function evaluations. In this case, one
of the impacts of reducing the population size, as is the case
of many of the algorithms studied here, may be the run of a
high number of iterations, which may cause stagnation.

Tables I and II presents the mean of total iterations of each
algorithm at each run to solve each problem under D = 10

(a) F6

(b) F14

Fig. 1. Variation of mean of objective function of population along 200
iterations of each algorithm for D = 30.

and D = 30, respectively. Note that the algorithms that start
with a relatively small population require a high number of
iterations, as is the case of DEsPA and SPS-L-SHADE-EIG,
even compared with those with constant and relatively small
population size, as is the case of DE-1 and DE-2. In the case
of DEsPA, the stagnation phase with a large population can
also reduce the total of iterations if the respective parameters
are properly adjusted.

The combination of the studied algorithms in D-IM was
firstly analyzed by comparing the quality of the solutions
produced. Figure 3 presents the Performance Profile results
for D = 10. Note that, a zoom was applied in the results to
highlight the lower values of τ such that ρ(τ) = 1 and the
values ρ(τ) such that τ = 1.

Figure 3(a) demonstrate that for D = 10, DIM-1 and DIM-
2 were more robust, followed by algorithms SPS-L-SHADE-
EIG and DEsPA, respectively. Note that, algorithms SPS-L-
SHADE-EIG and DEsPA are not the latest proposals algo-
rithms as mentioned in Section II-A. This result demonstrates
that the winners algorithms in a particular CEC competition
are not necessarily better than the winners from previous



TABLE I
MEAN OF MAXIMUM NUMBER OF ITERATIONS OF EACH ALGORITHM FOR D = 10.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

CCLSHADE 720 720 1272 720 720 540 558 540 1272 1272 1272 1272 1272 1272 1272
DE-1 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
DE-2 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
DEsPA 8366 8366 8366 8366 8366 8366 8366 8366 8366 8366 8366 8366 8366 8366 8366
JADE 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333
L-SHADE 2163 2163 2163 2163 2163 2163 2163 2163 2163 2163 2163 2163 2163 2163 2163
LSHADE-RSP 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297
SHADE 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
SPS-L-SHADE-EIG 7767 7767 7767 7767 7767 7767 7767 7767 7767 7767 7767 7767 7767 7767 7767
jSO 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145

TABLE II
MEAN OF MAXIMUM NUMBER OF ITERATIONS OF EACH ALGORITHM FOR D = 30.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

CCLSHADE 456 456 1564 456 456 341 331 328 1564 1564 1564 1564 1564 1564 1564
DE-1 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
DE-2 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
DEsPA 23548 23548 23548 23548 23548 23548 23548 23548 23548 23548 23548 23548 23548 23548 23548
JADE 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
L-SHADE 2745 2745 2745 2745 2745 2745 2745 2745 2745 2745 2745 2745 2745 2745 2745
LSHADE-RSP 2165 2165 2165 2165 2165 2165 2165 2165 2165 2165 2165 2165 2165 2165 2165
SHADE 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
SPS-L-SHADE-EIG 23306 23306 23306 23306 23306 23306 23306 23306 23306 23306 23306 23306 23306 23306 23306
jSO 3090 3090 3090 3090 3090 3090 3090 3090 3090 3090 3090 3090 3090 3090 3090

(a) F6

(b) F14

Fig. 2. Variation of mean of population size over 200 iterations of each
algorithm for D = 30.

competitions, as expected. Additionally, Fig. 3(a) also suggests
that DIM-1 and DIM-2 outperform the algorithms in smaller
portions of problems. However, Fig. 3(b) demonstrates that
L-SHADE, base for most of the studied algorithms in this
work, produced the best mean of objective function for the
largest number of problems in this experiment, overcoming
all algorithms pointed as more robust in Fig. 3(a).

For D = 30, Fig. 4 presents the Performance Profile results
to the algorithms comparison. Again, sub-figures in Fig. 4
highlight the lower values τ such that ρ(τ) = 1 and the
values ρ(τ) such that τ = 1. As can be observed in Fig. 4(a),
neither DIM-1 or DIM-2 is the most robust solver, but the
LSHADE-RSP algorithm, followed by L-SHADE and SPS-L-
SHADE-EIG. Individual algorithms also outperformed DIM-1
and DIM-2 to solve smaller portions of problems.

Figure 4(b) demonstrates that, as for D = 10, also for D =
30, the L-SHADE was the algorithm that produced the best
mean of objetive function for the largest number of problems
in this experiment.

Considering that the increase in a problem dimension im-
plies in increasing complexity, it is interesting to access a
considerable number of domain regions to solve the problem.
So, DIM-1 and DIM-2 were evaluated with a larger population,
in this case POP = 400. Figure 5 presents results of Perfor-
mance Profile applied to compare separately the algorithms
with DIM-1 and DIM-2 with POP = 300 and POP = 400.
Figure 5 highlights the values of τ referring to DIM-1 and
DIM-2 such that ρ(τ) = 1.

Comparing Fig. 5(a) and 5(b), it is possible to observe that
even under the increase of their populations, DIM-1 and DIM-
2 were overcome by some individual algorithms in terms of



(a) Lower values of τ | ρ(τ) = 1.

(b) Values ρ(τ) | τ = 1.

Fig. 3. Performance Profile for D = 10.

robustness. However, the comparison between those figures
also demonstrates that DIM-1 and DIM-2 performed better
with larger populations. The τ values associated to the models
such that ρ(τ) = 1, in Fig. 5(b) are considerably smaller than
those in Fig 5(a).

Although the graphs were not included in this work, the
models DIM-1 and DIM-2 were also evaluated under POP =
200. The models performance were inferior than that presented
under POP = 300. The increase in the population size really
benefited the island models performance.

Regarding the distribution of solutions between islands in
DIM-1 and DIM-2, Fig. 6 and 7 present the mean variations
and standard deviations (vertical lines) of the total solutions
directed to each island over migrations in solving the problems
under D = 10 and D = 30, respectively. The values in Fig. 6
and 7 for each migration were obtained considering all prob-
lems and runs of the models. Thus, those values demonstrate
the tendency of DIM-1 and DIM-2 in the complete experiment.
For D = 30, Fig. 7 presents values referring to the models
with POP = 400, which presented better performance, as
mentioned before.

Figures 6 and 7 demonstrate that for both D = 10 and
D = 30, DIM-1 and DIM-2 were able to identify differences
between algorithms over their runs. In both models, it was

(a) Lower values of τ | ρ(τ) = 1.

(b) Values ρ(τ) | τ = 1.

Fig. 4. Performance Profile for D = 30 and POP = 300 for DIM-1 and
DIM-2.

directed a certain number of solutions for each island, which
also varied in an increasing or decreasing way. Note that
distinct attractiveness was defined for the islands due to
their algorithms, although in the case of those that vary the
population size, this operation has been disabled when they
were applied in the models.

Figures 6 and 7 illustrate that, the distribution of solutions
between islands in DIM-1 and DIM-2 represents the algo-
rithms characteristics in terms of their convergences rates and
quality of solutions, which is exemplified in Fig. 1.

VI. CONCLUSION

This paper performed an evaluation between DE based
algorithms, winners of competitions on bound constrained
optimization problems in last editions of CEC. Also it was
proposed the combination of those algorithms in two alterna-
tives of D-IM, for hybrid implementations.

The results presented in this work demonstrated that the
compared algorithms tend to maintain behavioral character-
istics of DE and that new variants really can improve the
performance of DE. As expected, it was also observed that
a new proposed algorithms not necessarily overcome the
performance of previous ones, even though both have the same



(a) POP = 300

(b) POP = 400

Fig. 5. Values of τ | ρ(τ) = 1 in Performance Profile for D = 30 with
different population size for DIM-1 and DIM-2 and individual algorithms.

algorithm as a base and they have been winners of different
editions of specific competitions. This fact reinforces the need
for research on structures such as DIM-1 and DIM-2 for EAs.
These models can identify which algorithms may be better to
solve a given problem.

It was demonstrated that the combination of DE based
algorithms in DIM-1 and DIM-2 can produce better results
than using just one. Also, DIM-1 and DIM-2 were satisfactory
efficient to identify differences between DE based algorithms
and define levels of attractiveness according to their specific
strategies.

As future works, we intend to perform additional investiga-
tions on the use of similar algorithms in DIM-1 and DIM-2,
initially, mainly intensifiers ones as is the case of DE. It is also
intended to apply the variation in population size proposed by
the algorithms when applied in DIM-1 and DIM-2 to produce
new solutions over execution of the models in order to promote
diversity to the population.
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