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Abstract—Automated Innovization procedure aims to extract
hidden, non-intuitive, closed-form relationships from a design
task without human intervention. Existing procedures involve
the application of an Evolutionary Multi-objective Optimization
(EMO) Algorithm in two phases. The first phase of EMO
algorithm leads to a set of Pareto-optimal (PO) solutions, while
the second phase helps identify the implicit relationships. The
latter involves clustering which in turn enables the evaluation of
innovization-driven objective function. The existing procedures
for Automated Innovization differ in their clustering technique
and objective formulation. Unlike any existing study, this paper
proposes a Unified Automated Innovization (UAI) framework
which can deal with both continuous and discrete variable
problems, and identify the inherent single- or multiple-cluster
rules, as the case may be. The scope and efficacy of the
proposed UAI, demonstrated through some benchmark design
problems, is rooted in the novel contributions made in the
clustering technique, and innovization-driven objective function
formulation(s).

Index Terms—Innovization, Design Principles, Discrete Space,
Knowledge Mining, Optimization, One-Dimensional Clustering.

I. INTRODUCTION

Automated Innovization procedure was introduced to extract
hidden and non-intuitive relationships from a design task with-
out human intervention. The goal has been to obtain closed-
form and simple-to-understand relationships which describe
the complete set or subset(s) of the Pareto-optimal (PO)
solutions. This procedure is initiated by first obtaining a set of
PO solutions for a given multi-objective optimization problem
through an EMO algorithm. Subsequently, the PO solutions
are clustered, contributing to evaluation of the innovization-
driven objective function in the second application of the EMO
algorithm, leading to revelation of the innovized rules.

Some other studies have reported achieving a similar goal
using data mining techniques in the domain of post-optimality
analysis. However, some human interaction is required to com-
plete the analysis defying the motive of having an automated
procedure in the first place. This can be seen in [1], where k-
means clustering is used on the PO solutions to simplify the
data-visualization. Similarly, kriging and self-organizing maps
have been used in [2] to visualize the structure of decision
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variables from the PO solutions, and the idea of Pareto-shells
have been used in [3] to analyze the PO solutions visually.

The first proposition of automated innovization [4] involved
a GA-based unsupervised learning procedure with a newly
developed grid-based clustering approach. However, this pro-
cedure could only deal with the design-optimization tasks
having continuous variables. Subsequently, the complexities
associated with discrete search spaces were tackled, and a
procedure to deal with design tasks involving discrete vari-
ables was proposed in [5]. While these frameworks have laid
the foundations for automated innovization, some associated
challenges are obvious, including:

• despite some similarities between these frameworks, they
are not compatible for integration, which mandates their
separate use depending on the continuous or discrete
nature of the problem.

• the Innovization problem formulation in [4] does not have
a balanced objective function which results in deviation
of the innovized rules from the true relationships.

• in [5], candidate rules above a significance-threshold are
reported, but their true significance can not be evalu-
ated. Furthermore, though design problems with multiple-
cluster design rules may exist, this framework is capable
of finding only single-cluster rules.

This paper is rooted in the motivation to overcome the above
challenges and pitfalls. Towards it, a unified framework for
automated innovization (UAI) has been proposed, that is
not just capable of tackling both continuous and discrete
search spaces, but is also equipped to identify single- or
multiple-cluster innovized rules which conform with true im-
plicit relationships. The unprecedented scope and empirically
demonstrated efficacy of this framework are ingrained in the
novel proposition of a clustering technique and innovization-
driven objective function formulation(s). In that, UAI: Single-
objective Innovization Problem (UAI-SIP), and UAI: Multi-
objective Innovization Problem (UAI-MIP) formulations are
proposed. The results demonstrate the trade-off between lower
computational expense associated with UAI-SIP, and a better
exploration & more knowledge associated with UAI-MIP
aided with a trade-off-based decision-making analysis.

The remaining paper is structured, as follows. Section II
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discusses the existing automated innovization procedures, fol-
lowing which a new clustering procedure along with UAI (both
formulations) are presented in Section III. Further, Section IV
presents the results on benchmark problems, and the paper is
concluded with Section V.

II. RELATED STUDIES

The existence of patterns of variable values among Pareto-
optimal solutions were first observed in 2003 [6]. Deb and
Srinivas [7] named the task of identifying patterns from Pareto-
optimal solutions as a task of ”innovization”. Until 2010, an in-
novization task was performed manually by plotting variables
pair-wise and observing for any obvious relationships. In 2010,
Bandaru and Deb [4] proposed an automated innovization
procedure by finding the clusters of non-dominated points
exhibiting a relationship using an optimization problem. The
proposition was restricted for continuous variables only. We
call that study as ”Existing Automated Innovization” or EAI
study here and use it as the base framework. The capability of
automated innovization process was further extended to deal
with discrete search space in [5], [8], [9]. We call the study
in [5] as ”Existing Automated Innovization in Discrete” or
EAID. Here, we provide a more detail description of EAI in
the following subsection, as we propose an extension of EAI
in this paper.

A. Existing Automated Innovization (EAI)

Given that an EMO algorithm can be used to find m
Pareto-optimal solutions for an optimization problem, the
existing automated innovization (EAI) procedure tries to find
the hidden relationships between various variable-function-
constraint combinations. However, the relationships were re-
stricted to follow a fixed mathematical structure ψ(φ(x)) given
in equation (1).

ψ(φ(x)) ≡ ΠN
j=1φj(x)bj = c. (1)

Here, φj’s are the basis functions which can be design vari-
ables, objective functions, constraints, or any other functions
of interest which can be derived from the design variables
(such as, (x1 + x2), if the designer considered it as a po-
tentially important information for the problem). With bj’s as
real numbers, this forms a power-law rule. With a bj-vector
denoted by a population member, the respective c-value (right
side of the power law) is computed as the left side of the
power law for clustered points obtained from Pareto-optimal
dataset, described in next subsection. The real nature of bj
values can result in redundant solutions like φ11φ

2
2 = c1 and

φ21φ
4
2 = c2, where both represent the same rule with c2 = c21.

To avoid such cases, a transformation is applied as given in
Equation 2 to limit bj ∈ [−1, 1] ∀ j = 1 to N :

bj ←
bj

{bp|p = argmaxi|bi|}
. (2)

For any candidate rule, two points are to be focused say,
(a) How many Pareto-solutions adhere to this rule, and (b)
How closely they satisfy the rule. A grid-based clustering was

proposed to answer the aforementioned questions. Using this
technique, the process deployed a GA to obtain the candidate
rule by solving an optimization problem, provided in the next
section. For this GA, the chromosome has N+1 variables out
of which N are bj’s and a parameter deciding on the number
of divisions d which is further explained below.

1) Grid-based Clustering of EAI Procedure: The clustering
procedure fits a grid defined by given number of divisions
d on each objective axis on the already obtained m Pareto
data-points by an EMO. Thus, for an M -objective problem,
there are a total of 2M subdivisions. Further, the subdivisions
containing more data-points than a threshold value (m/d) are
marked as sub-clusters. Once all the sub-clusters are identified,
the adjacent ones are combined together, thereby forming
the clusters with high density regions. The GA chromosome
provides the bj’s which are used to obtain a set of c-values
from m input data points. These c-values are clustered using
this technique to reveal a few parameters: total number of
clusters (C), the coefficient of variation of c-values in each
cluster (cv), and the number of unclustered points (U). These
parameters are used to evaluate the fitness of each individual
in the Innovization-based GA. There is another parameter ε
which is used to redefine the sub-cluster threshold to (m/d+ε)
when clustering for the last time. This removes the clustered
points which barely meet the threshold requirement. The value
of ε is fixed at 3 which is another user-defined parameter.

2) The Optimization Problem: As mentioned earlier, a GA
is used in the EAI procedure to find an appropriate rule which
is present in the Pareto-optimal dataset. The optimization
formulation is given below:

Minimize C + U + ΣCi=1c
(i)
v ,

Subject to − 1 ≤ bj ≤ 1, ∀j,
|bj | ≥ 0.1, ∀j,
1 ≤ d ≤ m,
U ≤ 0,

d is an integer and bj’s are real.

(3)

For every cluster, cv is a parameter which is evaluated from
the c-values belonging to that particular cluster. If the mean
and standard deviation of the c-values are µ and σ, then cv is
computed as follows:

cv =
σ

µ
× 100%. (4)

The GA used to solve the above problem included selection,
crossover, and mutation operators, but no survival-selection
operator was used, making the search process slow. The final
solution of the optimization process resulted in an innovized
rule. A later study [10] implemented a multi-modal GA to find
multiple innovized rules for a problem.

B. Extension of EAI to handle Discrete Variables (EAID)

We have restricted this paper to single-rule discovery in
one run, hence the description of handling discrete variable
problems presented in [5] has been explained here in context



of single-rule discovery only. In EAID, The grid-based clus-
tering has been replaced with a new window-based cluster-
ing procedure to handle discrete variables better, along with
some changes in optimization problem definition as further
described in this section.

For a given Pareto-dataset with discrete variables, the evalu-
ated m c-values (to-be-clustered) are also discrete in nature. In
such cases, grid-based clustering results in rules with multiple
clusters and very less cv value. This is not a preferred solution
when it is known that the theoretical relationship has lesser
number of clusters. However, this window-based clustering
procedure requires minimum desired rule significance Sw as
an input parameter. The step-wise clustering process is given
in the steps below.
• Evaluate the number of points to form a window Pw using
Pw = m× Sw.

• Evaluate total number of windows W using W = m −
Pw + 1.

• Assume each window to be a cluster and evaluate c(k)v ∀
k = 1, 2, ...,W , using equation (4).

• Find cv of the cluster with least variation, i.e., cvw using
equation (5).

cvw = {c(p)v |p = argmini|c(i)v |} (5)

The optimization process in EAID is similar to the one
described in EAI but the optimization problem definition is
different. However, EAID can not reveal the true significance
of the rule but can ensure some minimum significance as per
Sw. Another limitation of this procedure is that only the rules
with C = 1 can be derived. The formulation is shown in
equation (6). There is another term cmax

v , which is a user-
defined parameter to put an upper limit to the intra-cluster
variation of any candidate rule.

Minimize cvw,

Subject to − 1 ≤ bj ≤ 1, ∀j,
|bj | ≥ 0.1, ∀j,
cvw ≤ cmax

vw ,

bj’s are real.

(6)

III. PROPOSED ALGORITHM

In this section, we propose a novel threshold-based clus-
tering procedure, followed by the two variants of the UAI,
namely, UAI-SIP and UAI-MIP. The similarity between these
variants is that both utilize the EAI as the base framework,
and the newly proposed clustering procedure. Their difference
lies in the fact that while UAI-SIP pursues identification of
innovized rules through a single innovization-driven objective
function, UAI-MIP pursues it through two innovization-driven
objective functions.

A. Threshold-based Clustering

The clustering procedure has a vital role in the innovization
framework since the clustering results act as direct inputs
for the innovization objective function. Like EAI, UAI also

optimizes objective function(s) which is(are) derived from
the parameters obtained by clustering the c-values. However,
instead of using the grid-size parameter d from EAI, a new
parameter cluster-threshold parameter (T ) is introduced. For
any individual in any generation of the GA procedure in
innovization with N basis functions, the total number of
variables become N + 1, i.e., N number of bj values and
one parameter T .

The proposed clustering procedure (algorithm 1) is based
on the concept of slope. Consider a list of single-valued data
points (c) of length m, indexed as c = [c1, c2,..., cm]. These
values are normalized and sorted in ascending order. The
plot of normalized index-values (X-axis) and normalized c-
values (Y -axis) is shown in Figure 1. If the c-values follow an
arithmetic progression (red crosses), then the line joining them
will have slope = 1. On the other hand, if a few points come
closer to each other to form a cluster (as depicted by green
circled points between black dotted boundaries), the remaining
points will get distant from each other during normalization.
In other words, the points forming a cluster will have a lower
slope value than 1, whereas the unclustered points will have
a slope value greater than 1. This enables us to create a clear
demarcation between the clustered and unclustered points with
the slope threshold, here referred to as T . In Algorithm 1, it
can be observed that the normalization has been done with
limits on c-values increased up to twice the range, thus making
the ideal slope threshold (T ) to be 0.5 or less. Moreover, there
is another threshold used to differentiate between a clustered
and unclustered points given by 0.005×m, i.e., 0.5% of the
entire dataset. Since, the standard dataset size used in this
paper is around 1,000, the threshold suggests that any cluster
with < 5 will not be considered. This measure can be changed
as per designer’s requirements or restrictions.
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Fig. 1. Illustration of c-values in the normalized space.

Defining T has a secondary motive as well. This parameter
can be used as an extra property of the discovered design
principle in addition to the significance of the rule. The
significance (S%) reflects the fraction of total number of
points which follow the innovized rule, whereas the cluster-
threshold parameter T reflects how well those S% points
follow the obtained rule. This enables the designer to compare



two differently converged rules as well as comment on how
well the candidate-rule represents the Pareto-front. The full
account of this parameter on the outcome of optimization is
discussed in Section III-B.

Algorithm 1 Threshold-based clustering of c-values.
Input: Sorted c-values c, Pareto-dataset size m, Cluster-

threshold parameter T
Output: No. of clusters (C), No. of unclustered points (U)

and Clustered Points (CP )
1: count← 0
2: C ← 0
3: CP ← ∅
4: cupperlim ← max(c) + (max(c)− min(c))/2
5: clowerlim ← min(c)− (max(c)− min(c))/2
6: e← (cupperlim − clowerlim)/(m− 1)
7: Istart, Iend ← 0
8: for i = 1 to m− 1 do
9: slopei ← (ci+1 − ci)/e

10: if slopei ≥ T or i = m− 1 then
11: Istart ← Iend
12: Iend ← i
13: if i = m− 1 then
14: Iend ← Iend + 1
15: end if
16: if Iend − Istart ≥ 0.005×m then
17: CP ← CP + c[Istart : Iend] %new cluster
18: count← count+ (Iend − Istart)
19: C ← C + 1
20: end if
21: end if
22: end for
23: U ← m− count
24: return No. of clusters (C), No. of unclustered points (U)

and Clustered Points (CP )

B. UAI: Single-objective Innovization Problem (UAI-SIP)

The innovization objective function in the EAI framework
comprises of three different terms: (i) number of clusters C, (ii)
number of unclustered points U , and (iii) sum of coefficient
of variation for clusters

∑C
i=1 c

(i)
v , as given in equation (3).

Minimizing cv ensures minimizing the intra-cluster varia-
tion of the c-values for a cluster, while minimizing T can
create pressure to reduce the difference between max and
min of the c-values of that cluster, eventually complimenting
each other towards better convergence. Also, it is interesting
to notice that the sum of all cv(s) can reduce even if one of
the clusters converges, whereas T reduces only when all the
clusters improve together. These two measures, put together
in the objective function, can account for the accuracy of the
candidate-rule, i.e., how well the obtained rule represents or
explains the set of clustered points. More cv or T means more
deviation of the innovized rule from the true relationship or
an indication that there may not even exist any relationship.

There is another modification we propose w.r.t. the intra-
cluster variation measure, that is, the sum of all cv(s) have
now been replaced with their mean, which can be calculated
using equation (7). It is known that forcing data-points to be
in a cluster, i.e., reducing C leads to increase in the cv value.
While using the sum of all cv(s), it is not certain whether
Σclusterscv will increase due to increasing cv(s) or decrease
due to decreasing C. In order to make this term independent
of change in C, the mean of all cv(s), i.e., cv is used. This also
enables us to have an apple-to-apple comparison between two
candidate-rules in terms of intra-cluster variation.

cv =
ΣCi=1c

(i)
v

C
. (7)

In EAI and associated literature, the innovization results
have been demonstrated with PO dataset size m = 1000 and
minimum desirable significance (τs = 70% or 80%). With
these values, U can vary in range [0,300], while cv lies in
range [0,100] (from equation 4) and C remains a small integer
value. Though towards convergence of innovization process,
the value of latter two terms reduce but the unclustered points
can still take any value depending upon m and τs. Thus, it is
an unbalanced objective formulation. Moreover, U , having the
maximum value, dominates the innovization process to yield
a rule with maximum possible significance despite having
lower accuracy. Hence, U has been eliminated in the proposed
objective function, and the constraint U = 0 is also removed.
To ensure the minimum desirable significance (τs), a new
constraint is put. The proposed problem definition for UAI-
SIP is given in equation (8).

Minimize (C + cv + αT ),

Subject to − 1 ≤ bj ≤ 1, ∀j,
|bj | ≥ 0.1, ∀j,
0.1 ≤ T ≤ 10,

(m− U)

m
× 100% ≥ τs,

T and bj’s are real.

(8)

There are two unexplained additions in equation (8): α and
the bounds on T . The lower bound on T was kept as 0.1
since T = 0 can result in no clustering at all, while the
upper bound was kept at 10 to allow some clustering in early
generations of GA despite with less accuracy. To tackle the
unbalanced formulation till some extent, α is introduced to
match the scales of cv and T . Since cv can vary from 0 to
100 and Tmax = 10, α = 10 is an appropriate choice for this
formulation. However, it may be noted that only the scales of
two terms (out of three) are met, C still lies on a different
scale leaving the objective function unbalanced.

C. UAI: Multi-objective Innovization Problem (UAI-MIP)

As mentioned earlier, UAI-MIP has been proposed to have
a balanced learning objective in the innovization GA, and find
the most applicable relationship. T and cv are properties of
the input dataset while C is the property of the design problem,



which makes any kind of weight distribution restricted, i.e., it
can not be generalised. Hence, a multi-objective formulation
can be a more generalised proposition, keeping the terms with
different scales as separate objectives. However, the creates a
need for a mechanism which can choose one solution from
the obtained multiple solutions.

Extending this argument to the proposed framework, the
UAI-SIP problem definition in equation (8) is converted into
a multi-objective formulation as given in equation (9). UAI-
MIP can explore the trade-off between multi-cluster rules and
their respective accuracy (how well they represent the input
PO dataset). The trade-off analysis, which explore the optimal
solutions and choose one, is explained later with an example.

Minimize f1 = C,
Minimize f2 = αT + cv,

Subject to − 1 ≤ bj ≤ 1, ∀j,
|bj | ≥ 0.1, ∀j,
0.1 ≤ T ≤ 10,

(m− U)

m
× 100% ≥ τs,

T and bj’s are real.

(9)

However, the advantages of MIP are computationally more
expensive. Considering M -objectives and N population-size,
the GA framework has complexity of O(MN2) (from NSGA-
II [11]). Increasing M from 1 to 2 directly affects the overall
complexity of the algorithm. Also, it was observed during
initial experimentation that it takes more generations for UAI-
MIP to converge than UAI-SIP due to the absence of survival-
selection operator in the base framework. But the authors also
realize that even though UAI-MIP framework requires more
generations, those solutions may not be achieved by UAI-SIP
framework at all.

1) An Illustrative Example: Let us consider two-bar truss
problem from [4], as it’s theoretical relationships are already
known. Using UAI-MIP, the results (only non-dominated ones)
for rule-discovery between V and S are in Table I and plotted
in Figure 2, where the red crosses represent all population
members (at generation 200) obtained while the green dots
represent the four non-dominated solutions. It is clear that all
four solutions represent a similar power law rule (S × V =
400) with slight variation in the respective c-values.

It can be observed that the coefficients bj(s) of V and S have
almost converged to their theoretical values. As we move down
in the table, the accuracy of rule increases (since T decreases).
Thus, the user can differentiate between the different rules
based on their accuracy since the C = 1 rule is easier to explain
but it represents the input PO dataset with least accuracy. It can
be observed in the last column of Table I that the c-values in
case of multiple clusters aren’t much different from each other.
From the four points in the two-objective space in Figure 2,
we notice the C = 1 solution (the left-most point) has the
best trade-off value, calculated by using average trade-off of

TABLE I
RULES DISCOVERED IN TRUSS PROBLEM (SORTED BY

CLUSTER-THRESHOLD PARAMETER T ). MULTIPLE CLUSTERS REPRESENT
SIMILAR POWER LAW RULES WITH SLIGHT CHANGES IN THE c VALUES.

bj -V bj -S T Significance C c-Values
1.00000 0.99999 0.35862 90.3% 1 400.596

1.00000 0.99999 0.35857 90.3% 2 400.583
401.785

1.00000 0.99999 0.26917 89.2% 3
400.523
401.569
401.769

1.00000 0.99999 0.24976 89.2% 4

400.522
401.551
401.669
401.769
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Fig. 2. Obtained front from UAI-MIP on TRUSS (S,V ) rule.

moving to a neighboring point. The trade-off for a point x(i)

with a neighboring point x(j) is defined as follows [12]:

R(x(i),x(j)) =
wloss × Lossf (x(i) → x(j))

wgain × Gainf (x(i) → x(j))
. (10)

For evaluating trade-off(s), the individual objectives are
normalized and the weight vector w used here is (2, 1)T , pro-
viding more importance for choosing a small cluster solution.
Labeling the four non-dominated solutions in Figure 2 as x(1),
x(2), x(3) and x(4), the average trade-off values as per equation
(10) for moving to left and right are presented in Table II.

TABLE II
TRADE-OFF VALUES FOR UAI-MIP IN TRUSS PROBLEM

Point Obj-1 Obj-2 R(x(i),x(i+1)) R(x(i+1),x(i)) Average
x(1) 1 3.698 13.949 - 13.949
x(2) 2 3.642 0.856 0.072 0.464
x(3) 3 2.728 3.849 1.169 2.509
x(4) 4 2.525 - 0.259 0.259

Our proposed single and multi-objective approaches result
in the following power law rules:

(UAI-SIP): V 1.00000S0.99999 = 400.604, (11)
(UAI-MIP): V 1.00000S0.99999 = 400.596. (12)

UAI-SIP solution has T = 0.35898 and Significance = 90.3%
and is close to the best trade-off solution obtained by UAI-
MIP.



D. Differences with Existing Automated Innovization frame-
work

The key differences of the proposed innovization frame-
work with respect to the existing innovization framework are
presented below.

1) Relevance of Clustering-Parameter: Two candidate-rules
can be compared with each other on the basis of their
T -values, i.e., the rule with lesser T will have lesser
intra-cluster variation. On the other hand, there is no
reference measure for no. of divisions d in EAI.

2) Contribution of cv: As explained in Section III-B, the
nature of ΣCi=1c

(i)
v is uncertain, i.e., it is difficult to

predict whether is supports or have a conflict with C.
Whereas, cv shows a pure conflict with C, thus reducing
the uncertainty in prediction.

3) Contribution of U : Minimization of unclustered points
(U) has been removed, eliminating the dominance of
the maximum significance rule at the cost of accuracy.
Though, desired significance has been ensured by adding
a separate constraint.

4) Multi-Objective: UAI-MIP provides a balanced objective
function formulation to explore the search space better,
but at a higher computational cost than SIP.

5) Application: The proposed formulation can work with
data-sets of both continuous and discrete nature while
two separate frameworks EAI and EAID have been
proposed earlier in literature.

IV. RESULTS

In this section, we present and discuss the results from
the proposed framework on several benchmark problems with
both continuous and discrete variables and with single- and
multi-cluster rules. These results are then compared with
EAI framework. The problem formulation for the benchmark
optimization problems can be found in [4]. For all results
produced here, the significance threshold (τs) is set to 80%
(which completes the constraint function) and the input PO
dataset size m to 1,000. For innovization-GAs (UAI-SIP and
UAI-MIP) and for all problems, a population of size 100, SBX
operator with probability of 0.9 and distribution index of 10,
polynomial mutation with probability of 0.05 and distribution
index of 50 are used. However, in case of UAI-MIP, the
distribution indices are changed from 10 and 50 to 15 and
30, respectively.

A. Single-objective (UAI-SIP) Results

Table III presents results of UAI-SIP on three problems.
Best performing results are emboldened. The number of clus-
ters (C) are mentioned in brackets with the c-values. In cases
with C ≥ 2, the c-value of the largest cluster is mentioned.
However, overall significance is reported in the last column.
Theoretically, the rules in TRUSS (continuous and discrete)
and BEAM problems have C = 1, while the SPRING problem
has C = 7. For more rules, results of UAI-SIP is better.

For the discrete-TRUSS problem, the input PO solutions
have been obtained by taking 1,000 discrete values between

TABLE III
RESULT COMPARISON BETWEEN UAI-SIP (FIRST ROW) & EAI (SECOND

ROW) FOR DIFFERENT RULES MENTIONED IN COLUMN-2. BETTER
RESULTS (C AND bj ’S CONVERGENCE) ARE MARKED IN BOLD.

Problem Basis fn
Coefficient bj c-value (C) Sig.
φ1 φ2

TRUSS

(S,V ) 1.00000 0.99999 400.60 (1) 90.3%
1.00000 0.99988 400.77 (3) 91.8%

(x1,x2) -0.99999 1.00000 2.0035 (1) 89.1%
-0.99869 1.00000 1.9838 (1) 86.5%

(x1,V ) 1.00000 -0.99827 0.1128 (1) 87.8%
1.00000 -0.99738 0.1105 (3) 87.0%

(x2,V ) 1.00000 -0.99531 0.2296 (1) 89.4%
1.00000 -0.99995 0.2236 (7) 88.0%

BEAM

(b, D) 1.00000 0.99998 0.002195 (1) 89.1%
1.00000 0.99987 0.002197 (1) 94.6%

(C, D) 1.00000 0.93464 0.02457 (1) 92.8%
1.00000 0.90924 0.02179 (16) 78.6%

(D, Pc) 1.00000 0.33337 0.17011 (1) 89.3%
1.00000 0.33334 0.16993 (1) 94.6%

(D, σ) 1.00000 -0.99994 4.3e-07 (1) 89.5%
1.00000 -0.99999 3.9e-07 (1) 94.6%

SPRING (D, N ) 1.00000 0.33333 4.54 (7) 100%
1.00000 0.33333 4.54 (7) 100%

each variable bound. The innovized results are presented in
Table IV. It can be observed that the rules obtained have
converged well near the values obtained from the continuous
version of the problem. Also, UAI-SIP can evaluate the
significance of the rule which EAID could not.

TABLE IV
INNOVIZATION RESULTS ON DISCRETE-TRUSS PROBLEM

(SINGLE-OBJECTIVE ANALYSIS).

Rule Coefficient bj c-Value (C) Significance
φ1 φ2

(S, V ) 0.99992 1.00000 400.127 (1) 89.1%
(x1, x2) -0.99272 1.00000 2.062 (3) 85.9%
(x1, V ) 1.00000 -0.99369 0.1128 (2) 87.8%
(x2, V ) 1.00000 -0.99998 0.2231 (2) 90.7%

It can be observed that UAI-SIP is able to converge equiv-
alent or better to EAI framework in most of the cases, and
can be used for design tasks involving discrete variables as
well. However, for discrete-TRUSS problems, multiple rules
are found in some cases, but each conforming to the correct
bj(s) and c-values.

Apart from the obtained rules, the convergence of the UAI-
SIP framework was observed with respect to the EAI for the
same GA settings. Since it is a single-objective formulation,
the average distance of the population from their respective
ideal solution is recorded generation-wise, and are shown in
Figures 3 and 4 for rules (x1,x2) and (x1,V ), respectively, for
the TRUSS problem. These convergence results are median-
values of 21 independent runs. It is interesting to note that
EAI converges faster in the initial generations but then, UAI-
SIP takes over and maintains a better performance till the end,
which is coherent with the results shown in Table III.

B. Multi-objective (UAI-MIP) Results

The results for the proposed UAI-MIP framework (at the
end of 200 generations) are shown in Table V, which are the
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Fig. 3. Convergence of (x1,x2) rule in TRUSS problem.
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Fig. 4. Convergence of (x1,V ) rule in TRUSS problem.

minimum-cluster solutions from the results achieved in each
case.

TABLE V
RESULT COMPARISON BETWEEN UAI-MIP (FIRST ROW) & EAI (SECOND

ROW) FOR DIFFERENT RULES MENTIONED IN COLUMN-2. BETTER
RESULTS (C AND bj ’S CONVERGENCE) ARE MARKED IN BOLD.

Problem Basis fn
Coefficient bj c-value (C) Sig.
φ1 φ2

TRUSS

(S,V ) 1.00000 0.99999 400.59 (1) 90.3%
1.00000 0.99988 400.77 (3) 91.8%

(x1,x2) -0.99204 1.00000 2.0999 (1) 91.5%
-0.99869 1.00000 1.9838 (1) 86.5%

(x1,V ) 1.00000 -0.99642 0.1097 (1) 89.3%
1.00000 -0.99738 0.1105 (3) 87.0%

(x2,V ) 1.00000 -0.99531 0.2296 (1) 89.4%
1.00000 -0.99995 0.2236 (7) 88.0%

BEAM

(b, D) 1.00000 0.99998 0.002195 (1) 89.1%
1.00000 0.99987 0.002197 (1) 94.6%

(C, D) 1.00000 0.93464 0.02457 (1) 92.4%
1.00000 0.90924 0.02179 (16) 78.6%

(D, Pc) 1.00000 0.33333 0.17004 (1) 89.1%
1.00000 0.33334 0.16993 (1) 94.6%

(D, σ) 1.00000 -0.99999 4.3e-07 (1) 89.2%
1.00000 -0.99999 3.9e-07 (1) 94.6%

SPRING (D, N ) 1.00000 0.33324 4.54 (7) 100%
1.00000 0.33333 4.54 (7) 100%

For discrete-TRUSS problem, the minimum-cluster in-
novized rules are given in Table VI. It can be seen that all
bj’s have almost converged to their theoretical values and
also, these rules are reported with more significance than
in UAI-SIP, which reflects better search efficiency of the
multi-objective formulation. The convergence analysis can not

be performed since EAI has a single-objective formulation.
However, the Pareto-fronts obtained from UAI-MIP are shown
in Figures 5 and 6 for two test-cases.

TABLE VI
INNOVIZATION RESULTS ON DISCRETE-TRUSS PROBLEM

(MULTI-OBJECTIVE ANALYSIS).

Rule Coefficient bj c-Value (C) Significance
φ1 φ2

(S, V ) 0.99995 1.00000 400.550 (1) 91.0%
(x1, x2) -0.99866 1.00000 2.028 (1) 91.0%
(x1, V ) 1.00000 -0.99988 0.1108 (1) 91.3%
(x2, V ) 1.00000 -0.99836 0.2215 (1) 89.5%
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Fig. 5. Obtained front from UAI-MIP on TRUSS (x1,x2) rule
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Fig. 6. Obtained front from UAI-MIP on BEAM (b,D) rule

It can be observed from Tables V and VI that minimum-
cluster rules have an identical number of clusters as the
theoretically-known relationships for these problems. How-
ever, we have proposed a trade-off evaluation procedure in
Section III-C to automate the choice of one solution from
several obtained solutions automatically. These best-trade-off
solutions, which might be different from the presented min-
cluster solutions, are given in Table VII for some cases. These
solutions represent the best trade-off between achieving the
minimum possible clusters and achieving the best accuracy.

It is known that the rules with lesser C are more physically
explainable whereas the multi-objective formulation ensures
that the solutions with more clusters have better representation,
i.e., they can explain the input PO dataset better. The trade-
off analysis in Table VII points out a few cases where the



TABLE VII
AUTOMATED TRADE-OFF ANALYSIS FOR SOME CASES OBTAINED FROM

UAI-MIP. BEST TRADE-OFF SOLUTION IS HIGHLIGHTED.

Case Point Obj-1 Obj-2 R(x(i),x(i+1)) R(x(i+1),x(i)) Average

1. TRUSS
DISCRETE

(x1,V )

x(1) 1 15.964 7.784 - 7.784
x(2) 2 15.585 21.299 0.128 10.714
x(3) 4 15.308 0.384 0.047 0.216
x(4) 5 7.639 11.238 2.599 6.919
x(5) 7 7.114 - 0.089 0.089

2. TRUSS
(x1,x2)

x(1) 1 20.729 3.710 - 3.710
x(2) 2 19.704 3.857 0.269 2.063
x(3) 3 18.718 4.560 0.259 2.409
x(4) 4 17.884 3.202 0.219 1.710
x(5) 5 16.696 1.031 0.312 0.672
x(6) 7 9.318 - 0.969 0.969

3. BEAM
(b,D)

x(1) 1 1.123 1.034 - 1.034
x(2) 2 1.007 30 0.966 15.483
x(3) 3 1.003 - 0.033 0.033

4. SPRING
(D,N )

x(1) 7 1.0017 2.077 - 2.077
x(2) 65 1.0001 0.633 0.481 0.557
x(3) 66 1.0000 - 1.579 1.579

designer should consider a reasonable choice between it’s
physical significance and it’s accuracy. In case-1, it is evident
that the best-trade-off solution has the same number of clusters
as was identified by SIP, while in case-3, the best-trade-off
comes with C = 2 which both SIP and EAI failed to produce.
Moreover, the MIP procedure also provided the theoretical
C = 1 solution which is an additional advantage.

C. Discussions

It is clear that the UAI framework works well for both con-
tinuous and/or discrete datasets. In UAI-SIP results (Table III),
there is slight deviation in (D,σ) rule, whereas considerable
improvement can be seen in (C,D) rule taking the significance
from 78.6% to 92.8% in EAI. In UAI-MIP results (Table V),
our framework performed worse in (x1,x2) rule but there is
an increase in the significance value from 86.5% to 91.5%
which was further verified using manual innovization. This
generates more confidence as even though the coefficients did
not converge well to their theoretical value, the rule represents
the PO solutions better.

In discrete variable problems, we have a clear advantage
over EAID since our framework can evaluate the true signifi-
cance of the innovized rule. In addition, it is also evident from
Tables VI and VII that UAI-MIP can yield multiple solutions
including both (i) the theoretical solution (C = 1, which both
SIP and EAI failed to give) and (ii) the best-trade-off solution
which is explainable with reasonably good accuracy.

V. CONCLUSIONS AND FUTURE STUDIES

In this paper, a Unified Automated Innovization framework
has been proposed with an ability to deal with both continuous
and discrete variable problems to identify single- or multi-
cluster rules. As an improved procedure, the new clustering
procedure has replaced the old clustering-parameters (d and
ε), with a new, more intuitive and better explainable cluster-
threshold parameter T . The paper has demonstrated that both
versions of the proposed framework (UAI-SIP and UAI-
MIP) can be applied in design tasks involving continuous

and/or discrete variables. Also, the multi-objective approach
with an automated trade-off analysis has been able to find a
single preferred solution having the best weighted trade-off.
The choice with the designer is whether to choose UAI-SIP
and associated lower computational expense, or choose UAI-
MIP and associated additional knowledge about the trade-off
explored. This trade-off between the number of clusters and
the accuracy of the rule is another dimension of interest to
the designers. Although more computationally expensive, our
results clearly shows advantages of using UAI-MIP approach.

Recent works have reported that innovization is a key to im-
prove our knowledge and understanding of design optimization
tasks by extracting hidden relationships among PO solutions.
This paper proposed a robust framework to realize this goal
of innovization. In future, this single- and multi-objective
analysis with the improved clustering process can be extended
to other innovization procedures like temporal innovization,
higher- and lower-level innovization, or for learning free-form
rules using Geometric Programming.
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