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Abstract—Deep Recurrent Neural Network (DRNN) is an
effective deep learning method with a wide variety of applica-
tions. Manually designing the architecture of a DRNN for any
specific task requires expert knowledge and the optimal DRNN
architecture can vary substantially for different tasks. This paper
focuses on developing an algorithm to automatically evolve task-
specific DRNN architectures by using a Genetic Algorithm (GA).
A variable-length encoding strategy is developed to represent
DRNNs of different depths because it is not possible to determine
the required depth of a DRNN in advance. Activation functions
play an important role in the performance of DRNNs and must be
carefully used in these networks. Driven by this understanding,
knowledge-driven crossover and mutation operators will be
proposed to carefully control the use of activation functions in GA
in order for the algorithm to evolve best performing DRNNs. Our
algorithm focuses particularly on evolving DRNN architectures
that use Long Short Term Memory (LSTM) units. As a leading
type of DRNN, LSTM-based DRNN can effectively handle long-
term dependencies, achieving cutting-edge performance while
processing various sequential data. Three different types of
publicly available benchmark datasets for both classification and
regression tasks have been considered in our experiments. The
obtained results show that the proposed variable-length GA can
evolve DRNN architectures that significantly outperform many
state-of-the-art systems on most of the datasets.

Index Terms—Deep Recurrent Neural Networks, Genetic Al-
gorithm, Long Short Term Memory

I. INTRODUCTION

Deep Learning is a sub-domain of machine learning, which

focuses on algorithms influenced by the structure, organiza-

tion and function of the human brain called artificial neural

networks [1]. Deep Recurrent Neural Network (DRNN) is

one of the most popular artificial neural networks, enjoying

a dominating performance in many application areas [2],

[3]. In particular, DRNNs consisting of multiple non-linear

layers have demonstrated to learn the feature representations

at progressively higher levels of abstraction, leading to em-

inent performance in many applications, such as polyphonic

music prediction [4], character-level and word-level language

modelling [2], sequential MNIST classification and action

recognition [5]. DRNNs can be clearly distinguished from

other common neural network architectures in terms of how

they accept and process input data and produce output. Specif-

ically, DRNNs take into account previous output or historical

information as inputs along with the input at the current time

step. This makes DRNNs ideal to recognize characteristics of

sequential data and use sequential patterns to predict the next

likely scenario [6].

Designing network architecture has a huge impact on the

performance of DRNNs [7]. Manual architecture design is

especially labour-intensive as it depends heavily on expert do-

main knowledge. Meanwhile, the usual trial-and-error design

process is highly resource-consuming and error-prone, which

affects the successful use of DRNNs on many mission-critical

applications [8], [9]. As deep learning has scaled up to more

challenging tasks, architecture has become difficult to design

manually [10]. Hence effective methods for automatic design

of DRNN architectures are considered vital for the success of

DRNNs in many domains [6].

Evolutionary Computation (EC) [11] approaches show great

potential for optimizing the design of neural network archi-

tectures in a fully automated and effective way [12]. Ex-

ceptional research works on the application of different EC

techniques for designing and training artificial neural net-

works have already achieved some success [13], [14]. Genetic

Algorithms (GAs) is one of the prominent EC techniques

and has been widely used in different problem domains for

automatic DRNN architecture optimization [15]. By using GA,

the hyper-parameters of DRNN can be adjusted automatically

while optimizing the DRNN architecture. Despite promising

progress [16], existing GA-based architecture design methods

face several challenges for effectively designing DRNN archi-

tectures.

In fact, existing GA is designed to work on network designs

with fixed depth [17]. This limits the discovery of best possible

DRNN architectures, especially for complex problems. This is

because the number of layers and the number of neurons per

layer varies substantially for different tasks. In the absence of

tremendous domain knowledge, it is impossible to determine

the suitable network architecture depth in advance before using

GA. In line with the understanding above a flexible variable-

length encoding must be provided for GA to flexibly design

DRNN architectures with varying depth. The encoding scheme

must be easily processible by GA too.

While variable-length encoding can support DRNNs of any

depth during the evolutionary process. It may not be a good

idea to create DRNNs with a wide range of depths in the

initial population. Note that the computational complexity of

training very deep networks are significantly higher than that
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of shallow networks. Meanwhile, it is easy to extend well-

designed shallow networks to create high-performing deep

networks. Hence a systematic approach must be proposed

to progressively determine the suitable depth of DRNNs by

gradually increasing the depths of designed DRNN architec-

tures through GA evolutions. Moreover, the boundaries of the

DRNN architecture has to be limited to avoid growing the

network indefinitely.

Generally, DRNN architectures randomly created by GA

have no restrictions on the use of activation functions. This

issue is further amplified by the use of common crossover

and mutation operators. However, careful use of activation

functions is crucial to ensure good performance of designed

DRNNs. It is well-known in the literature that many activation

functions suffer from the issue of saturation [18]. Therefore

unrestricted use of these activation functions can lead to

DRNN architectures that are hard to train [19]. However, few

works have ever attempted to identify undesirable patterns

over the use of activation functions and explicitly adopt

identified patterns to guide the automatic design of DRNN

architectures. Our research in this paper is inspired by the idea

that activation functions that are either suitable or unsuitable

for designing DRNNs for a specific task can be identified by

analysing DRNN samples obtained from a pre-sampling phase.

Based on the analysed knowledge, restrictions on the use of

activation functions can be incorporated into GA in the form

of knowledge-driven crossover and mutation operators.

Motivated by the limitations of existing GA approaches,

we aim to develop a new algorithm called Knowledge Driven

Variable Length GA (KD-VL-GA) that can effectively design

DRNNs of appropriate depths for a wide range of machine

learning tasks. In comparison to baseline GA methods, KD-

VL-GA is expected to significantly increase the chance of

evolving highly trainable and effective DRNN architectures.

A. Objectives

To fulfil the goal of developing KD-VL-GA, we have three

objectives as given below. Each objective is achieved through

a separately technical innovation introduced in this paper.

1) Develop a new variable-length encoding scheme to flexi-

bly represent DRNN architectures with any depth: By extend-

ing [20], this objective develops a variable-length encoding

scheme to represent DRNNs of varying depths during the

evolutionary process. The new encoding scheme can compre-

hensively encode a large collection of hyper-parameters with

respect to every DRNN layer. It is also easy to transform or

decode the architecture representation into real DRNN imple-

mentations based on the deep learning library TensorFlow [21]

for training, evaluation and testing.

2) Propose a progressive approach for evolving DRNN

architectures with gradually increasing depths: This objective

proposes a new approach where the initial DRNN architectures

created by GA has a minimal depth level. A progressively

increasing strategy is then adopted to gradually increase the

maximum allowed depth levels across many GA evolutions.

This progressive approach can effectively expand effective

shallow network designs into useful designs of deeper net-

works. It will also significantly reduce the risk of training

badly designed deep networks that would consume substantial

computation resources.

3) Propose a new knowledge-driven technique for crossover

and mutation operators: This objective proposes knowledge-

driven crossover and mutation operators to identify and repair

DRNN designs affected by inappropriate use of activation

functions, thereby significantly reducing the chances for GA

to evolve hard-to-train DRNN architectures. We aim to study

whether useful knowledge regarding activation function usage

can be extracted from randomly sampled DRNN architectures

and whether the extracted knowledge can effectively guide

the repair of any badly designed DRNN architectures. This

knowledge-driven approach is expected to prevent GA from

generating a large number of low-fit DRNN designs, contribut-

ing significantly to the efficient and effective operation of KD-

VL-GA.
II. BACKGROUND

A. RNN

RNNs are a class of neural networks with a backward

feeding link in the network of nodes to learn the dynamics of

input sequence data [22]. Unlike feedforward neural networks,

RNNs has a feedback loop serves as a form of memory to store

historic information for a long context window. This is vital

for RNN to effectively process sequence data. On the other

hand, the main drawback of standard RNN is the difficulty

of accessing distant information in the sequence data. If the

input sequence is lengthy, the time gap between where the

significant information is available and where it is required

may be very large. This is called long term dependency.

Long Short Term Memory (LSTM), a special type of RNN,

has widely demonstrated the capability of learning long-term

dependencies [23].

B. LSTM

LSTM is characterized by its ability to remember informa-

tion for long periods of time [23]. LSTM extends the idea

of memory in RNN by creating a long-term memory compo-

nent. LSTMs also have the chain-like structure of traditional

DRNNs, but the internal structure of individual units is very

different. A key feature of LSTMs is its cell state, which stores

past information for future references. LSTM eventually adds

or removes information to and from the cell state based on its

importance.

LSTM can handle continuous values, noise and distributed

representations. LSTM can often make much more accurate

predictions than RNN on nonlinear time-series data. It has

hence been utilized to tackle many difficult problems including

speech synthesis [24], audio-video data analysis [4], text

generation [25], etc. In this work, GA is adopted to evolve

LSTM based DRNNs.

III. RELATED WORKS

The drawbacks of GAs with fixed-length chromosome for

designing network architecture is explained in [26], which



found that fixed-length chromosome can cause wastage of

computational power. A GA with variable-length chromo-

somes for warship simulation is discussed in [27]. This work

demonstrated that the variable-length GA can find better solu-

tions with less computational cost compared with the one-time

brute-force approach. Moreover, by changing the chromosome

length dynamically, GA is capable of adapting to different

situations. This motivates us to design a new algorithm to

evolve DRNN using variable-length GA.

Apart from its depth, another very important aspect of

DRNN is regarding its use of activation functions. Gulcehre et

al. [18] found that several commonly used activation functions

can cause training difficulties due to the saturation behaviour

of these functions. Quantitative comparisons of four popu-

lar activation functions including linear, sigmoid, tanh and

Gaussian has been reported in [28]. The results suggest that

tanh outperforms the other three activation functions. The key

findings of these research works motivated us to design a

new knowledge-driven approach to carefully control the use

of activation functions in DRNNs.

IV. PROPOSED ALGORITHM

This section explains the overall structure of the KD-VL-

GA algorithm. It also presents detailed discussion regarding

a variable-length encoding for representing evolved DRNN

designs, an incremental progressive approach to update the

depth of DRNNs, knowledge-driven crossover and mutation

operators, population initialization and selection, and the fit-

ness evaluation method.

A. Overview

The basic operation of KD-VL-GA is summarized in Al-

gorithms 1. The step numbers 5 and 6 are for the pre-

sampling phase which is explained in subsection D to facilitate

the development of knowledge-driven crossover and mutation

operators. The algorithm starts with an initial population of

DRNN designs. Each design follows the depth set in hyper-

parameter “MaxDepth”, that is every DRNN architecture can

have the number of layers between 3 and “MaxDepth”. Suc-

cessive generations will be created by GA. If no progress in

the fitness can be witnessed across a number of consecutive

generations, the “MaxDepth” value will be incremented by

one. If no improvement of fitness can be obtained after

multiple increments of “MaxDepth”, the algorithm stops up-

dating “MaxDepth” and returns the best performing DRNN

design ever discovered. If there are more than one DRNN

architectures with the same best fitness value but different

depth, all these DRNN designs will be returned together with

their respective depth (number of layers) and width (neurons

per layer) settings. This progressive approach is designed for

GA to efficiently use its computational power by sampling

and training shallow networks initially, paving the way to build

effective deep networks in later generations. Shallow networks

are much more lightweight to process than deep networks.

Algorithm 1 The pseudocode of KD-VL-GA

1: MaxDepth← 3

2: Pop ← Create the initial population, the depth of each

DRNN bounded by MaxDepth

3: Calculate the fitness of every DRNN in Pop

4: for Generations 1 to N for every MaxDepth value do

5: if decision tree (DT) is not available

Put all DRNNs in the Pop to the sample set

Pop ← Create next generation using standard

crosover and mutation operators

Calculate the fitness of every DRNN in Pop

6: if sufficient samples have been collected and DT is

not available

Prepare learning examples for DT from all

sampled DRNNs and construct the DT

7: Pop ← Create next generation by knowledge-driven

crossover and mutation operators, governed by

MaxDepth restriction

8: Calculate the fitness of every DRNN in Pop

9: if no improvement of fitness is witnessed in past X

generations

10: if no improvement of fitness is witnessed in past

Y updates of MaxDepth

11: Select and return the fittest individual from

Pop as the evolved architecture by GA

12: else

13: MaxDepth← MaxDepth + 1

14: end for

B. The variable-length encoding scheme

We develop a new variable-length encoding by extending

the fixed-length encoding scheme proposed in [20]. The key

difference lies in the fact that with the variable-length en-

coding scheme, the number of design blocks in different GA

chromosomes are not the same because each block represents

one layer of the network. Since different architecture can have

a different number of layers, the length of the encoded DRNN

designs varies. We have followed the same method discussed

in [20] to represent the hyper-parameters and their types within

each design block in a binary format.

Table I lists all the hyper-parameters covered by the en-

coding scheme. For each hyper-parameter, its corresponding

integer representation is written in the bracket followed. Table

II further presents the acceptable integer value range for

each hyper-parameter, the corresponding parameter types and

the number of binary bits utilized to encode their values.

Both LSTM and dense layers are having the same set of

parameters, therefore the type information in Table II is used

to differentiate which layer the parameters belongs to. More

explanations and examples of encoding can be found in [20].

C. Progressive increment to DRNN depth during GA evolution

The suitable depth for DRNN design with respect to any

machine learning tasks is often unknown in advance. On one

hand, shallow networks are not capable of handling compli-



cated tasks. On the other hand, networks with high depth

are overkill for simple tasks and they can also cause a high

computational burden. KD-VL-GA is designed to gradually

increase the depth of the designed DRNNs and hence the

length of the corresponding chromosomes. To dynamically

adjust the length of the chromosome, either a top-down or

bottom-up approach can be used. The top-down approach

starts from a very long chromosome and gradually decreases

the length and the bottom-up approach starts with short

chromosomes and increases the length gradually. We have

decided to follow the bottom-up approach because of two main

reasons: (1) creating and evaluating shallow networks incur

low computation cost, enabling fast design of high-quality

shallow networks in early generations of KD-VL-GA; and

(2) the designed shallow networks can further facilitate the

design of good deep networks, mitigating the risk of spending

substantial computation resources to evaluate ill-designed deep

networks.

In line with the bottom-up approach, KD-VL-GA creates

an initial population with minimal depth for all DRNNs and

searches for best-performing DRNN architectures in the sim-

ple design space. Trainable shallow networks can be created

easily compared to deep networks. Through this incremental

approach, linear increment to the maximum depth of evolved

DRNNs will be applied from time to time to avoid substantial

change to the performance of these DRNNs. In fact, a six-

layer network obtained by directly mixing the design of two

DRNNs with three layers usually does not perform well in our

preliminary experimental studies.

It is important to limit the initial search space of GA

and minimize the computational cost required for fitness

evaluation, ensuring that good shallow network designs can be

quickly identified as the basis for building more effective but

more complicated deep networks. Creating many networks and

selecting the trainable ones are affordable for shallow networks

because they can be evaluated quickly. But deep networks have

to be created carefully because its computational complexity

is much higher compared to shallow network. Therefore

good trainable shallow networks can be used to create deep

networks. With the incremental approach, KD-VL-GA is ex-

pected to find the best performing DRNN architectures with

respect to each depth level in order to identify the most suitable

depth setting for any machine learning task.

D. Knowledge-driven crossover and mutation operators

Following the algorithm overview, we introduce a pre-

sampling phase to collect a group of sampled DRNN designs

in order to analyse the trainability of DRNNs. In the pre-

sampling phase, a sufficient number of trainable and untrain-

able DRNNs must be created. They must also allow us to

determine the suitability of using any activation functions. The

total number of sampled DRNNs is considered sufficient, sub-

ject to two conditions: (1) over 200 trainable and untrainable

DRNNs can be found in the sampled collection; and (2) each

activation function appears at least once in the input layer,

intermediate layer and output layer of any sampled DRNN

TABLE I
SELECTED HYPER-PARAMETERS AND ITS POSSIBLE VALUES CHOSEN FOR

GA TO EVOLVE DRNN ARCHITECTURES

Parameter Possible values

Activation Softsign(0), Elu(1), Relu(2), Selu(3), Tanh(4), Softplus(5),

Sigmoid(6),Hard Sigmoid(7), Softmax(8), Exponential(9),

Linear(10)

Initializer Glorot normal(0), Glorot uniform(1), He normal(2),

He uniform(3), Lecun uniform(4), Lecun normal(5),

Normal(6),RandomNormal(7), RandomUniform(8),

TruncatedNormal(9), VarianceScaling(10),Uniform(11),

Constraint MaxNorm(0), UniNorm(1), MinMaxNorm(2)

Dropout 0.1(0), 0.105(1), 0.11(2), 0.115(3), 0.12(4), 0.125(5),

0.13(6), 0.135(7), 0.14(8), 0.145(9), 0.15(10), 0.155(11),

0.16(12), 0.165(13), 0.17(14), 0.175(15)

TABLE II
PARAMETERS OF DRNN SELECTED FOR TUNING AND ITS ASSOCIATED

INFORMATION

Layer Parameter Range No of Bits in binary Type

LSTM Output space [0, 511] 9 1

LSTM Activation [0, 15] 4 2

LSTM Initialization [0, 15] 4 3

LSTM Constraint [0, 3] 2 4

LSTM Dropout [0, 15] 4 5

Dense Output space [0, 511] 9 6

Dense Activation [0, 15] 4 7

Dense Initialization [0, 15] 4 8

Dense Constraint [0, 3] 2 9

Dense Dropout [0,15] 4 10

designs. Based on these conditions, we found that the number

of samples required for each benchmark dataset (see Section

V. A.) varies from 500 to 600.

To extract useful knowledge from the sampled DRNNs to

guide KD-VL-GA to identify untrainable DRNN designs, we

adopt a decision tree (DT) based approach for analyzing these

samples [29]. DT is suitable for our algorithm because it

presents the precise conditions for a DRNN to be untrainable.

These conditions will be explicitly utilized by KD-VL-GA

to repair this DRNN to make it trainable. To build the DT,

we prepare the learning examples by extracting three types

of features from the sampled DRNNs. The first type gives the

frequency of using each activation function in the DRNN. The

second type captures the location of the activation function in

the DRNN, with three possibilities, i.e, located in the input

layer, intermediate layer, or output layer of the DRNN. Finally,

the third type indicates whether the activation function is used

in any LSTM layer. Based on all the learning samples, the DT

can be constructed automatically by using a well-established

algorithm, such as C4.5 [29]. An example representation of

features to create DT is (Elu:1, Elu:Input, Elu:LSTM), that is

the activation function Elu is used once in a DRNN design

and its position is in the input LSTM layer.

One example DT obtained in our study on UCI-Smartphone

dataset has been presented in Fig. 1. As shown in this example,

a DRNN is considered untrainable if the activation “Expo-

nential” is used in LSTM layers or more than once. Driven

by these conditions defined in the DT, we can perform the

repair mechanism on problematic DRNN designs evolved by
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KD-VL-GA. The repair process is embedded in the crossover

and mutation operators. For example, whenever a new DRNN

design is generated from the crossover operator, it will be

checked against each condition in the DT. If it violates one

condition, such as a higher frequency of usage of specific

activation function, we will repair the DRNN to meet this

condition by lowering the use of the specific activation func-

tion. Other conditions in the DT can be checked and handled

similarly. To avoid spending too much time on repairing the

DRNN, if we have performed up to 3 rounds of repair but

still cannot pass all the conditions in the DT, the DRNN will

be discarded and the crossover operator will be performed one

more time. The general overview of the process is illustrated in

Fig. 2. Similarly, the repair process is realized in the mutation

operator too and the details will be omitted here.

All sampled networks for knowledge extraction are shal-

low networks (i.e., the depth of these networks is bounded

above by 3). We prefer shallow networks because they are

computationally efficient to verify their trainability. However,

it is a question whether the knowledge extracted from shallow

networks can guide KD-VL-GA to accurately determine the

trainability of deep networks. To answer this question, we

applied the DT to a group of randomly generated DRNNs

with the depth ranging from 3 to 15. We found that DT can

give accurate predictions on the trainability of these DRNNs,

with the accuracy as high as 95%. Moreover, experimental

comparisons have been performed in between two settings

of KD-VL-GA, one uses DT in the crossover and mutation

operators and one uses the standard version of these operators.

Relevant experiment results can be found in Fig. 3 to 6 that

confirm the performance advantage of using knowledge-driven

crossover and mutation operators.

In order to clarify the feasibility of applying knowledge

learned from shallow networks to deep networks, we have

compared the performance of improper activations in some

randomly generated DRNNs and found that they are making

both shallow and deep networks untrainable. For example, we

found that the frequent use of Linear activation in the hidden

layers of DRNNs of three layers, seven layers and nine layers

makes it untrainable for UCI-Smartphone dataset. Experiments

conducted with and without using knowledge-driven crossover

and mutation operators also shows a difference in the progress

of successive generations of GA. Filtering the use of activation

functions help to refine the search space of GA and increase

the chances of generating good DRNNs. This also helps to

reduce the computational cost by bypassing training of unfit

DRNNs.

E. Population Initialization and Selection

To generate the initial population, the hyper-parameters with

respect to each DRNN design will be determined randomly.

We apply the restriction to make sure that these randomly

initialized DRNNs must have at least one LSTM layer. Mean-

while, the output layer must be a dense layer.

Every DRNN in the initial population will be ranked accord-

ing to their performance on the given task. The best performing

DRNN will be passed directly to the next generation without

any modification through elitism. The remaining DRNNs of

the next generation will be created by crossover and mutation

based on the selected parents. Parents are selected using the

roulette wheel selection algorithm [30]. The probability of

selecting any DRNN as a parent is proportional to its fitness.

Roulette wheel selection is known to be suitable for automatic

network architecture design since it can maintain reasonable

diversity in the GA population.

F. Fitness Evaluation

For fitness calculations, the DRNN architecture will be

constructed by decoding the whole chromosome into a

Tensorflow-based DRNN implementation. For the purpose of

training and evaluation, the dataset is split into two parts, a

train data and a test data, and the train data is further split

into two parts, the training data and fitness evaluation data.

Training data is used to train the neural network, and the

fitness evaluation data is used to measure the fitness in terms

of classification accuracy or prediction error of the trained

DRNN. During fitness evaluation, an adaptive technique is

used to train a DRNN. In particular, we adopt the early stop

mechanism supported by Tensorflow to stop the training of

DRNNs based on the progress of fitness on evaluation data.

V. EXPERIMENT DESIGN

This section explains the details of datasets of different

types, performance metrics used and general settings of the

algorithm.

A. Benchmark Datasets

We have used three different types of datasets, human activ-

ity recognition (HAR), solar flare prediction, and air quality

prediction. Three different types of datasets are selected to

verify the general applicability of KD-VL-GA.

1) Human Activity Recognition: HAR is a challenging

broad field of study concerned with identifying the specific

action or movement of a person. Here we are using three

publicly available benchmark datasets on HAR. These three

datasets are chosen because it includes a variety of indoor

and outdoor activities. They include balanced and unbalanced

datasets with attribute range 9 to 561.



a) UCI-Smartphone, Human Activity recognition dataset

created using a smartphone. Experiments have been conducted

with 30 people for six activities.

b) UCI-FOG, Daphnet Freezing of Gait dataset. This dataset

contains information on Parkinson’s disease patients experi-

encing freezing of gait (FOG) during walking. There are two

activities, Freeze and Normal.

c) SKODA Mini Checkpoint dataset. This dataset contains

11 activities performed in a car maintenance scenario.

2) Solar Flare Prediction: A Solar flare is the rapid release

of a large amount of energy stored in the solar atmosphere.

Solar flares are classified as A, B, C, M or X according to

the peak flux of 1 to 8 Angstroms. This work is predicting

whether an active region would produce a γ class flare in one

day.

a) NCEI, National Centers for Environmental Information

dataset contains records of flare events occurred from 2010

May to 2018 May. Three γ classes considered for prediction

are > M5.0 class, > M class, and > C class.

3) Air Quality Prediction: Air pollution refers to the con-

tamination of the atmosphere by harmful chemicals or bio-

logical materials. Three publicly available benchmark datasets

are used.

a) UCI Beijing PM2.5. This hourly dataset stores the

information on particle matter (PM) 2.5 of the US embassy in

Beijing and meteorological data from Beijing Capital Interna-

tional Airport between January 1st, 2010 to December 31st,

2014. The evolved DRNN is predicting the concentration of

PM2.5 in the air.

b) UCI Italy. The data was recorded from March 2004 to

February 2005 from an Italian city. The evolved DRNN is

predicting the concentration of CO, NO2 and NOx.

c) UCI PM2.5 Data of three Chinese Cities. This hourly

dataset contains the PM2.5 data of three cities Beijing, Shang-

hai, and Shenyang. Data recorded during the period January

1st, 2010 to December 31st, 2015. The task is to predict the

concentration of PM2.5 in these three cities.

Summary of all the above-mentioned dataset is listed in

Table III. For all the dataset, 80% of the data is used for

training and 20% is used for testing. 33% of the training data

is used for fitness evaluation.

B. Performance Metrics

Classification accuracy is used for evaluating the perfor-

mance of the model on HAR and Solar flare prediction because

it is a classification problem. Root Mean Square Error (RMSE)

of the model is used for fitness measure on Air quality

prediction tasks because it is a regression problem.

C. General Settings

We have set the minimum and maximum values for the

depth of the evolved DRNNs as 3 and 15 because we found

that GA is terminating with DRNNs of layers less than 15

for different tasks. For every depth, GA evolves a minimum 5

and maximum of 20 generations. That is for every depth value,

GA evolves for a minimum of 5 generations and checks the

TABLE III
SUMMARY OF DATASETS

Dataset Samples Attributes

UCI-Smartphone 10299 561

UCI-FOG 1029470 9

SKODA 22000 390

NCEI-C Class 155739 14

NCEI-M Class 155739 22

NCEI-M5 Class 155739 20

UCI Beijing PM2.5 43799 8

UCI Italy 8991 12

UCI PM2.5 Beijing 59351 10

UCI PM2.5 Shanghai 34774 10

UCI PM2.5 Shenyang 25881 10

progress. If no progress found for 5 generations, it increments

the depth value, otherwise, it continues to evolve to the next

generation. We found that GA can not find better solutions

in the successive generation if it can not find improvements

in the last 5 generations and GA often increments the depth

value before reaching 20 generations. GA stops incrementing

the depth if no progress in the fitness of DRNNs found for the

last 5 increments of depth value. Each generation consists of

60 individuals. The crossover rate used is 0.9 and the mutation

rate is 0.3.

Two-point crossover is used and the crossover points are

randomly selected. Meanwhile, the new DRNN designs cre-

ated through crossover cannot violate the maximum and mini-

mum depth restrictions. The mutation is done as a bit flipping

on the binary representation. The optimizer used for training

evolved DRNNs for fitness evaluation is Adam. The settings

used for Adam optimizer is learning rate 0.001, decay 1e-2,

clipnorm 1.0 and clipvalue=5.0 and bias regularizer for LSTM

is L1L2(l1=0.008, l2=0.0).

VI. EXPERIMENTAL RESULTS

We found that the influence of activation functions on

the trainability of DRNNs is based on the specified task.

For example, the activation functions Exponential, Linear,

Sigmoid, Hard sigmoid, and Softplus could not be used too

often for classification on UCI-Smartphone data, so that their

usage must be carefully controlled using the repair mechanism.

The activation functions making good trainable DRNNs for

UCI-Smartphone data are Elu, Selu, Relu, Tanh and Softsign.

A. HAR

The evolved DRNN architectures of depth 7, 4 and 5

yield the best results for the UCI-Smartphone, UCI-FOG and

SKODA dataset respectively. The overall accuracy of all these

datasets is given in Table IV.

1) Comparison between General GA and GA with filtering

approaches: We compared the performance of KD-VL-GA,

general variable-length GA (VL-GA) approach without im-

posing any restriction on the use of activation functions (i.e.

using standard crossover and mutation operators) and non-

flexible variable-length GA (NonFlexible-VL-GA) in terms

of obtained classification accuracy. The NonFlexible-VL-GA

creates DRNNs of any depth between the lower and upper limit
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Fig. 4. Progress of fitness of various
methods on UCI-FOG dataset
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Fig. 6. Progress of fitness of various
methods on NCEI-C Class dataset

from the initial population onwards. In this work, the lower and

upper limits used are 3 and 15. Graphs showing the progress

of fitness over generations based on these three methods on

3 HAR datasets and NCEI-C class dataset on Solar flare are

shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively. The

results show that KD-VL-GA could generate good trainable

DRNNs of comparatively high accuracy.

For the UCI-Smartphone dataset, the best accuracy obtained

by KD-VL-GA is 96.33%, the best accuracy obtained by

VL-GA approach is 91.4% and the best accuracy achieved

using NonFlexible-VL-GA is 86%. For the UCI-FOG dataset,

the best accuracy obtained by KD-VL-GA is 95%, the best

accuracy obtained by VL-GA approach is 86% and the best

accuracy achieved using NonFlexible-VL-GA is 85%. For the

UCI-Skoda dataset, the best accuracy obtained by KD-VL-GA

is 99.6%, the best accuracy obtained by VL-GA approach is

95% and the best accuracy achieved using NonFlexible-VL-

GA is 90%.

B. Solar Flare Prediction

Prediction result of the evolved DRNN architectures for the

three classes of flares i.e.> M5.0 class, > M class and > C

class are shown in Table IV. The best result achieved is 99.6%

for the > M5.0 class flare. Highest accuracy earned for the

> M class flare is 98.4%, and the best accuracy for the > C

class flare is 88.5%. For all the three classes of flares, DRNNs

of 4 layers generated the best results.

TABLE IV
COMPARATIVE ACCURACY OF THE KD-VL-GA AGAINST OTHER MODELS

Dataset Competing Algorithms KD-VL-GA

(Accuracy %)

Time in hours

Smartphone 95.5 [31], 95.0 [32] 96.00±0.33 177 ± 05.57

UCI-FOG 93.0 [32], 94.0 [33] 94.00±1.00 523 ± 13.30

SKODA 96.6 [31], 96.0 [32] 99.00±0.60 174 ± 05.59

NCEI-C Class 8.03 [34], 82.0 [35] 87.00±1.50 432 ± 14.70

NCEI-M Class 90.0 [34], 92.0 [35] 98.00±0.40 440 ± 19.10

NCEI-M5 Class 90.0 [34], 88.0 [35] 99.00±0.60 437 ± 18.20

Dataset Competing Algorithms KD-VL-GA

(RMSE)

Time in hours

UCI-Beijing PM2.5 14.50 [36], 15.60 [36] 11.92±0.85 192 ± 05.32

UCI-Italy CO 01.96 [37], 01.72 [37] 00.33±0.20 102 ± 06.61

UCI-Italy NO2 149.8 [37], 152.8 [37] 12.25±3.50 097 ± 04.64

UCI-Italy NOx 94.40 [38], 83.60 [38] 27.16±3.00 092 ± 05.70

PM2.5 Beijing 16.55 [39], 56.70 [40] 12.40±2.30 119 ± 05.70

PM2.5 Shanghai 08.55 [39], 28.00 [40] 08.00±0.75 124 ± 08.19

PM2.5 Shenyang 20.10 [39], 59.00 [40] 12.00±1.50 122 ± 07.92

C. Air Quality Prediction

DRNNs with 4 layers evolved by GA yield the best result

for the UCI- Beijing PM2.5 dataset. The evolved DRNNs of

4 layers achieved the best results on all the three UCI-Italy

datasets, CO, NO2 and NOx. DRNNs of 5 layers achieved

the best results on all the three UCI-PM2.5 datasets, Beijing,

Shanghai and Shenyang. RMSE obtained on all the given

datasets are listed in Table IV.

D. Comparisons with recently published results

Table VI lists the obtained results of different tasks by KD-

VL-GA and the best results published in the latest works on

the same dataset [31]–[42]. The obtained results shows that

DRNN evolved by KD-VL-GA performs consistently better

compared to the other state-of-the-art approaches [31]–[42].

Our KD-VL-GA could increase accuracy and decrease RMSE

over a good margin.

The classification accuracy and prediction accuracy on

different datasets demonstrate that KD-VL-GA could evolve

DRNN architecture which can produce competitive results. We

found that the KD-VL-GA approach is performing well on

different tasks.

All the experiments are conducted on GPUs with NVIDIA

GeForce RTX 2080 cards. Execution time in hours to evolve

DRNNs for each dataset by KD-VL-GA is listed in Table IV.

VII. CONCLUSIONS

The proposed KD-VL-GA method features the use of

variable-length encoding along with the incremental progres-

sive approach to automatically evolve DRNNs. We success-

fully developed a GA-based approach with knowledge-driven

crossover and mutation operators to create trainable DRNNs

to better use GA for evolving architectures of DRNNs.

We found that KD-VL-GA is general enough to evolve

DRNNs for different tasks. We have verified its applicability

on three different types of datasets for classification and regres-

sion tasks. GA is found to be an efficient tool to tune the hyper-

parameters of DRNNs. The proposed variable-length encoding

scheme supports the use of the proposed GA operators and



refines the search space by gradually increasing the depth of

DRNNs. Deeper networks could be generated effectively from

trainable shallow networks. Computation complexity could be

reduced by avoiding untrainable DRNNs through knowledge-

driven GA operators.

Future work will focus on automated analysis of DRNNs to

find commonalities in those DRNNs which are not trainable.

We will also find a method to apply the analysis on the

trainability of DRNNs throughout the evolutionary process not

only on the initial shallow networks. We will also examine the

usefulness of our GA based approach with new operators on

other important machine learning tasks.
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