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Abstract— A significant amount of water, energy and time
are often wasted, before someone gets the desired water
temperature in a bathroom or a kitchen. In this paper, we
propose a novel electro-mechanical device for mixing the water
intelligently, which is effective for saving water, energy and time.
The problem that we intend to solve can be seen as a multi-
objective optimization problem in which we require to optimize
water’s flow and temperature. To achieve this task, we consider
both the single-objective and the multi-objective optimisation
variants of the problem. NSGA II is then used to solve each
of these variants. In order to assess the effectiveness of each
approach, a case study has been conducted, where controllers
are applied to control a dynamic number of users within a
house. The results suggest that multi-objective optimization
outperforms single-objective optimization, in terms of quality
of the returned solutions.

I. INTRODUCTION

In many countries, despite the advancement in engineering
and technology, a significant amount of water and energy are
wasted. This is particularly noticeable in modern homes and
residences where there is no cost-effective devices to improve
efficiency and save energy. A typical example is when
someone needs to set a desirable water temperature before
taking a bath. This often requires a high amount of water
waste, before the preferred temperature is reached. More-
over, preserving the preferred temperature does not work as
needed, due to changes in the input flow of hot and cold
waters. Another challenge is when users are added/removed
dynamically, which requires the management of different
objectives and constraints for different taps. Some efforts
have been conducted to reduce the water and energy wastes
in water taps. However, these works have limitations such
as design lacking the proper electronic system [1], or design
without the proper mechanical device [2]. Other attempts
have been conducted to save energy but these are not aligned
with the scope of the problem we stated [3], [4]. In [5], we
have proposed a new mixing device which addresses some
of the issues listed above. More precisely, our mixing device,
relies on a multi-objective heuristic optimization solution to
automatically control the adequate mixing amount of hot and
cold water, in order to satisfy a given user’s preference.

Following on our previous work, and in order to deal with
dynamic users for different taps, we propose the following.
First, we redesign the mechanical device. The new proposed
mixing device has a number of new features including a

1 A.M. Farid is corresponding author and is with Monash University,
Australia.

2 M. Mouhoub is with University of Regina, Canada.
3 J. Sharifi is an independent researcher.

smaller size that is easy to install. The device is very compact
and can be installed in any traditional water system. The
second contribution is related to the controlling method
that is used in the mixing device. In order to come with
the adequate controlling method, we conducted a study
of several controllers. Each controller relies on a different
solver. Indeed, we represent the problem as a multi-objective
optimization problem [6], where constraints need to be met
while optimising some objectives. To solve this optimization
problem, we consider both the single-objective and the multi-
objective optimization approaches.

The rest of the paper is structured as follows. In the next
Section, the problem formulation is stated, The proposed
device and controllers are then presented in Section 3.
The experimentation conducted to compare the different
controllers, in terms of computation cost and quality of the
solution, is reported in Section 4. Finally, concluding remarks
are listed in Section 5.

II. PROBLEM FORMULATION

As stated in the previous Section, our goal is to develop
a new mixing device that will be installed on each house
tap. The device acts as a controller on the tap to which
it is attached. The controller optimizes the performance in
the related tap, as well as the other taps inside the house.
The house is assumed to be equipped with a heating source.
During the optimization of the water’s flow and temperature,
a number of possible conditions might take place including
low temperature in hot pipes, low flow rate of water, and
a varying number of users. These conditions may affect the
overall performance of all the taps within the house. The
first and the second conditions might happen due to a high
number of users or may result from an issue in the heating
source. The third condition relates to an abrupt change in the
number of users. We assume that each user has a specific
preference, and each mixing device is intended to optimize
the overall performance. To do this, the device sets the water
flow and temperature according to the preference of the user,
as a first priority, while as a second priority, the device
considers other taps and the overall performance.

We present the mathematical formulation of the problem
as follows. For the heater we have:

es = τsEmax (1)

where es is the current consumed energy in the heating
source (in kcal/hour), τs is the tuning factor of the source
controller ( 0 < τs ≤ 1 ), and Emax is a constant (see Table
I).
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The following formulation is based on the fact that the
energy that dissipates through the pipes is related to the
length of the pipe. Similarly, based on the travelled length
in the pipes, the water’s flow rate dissipates accordingly. In
addition to this, the flow rate dissipation may relate to the
flow rate in both the heating source and other mixing devices.
In this problem formulation, if a house has N taps on use,
the total available energy for the taps can be written as:

eoi = es −
N∑
i=1

Li (2)

where Li is a coefficient related to the amount of reduction
in energy, as follows:

Li = Wdi (3)

Here, the temperature of the water drops in proportion with
W (W is a constant in kcal/hour). In addition, di is the total
length, in meters, between the source and tap i. Furthermore,
in proportion with D, the flow rate of the water in the pipe
will be reduced. The flow rate is measured in litre/min.

fi = F −
N∑
i=1

Ddi (4)

where F is the source flow rate and fi is tap i’s flow rate.

Si = aifi(hd − hi) (5)

where Si is the wasted water, hd is the desired tempera-
ture, and hi is the current temperature. The temperature is
measured in Celsius.

To compute the time that is needed to set the water to the
preferred temperature, we have to minimize ti :

ti =
(hd − hi)

(fi − fd)(hs − hd)
(6)

where fi is the current flow-rate in the tap, the desired flow
rate is fd, hs is the heating source water temperature, hd is
desired temperature, and hi is the current temperature of the
hot pipe. To set the desired flow rate (fd), we minimize the
following term:

ki = fi − fd (7)

According to the above equations, the cost functions can
be formulated as:

c1 =

N∑
i=1

aie
−
oi1 (8)

c2 =

N∑
i=1

aiSi (9)

c3 =

N∑
i=1

aiti (10)

c4 =

N∑
i=1

aiki (11)

where ai refers to the given priority of tap i. Hence, the
Multi Objective Optimisation (MOO) considers the priority
coefficients in the costs optimization. In other words, if
we assume N taps in the house, we will have N priority
coefficients as follows:

N∑
i=1

ai = 1 (12)

where N ≥ 1, ai > 0.
In addition, in the place of each tap, the flow-rate of hot

water pipe is calculated as follows:

Fi = Fmax
hd
hi

(13)

where Fi is the flow-rate of tap .
1) Heater controller: As it was shown in Equation (1),

in the heating source, τs regulates the amount of consumed
energy. τs may vary within a given range (0 < τs ≤ 1 ). The
controller of the designed system sets a proper value for τs,
between a partial load ( τs < 1) and a full load (τs = 1). In
case of existing many users, the heater will choose to work
on full loads, while , in partial load, the system will set the
load when there are no or a few users.

A. Constraints

In the above-mentioned problem, we have to meet a few
constraints. These constraints relate to mixing device, heater,
and pipeline.

1) Mixing device constraints: Each tap is able to set the
desired temperature hd with the following constraint:

0 < hd ≤ hmax where hmax is defined according to the
specifications of the pipeline and the heating source. In our
simulation, hmax is assumed to be 80oC . Furthermore, the
desired flow in the tap (fd ) is constrained to 0 < fd ≤ fmax.

2) Heater constraints: The total consumed energy ( eo)
in the heating source is a combination of used energy in the
heater, lost energy in pipes ei, and used energy in the taps
by users (ec ):

es − ei − ec = (es −
N∑
i=1

Li − ec) (14)

in which 0 < eo ≤ Emax . In addition, the heating source
also pose a few constraints. The heating source’s flow and
temperature is constrained to Hmin < hs ≤ hmax and
Fmin < fs ≤ Fmax respectively (See Table 1).

3) Pipeline limits: The pipeline is constrained to a
specific flow and temperature: Fpmin < fp ≤ Fpmax and
Hpmin < hp ≤ hpmax .



Fig. 1. The design of the mixing device. (a) The outside view. (b) The
inside view.

III. PROPOSED DEVICE AND CONTROLLERS

In this section, a new mechanical system is developed as
a mixing device, which can be inserted close to the taps.
The mixing device includes two main parts: mechanical and
electrical parts. The mechanical part is mainly working as an
actuator to control the mixing amount of water coming from
hot and cold pipes. The electronic part primarily comprises
sensors, servomotors, a wireless communication module, and
a processor. The redesigned device is shown in Fig. 1. The
key duty of the processor is controlling the actuators to
set a proper follow and temperature of the output. This is
done according to sensors and communicated data. In the
following, the implemented controllers are defined. Each
device is run the controller locally considering the user’s
preference, heating source, and other taps that are in use.
The installment of the device is shown in Fig. 2.

The mixing device includes flow meter and temperature
sensors, and the mechanical mixing part that works with two
servo motors. The flow and the temperature of the water in
the output are set by servomotors. For proper control of two
servo motors, a low-level control is required.

The overall system comprises two levels of control: high-
level and low-level controllers. The high-level controller is
the main part of the system, which finds out the best solutions
for each in-use mixing device as well as the hot water level
in the heater. The low-level control is applying the fuzzy
controller to produce a proper water flow and temperature in
the output (see Fig. 3). This paper focuses on the high-level
control when the low-level controller is studied in detail in
[7].

A. Multi-Objective Optimizer

The multi-objective optimizer optimizes the tap perfor-
mance as well as the overall performance inside the house.

Fig. 2. The location of the prototype with a user input interface.

Fig. 3. Fuzzy controller on layer 1: Inputs are flow-rate and temperature
of the water in both cold and hot pipes.

The optimization is done using the following objectives to
minimize.
c1= the overall consumed energy,
c2= the overall water wast,
c3= the delay time between the current water and the user’

s preferred water
c4= the difference between the preferred and the current

flow.
For each tap, the mixing device runs the solver, which

optimizes the above defined conflicting objectives. The aim
here is to provide a set of Pareto optimal solutions (Pareto
front) minimizing the objectives. As shown in the next
subsection, the decision maker will then choose the best
solution among the set.

NSGA-II is used here to solve the problem and returns sev-
eral Pareto fronts. In the literature, NSGA-II is well-known
for rapid convergence with acceptable prediction. NSGA II
is the multi-objective version for Genetic Algorithms (GAs),
which can optimize various objectives simultaneously. In this
algorithm, each front contains a set of optimized solutions.
The first front is made of a completely non-dominant set,
the second front is dominated only by the individuals in the
first front, and so on. Details of NSGA-II settings are shown
in Table II. Since NSGA-II obtains a set of non-dominated
solutions, a final solution should be chosen out by a decision
maker. In this regard, apply a vector-based decision maker
which is described in the next section.

1) Implementation of NSGA-II: First, in each tap, NSGA-
II produces a uniform population of size 2, which are
water flow rate and temperature. Then, online information
of other taps is received over IoT network. This information
includes the flow rate and temperature of current in-use taps.



TABLE I
SETTINGS FOR THE SPECIFIC PARAMETERS

Parameter Value
Max heating capacity (Emax) 2100 kcal/hour

Max water flow (Fmin) 1 litre/min
Max output water flow (Fmax) 10 litre/min

Max gas usage 2,5 m3

hour

Meanwhile, the device receives information about the current
temperature of the water on the heater. More precisely, we
follow the procedure below:

1) The objectives of each individual are calculated using
Equations (15), (16), (17) and (18). Then population
are evaluated and sorted based on the non-domination.
For non-domination sorting, each solution has a special
rank using the non-dominated sorting.

2) A binary tournament selection is adopted. To create
an initial population of off-springs (P ), two genetic
operators including Binary Crossover and Polynomial
mutation are selected [8].

3) A new population is then generated by combining off-
springs and parents.

4) Next, the new combined population is sorted based on
a non-dominated rule.

5) Crowding distance is used to ensure the diversity
of solutions, which helps to avoid convergence in a
particular direction. If we have three adjacent points on
the Pareto front including {z−1,z,z+1}, the crowding
distance (ψ) is computed with the following equations
that are two distances in a cuboid:

ψ1 = ‖f1(xz+1)− f1(xz−1)‖ (15)

ψ2 = ‖f2(xz+1)− f2(xz−1)‖ (16)

The crowding distance is ψ = ψ1 + ψ2.
6) If there is active user in the tap, update the iteration

α=α+1 after β seconds. This time delay (β) helps to
improve the life-time of the mixing device. In addition,
time delay results in avoiding too much oscillation in
the device. To calculate β, the following formula is
used:

β = AC(1/(1 + κ)) (17)

where the value of A is 1 if the tap is in use, and
is 0 otherwise. C is a constant, and κ is the output
difference which is computed as follows:

κ = X(fi − fd) +K(hi − hd) (18)

where X and K values coefficients are tuned to their
best.

2) Decision Maker: The MOO process finishes with a set
of non-dominated solutions which corresponds to the Pareto
front. According to the nature of the problem, some of these
solutions may work better. In this sense, the decision-maker
is interested in only some of the solutions of the Pareto

TABLE II
SPECIFIC SETTINGS FOR NSGA-II

Mutation Rate 0.02
Cross-over percentage 0.7
Mutation percentage 0.4
Mutation Step Size 0.3

Fig. 4. Vector based preference decision making where Q is the point that
we compute the preference value, and ~V is a reference vector.

front. The process of selection of a subset of these Pareto
optimal follows the known selection approaches. Each of
these approaches have some limitations, for example, the
knee based method requires at least four solutions, while
the vector-based approach can make decisions with any
number of solutions. Since, in real-word applications, we
cannot guarantee to have a minimum number of solutions,
the vector-based decision-maker is chosen for this work. The
method is applied when the vector passes from the point
called Reference. Reference vectors provide a preference
for the designer in the solution space. Each solution is
compared with the perpendicular distance, while improving
the diversity [9]. The preference value is as follows:

g = (1 + p(φ))|d| (19)

where p(φ) is a penalty function and is similar to [9], and

p(φ) = O
φ

Γ
(20)

~V is a reference vector and ~P is a vector connecting the
centre to the point Q as shown in Figure 4. In addition, Γ is
the minimum angle between ~V and other ~P for all objectives,
and O is the total number of objectives while φ refers to the
angle between ~V and ~P .

B. Single-Objective Optimizer

To produce a single-objective from multiple objectives,
scalarization has been applied. In this method, the objectives
are represented in a single function, where a weight is asso-
ciated to each. Proper weights may be found considering trial
and error as well as priorities from the problem definition.
More formally, the single objective is defined as follows.

H = τ1c1 + τ2c2 + τ3c3 + τ4c4 (21)



Fig. 5. First setup, where S is the source and Ti are the taps

TABLE III
SETTINGS FOR THE SPECIFIC PARAMETERS

τ1 τ2 τ3 τ4
SOO1 0.3 0.15 0.4 0.15
SOO2 0.25 0.25 0.25 0.25

where H is the objective that is optimized, and τ =
[τ1, τ2, τ3, τ4] is set of weights for multiple objectives. Also,

τ1 + τ2 + τ3 + τ4

is equal to one.
Genetic algorithms (GAs) are used to solve the single-

objective optimisation variant of the problem. GAs are
developed based on natural selection of living species. In
GAs, selection of best fitted solutions is done for producing
best offspring in the next generation. This process relies on
three main operators: mutation, cross-over, and selection.

IV. EXPERIMENTATION

A. System Setup

To test the above-mentioned controllers, two configura-
tions are studied: parallel and series configuration. These
configurations are shown in Figure 5 and Figure 6, respec-
tively. Since the system is stochastic, each experiment is
repeated for 30 times, and the average result is taken and
presented. To show the difference between controllers, and
to assess the effectiveness of each, we require a high number
of taps with dynamic usage of the taps. In this sense, two set-
up configurations are considered with 21 taps, and all taps
have equal priority. In these setups, after water passes from
the l length of the pipe (where l is assumed to be one meter),
the water flow is reduced in proportion with D (D =0.15
lit/min). Similarly, the water temperature drops in proportion
to W (W=148 kcal) per l length of the pipe.

Mathworks Matlab 2018b has been used on a PC with a
Core I5 processor and 8 Giga bytes of RAM. A random
change in the number of users is simulated. In the first

Fig. 6. Second setup

experiment, the configuration of Figure 6 is simulated. Here,
all 21 taps are acting simultaneously according to different
users’ preferences (in terms of temperature and water flow).
The total time corresponds to 60 iterations which simulates
30 seconds in practice. From a practical point of view, since
each mixing device runs a GA or an NSGA-II controller
on its processor, according to the literature, ARM or FPGA
embedded processors can work properly in real-time [10].
Internet of things (IoT) as an alternative approach can be
used for this application. IoT technology provides a cloud
computing option, which enables the designers to use a low-
cost device with effective power of computing. In addition,
this technology makes histories of each device usage avail-
able online on the Internet. On the other hand, all devices
can communicate with each other and the heater using the
Internet.

B. Results

Since we are dealing with 21 taps, there is not enough
space to show the completed performance for each. For this
reason, we selected a few samples among others. In Figure
7, a Single-Objective Optimisation (SOO) is listed with two
different weighted-sum, compared in terms of performance
in both temperature and flow. Table III shows the different
settings of τ . The different values for τ are set based on trial
and error. In theory, the optimal values can be predicted more
precisely with mathematical approaches, while, in practice,
since there is no precise mathematical model for the device,
one may require to use trial and error to set the proper values
for τ . The configuration is set to series. As it can be seen,
the performance is highly related to the proper tuning of the
different values of τ = [τ1, τ2, τ3, τ4]. This is justified by



Fig. 7. Water flow (a) and temperature (b) of tap 3 in series configuration
using the SOO controller. The performance is highly related to the weighted-
sum coefficients.

TABLE IV
SOO AND MOO PERFORMANCE

SOO1 SOO2 MOO
Temperature -0.28 -0.31 -0.6

Flow -0.38 -0.44 +30.630

the fact that SOO cannot handle several values of τ . On the
other hand, MOO can optimize the objectives in a timely
manner.

In Figure 8, the same tap with the same desired flow
and temperature in the 21 taps is tested with the MOO
controller in a series configuration. As can be seen, the
performance of the flow rate is better than the one of SOO.
Additionally, the water temperature remains higher than in
Figure 8 (b). The reason behind is the MOO’s ability to deal
with conflicting objectives. In other words, MOO keeps the
temperature higher than the desired one to improve the total
performance.

We compute the temperature values and water flow during
all iterations for all taps. Table IV shows that, in terms of
temperature, MOO’s total output temperature is 0.6 degrees
less than the user preference, while the flow is higher than
the user preference. Similar results are obtained in the case
of parallel configurations as shown in Figures 9 and 10.

Fig. 8. Water flow (a) and temperature (b) of tap 3 in a configuration in
series using MOO controller.

Finally, according to our experience on Matlab, MOO’s
computational cost is about 10 times higher than SOO. it is
clear that MOO requires a higher amount of computational
cost than SOO. However, as can be shown in Table IV,
MOO does not really perform better than SOO in highly
dynamic situations. In all, MOO can be seen as more flexible
optimizer which is robust against abrupt change of each
objective, which is not the case of SOO, even for one
objective. We believe that MOO can outperform SOO if we
have a more complicated configuration, which we leave as a
future research.

V. CONCLUSION

Efficient taps with minimum energy and water waste
motivated us to design a new electro-mechanical device.
This device can be installed at any location with ease. The
device is controlled on two levels. The high-level controller
that improves the efficiency of all taps in use and the
heating source, and the low-level controller that translates
the high-level controller outputs to proper commands in
servomotors. We have compared two optimization control
approaches for high-level control, namely, single-objective
and multi-objective optimizations. The results suggest that
multi-objective control is superior in terms of performance,
while it requires more computational power. The results
also show that multi-objective control is more flexible in
dealing with highly dynamic situations when a high number



Fig. 9. Water flow (a) and temperature (b) of tap 1 in parallel configuration
using SOO controller.

of users use the taps in a dynamic manner. As a future
work, we intend to control the proposed device using many-
objective optimization approaches, i.e., multidisciplinary de-
sign optimization, as well as relying on other nature-inspired
techniques [11], [12], [13], [14], [15], which can help the
system to be usable with current commercialized smart house
systems.
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