
Prediction of Photovoltaic Time Series
by Recurrent Neural Networks and

Genetic Embedding
Antonello Rosato∗, Rodolfo Araneo† and Massimo Panella∗

∗Dept. of Information Engineering, Electronics and Telecommunications (DIET)
University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

Email: {antonello.rosato, massimo.panella}@uniroma1.it
†Dept. of Astronautical, Electrical and Energy Engineering (DIAEE) - Electrical Engineering Division

University of Rome “La Sapienza”, via Eudossiana, 18, 00184 Italy
Email: rodolfo.araneo@uniroma1.it

Abstract—The need of reliable prediction algorithms of energy
production is increasing due to the spread of smart solution for
grid, plant and resource management. Recurrent neural networks
are a viable solution for prediction but their performance is
somewhat insufficient when the time series is generated by an
underlying process that behaves in a complex manner. In this
paper, a new combination of echo state network and genetic
algorithms is employed in order to improve the prediction
accuracy of photovoltaic time series. The genetic algorithm is
used to embed past samples of the time series to be used for
predicting a new one. It aims at a feature extraction in order
to regularize data being fed into a neural network model, so
that it is able to learn more robust and generalizable prediction
models. The experimental tests prove that the proposed approach
is suited to the application focused in this paper.

I. INTRODUCTION

To forecast energy production is one of the most important
analysis for the cost-effective management of power plants.
This is important especially in the photovoltaic (PV) gener-
ation, as the fluctuating production is much more mutable
than the one from other sources and knowing its variations in
advance is crucial for adapting the grid infrastructure. In this
scenario, the high penetration level of renewable generation of
smaller generating units (i.e. prosumers connected to the distri-
bution network) calls for reliability and flexibility of the grid.
These can be achieved only via the essential deployment of
a grid and plant management system, in which the prediction
PV power plant production results of paramount importance.

In this context, the prediction of complex real-world time
series is a well-known hard problem [1], as the series bears
some inherited characteristics such as nonlinearity and non-
stationarity [2]. Statistical approaches [3] like auto regressive
moving average (ARMA), auto regressive integrated mov-
ing average (ARIMA) and autoregressive integrated moving
average with exogenous variables (ARIMAX) have deficient
accuracy in this peculiar case.

The prediction accuracy can be improved by using other
forecasting methods, which make use of computational intel-
ligence, Neural Networks and Fuzzy Logic [4], [5]. Another

popular technique relies on the Echo State Network (ESN)
model [6]. ESN is a class of Recurrent Neural Networks
(RNNs) in which the recurrent and the non-recurrent part, that
is ‘reservoir’ and ‘readout’ respectively, are separated. The
recurrent part is fixed and the non-recurrent one is solved as
a standard linear regression over its weights. ESNs are widely
used in different domains including, for instance, chaotic time-
series prediction [7], grammatical inference [8], stock price
prediction [9] and acoustic modeling problems [10].

In time series prediction, the estimation of the underlying
mapping function between the sample to be predicted and the
ones previously measured is often an ill-posed problem. This
can dramatically affect the overall performance, especially
when using advanced learning paradigms for neural networks.
In most cases this problem is solved by employing an em-
bedding technique to reconstruct the state-space evolution of
the system and to choose accurately the past samples that will
feed the input of the neural network [11].

Genetic Algorithms (GAs) are metaheuristics that belong to
the larger set of evolutionary algorithms [12]. In this paper,
we propose to adopt ESN as a reference prediction model and
GAs to find the optimal choice of past samples to be embedded
and fed through the input of ESNs. This allows us to improve
the prediction accuracy and to reduce the dimension of the
input space, therefore acting as a feature extraction process
that regularizes data being fed into a neural network model,
so that the latter is able to learn more robust and generalizable
prediction models. Preliminary approaches in this context have
been recently proposed in the literature, they consider the use
of genetic algorithms and machine learning models to analyze
energy time series and/or the related financial data [13]–[19].

The prediction performance is evaluated in the proposed
approach by means of different tests carried out on real-world
time series, comparing it to the standard embedding technique
also using other regression models adopted for prediction, such
as linear Least Squares Estimator (LSE), Radial Basis Function
(RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS), and
Mixture of Gaussian (MoG) neural networks.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

II. ECHO STATE NETWORK PREDICTION MODEL

As a class of RNN, the ESN model can be split into three
different components, as shown in Fig. 1, where the boxes
enclose the different parts; their connection lines are dashed
if the relative link is random, solid if it is trainable.

Fig. 1. General scheme of an ESN. The three layers (i.e., Input, Reservoir
and Output) are boxed and their connection are explicit: dashed if they are
random, solid if trainable.

The input to the network is an Ni dimensional vector
x ∈ RNi feeding a reservoir with dimension of Nr. At the
generic time step n, the reservoir internal state h ∈ RNr is
then updated using the following equation:

h[n] = fres (W r
ix[n] + W r

rh[n− 1] + W r
oy[n− 1]) , (1)

where W r
i ∈ RNr×Ni , W r

r ∈ RNr×Nr and W r
o ∈ RNr×No

are matrices generated randomly, fres(·) is a nonlinear function
defined suitably, and y[n − 1] ∈ RNo is the previous No-
dimensional output of the network. If stability has to be
increased, adding a small uniform noise to the update is a
viable option. This is done before computing the nonlinear
transformation fres(·) [20]. The output will be then evaluated
as:

y[n] = fout(W
o
ix[n] + W o

rh[n]) , (2)

where W o
i ∈ RNo×Ni ,W o

r ∈ RNo×Nr are modified and
adapted in accordance with the training data, and fout(·) is
a nonlinear (invertible) function. For learning applications,
it is fundamental for the reservoir to satisfy the ‘echo state
property’ (ESP) [21]. In other words, given an input, its effect
on the reservoir state must disappear in a finite number of time
steps. Usually, by a rule-of-thumb, the matrix W r

r is rescaled,
resulting in ρ(W r

r) < 1, where ρ(·) denotes the spectral radius
operator.

In a general learning problem with scalar outputs, the ESN
is trained by feeding the reservoir a sequence of Q desired
input-outputs pairs {x[1], d[1]}, . . . , {x[Q], d[Q]}. The states
are then ‘gathered’ as a sequence h[1], . . . , h[Q]. In this
phase, the desired output is used for feedback because the

ESN output is not yet available. We define the hidden matrix
H and output vector d as:

H =

 xT [1] hT [1]
...

xT [Q] hT [Q]

 (3)

d =

 f−1out (d[1])
...

f−1out (d[Q])

 (4)

The optimal output weight vector is then computed as the
solution of the regularized least squares problem:

w∗ = argminw∈RNi+Nr

1

2
||Hw − d||22 +

λ

2
||w||22 , (5)

where w = [W o
i W

o
r]

T and λ ∈ R+ is a positive scalar known
as regularization factor. A close form solution of problem in
(5) can be obtained as:

w∗ =
(
HTH + λI

)−1
HTd . (6)

Given their transient state, in practice it is possible to remove
some initial elements from the sequence with which the least
squares problem is solved. Usually, the number of these
‘dropout’ elements is fixed a priori.

Given a time series S[n], n > 0, to be predicted, by this
general formulation of ESN applied to prediction, the input
x to the ESN is a vector of Ni consecutive past samples of
the time series while the desired output d is the sample to be
predicted; more precisely:

x[n−Ni + 1] =
[
S[n] S[n− 1] · · · S[n−Ni + 1]

]T
,

d[n−Ni + 1] = S[n+m] , (7)
n = Ni, Ni + 1, . . . Q+Ni − 1 ,

where m > 0 is the prediction distance, which is usually set to
m = 1. The available samples of the time series should range
from S[1] up to S[Q + Ni + m − 1]. In the following, we
propose a generalized approach for which, at the generic time
n, the input to the ESN reservoir can be any combination of
past available samples, which are used to predict the next one
S[n+m].

III. TIME SERIES EMBEDDING BY GENETIC ALGORITHMS

As the relation between predicted and past samples usually
is not given, in a prediction problem it is important to study
which samples of the sequence are relevant to the prediction
task. The naive approach described in (7) resides in assuming
that all the past samples of the sequence to be predicted are
equally important, without finding an optimal subset. However,
a more fruitful approach consists in selecting the samples via
embedding of the sequence [22]. The sequences generated by
a complex, often chaotic and noisy system like the PV under
examination, can be observed by its output only. So, in order to
reconstruct the evolution of the system, the original sequence
S[n] must be embedded. This is done by determining two

parameters [2]: the embedding dimension D and the time lag
T , in such a way the reconstructed state at time n can be found
as:

S[n] =
[
S[n] S[n− T] . . . S[n− T (D − 1)]

]T
. (8)

Looking at (7), it is evident that the ESN input, feeding
the reservoir, is an estimate of the unfolded, reconstructed
state of the unknown system that generates the observed time
series, having assumed T = 1 and D = Ni. However, to set
the embedding parameters at such values might not be an
optimal choice. In fact, these parameters should be estimated
using the Average Mutual Information (AMI) procedure for
T and the False Nearest Neighbors (FNN) procedure for D
[23]. Nonetheless, as these algorithms often suffer from a too
high sensitivity to noise and to some numeric thresholds, in
this paper we propose a different and more general embedding
procedure, employing GAs to select the optimal subset of past
samples, thus reducing the dimensionality of the ESN’s input
space while improving the accuracy of the prediction.

As introduced in the Sect. I, GAs are optimization tech-
niques that follow natural selection principles. The evolution
of a population of individuals is considered, where each
individual is associated with a possible solution of the problem
to be solved. In the present implementation, each individual
is represented by a binary string associated with the time lags
that define, for any time n, the subset of past samples that
will feed the prediction model. In the same way, the fitness of
each individual is the prediction error obtained by using that
particular embedding (i.e., that subset of past samples). In the
present implementation, the Normalized Mean Squared Error
(NMSE), which is introduced in the following Sect. IV, has
been adopted for evaluating the prediction performance and
the related fitness of each individual.

In more detail, the bit string in a chromosome of each
individual allows us to select which samples of the sequence
are to be considered for building the input of the predic-
tion model [24]. Let L be the length of a chromosome
C = [C1 C2 . . . CL]T . The jth bit Cj of the genetic code
is set to 1 if the associated sample will feed the prediction
model, 0 otherwise. Hence, S[n − j + 1] will be considered
in the vector S[n] estimating the reconstructed state if and
only if the corresponding bit Cj , j = 1 . . . L, is set to 1; the
input dimension will be the number of considered samples or,
equivalently, of the bits set to 1:

Ni =

L∑
j=1

Cj . (9)

Let us illustrate further by the visual example in Fig. 2,
where L = 16. In this case, not all of the 16 samples are
considered for embedding, that is:

S[n] =
[
S[n] S[n−1] S[n−4] S[n−9] S[n−12]]

]T
. (10)

It is important to note how there can be a dimensionality
reduction, in fact Ni = 5 and Ni < L.

Fig. 2. A possible chromosome for L = 16.

In order to increase the fitness of the best individual in
a population of candidates, the GA starts with a set of
random individuals that evolve iteratively in successive sets
of generations. Given the kth generation Gk, the successive
one Gk+1 is constructed selecting the best individuals based
on their fitness, and modifying them by the application of
the mutation, crossover and selection operators to form the
new population. The algorithm adopted in this paper can be
summarized as follows:

1) Initialization: a population G0 with P individuals is
created and set as the current generation.

2) The individuals of G0 are sorted by ascending values of
the fitness function, as the lower is the prediction error
the better the fitness.

3) The next generation is created from the current one by
means of elitism and using mutation and crossover.

4) The next generation becomes the current one.
Steps 2, 3 and 4 are iterated for a predefined fixed number
Mgen of generations.

The operational functioning of the whole GA hinges on P
and Mgen values, and on the mutation and crossover rates
Mr and Cr, given as probability thresholds, respectively. The
next generation Gk+1 is produced from the current one Gk as
follows:

1) The best individual of Gk is chosen and put in Gk+1

(elitism). This assures a non-increasing behavior of the
best fitness value from a generation to the successive
one.

2) A pair of parents is randomly selected by using the
‘Roulette Wheel’ technique with a selection probability
proportional to their fitness. The two parents are crossed-
over using a ‘two-point’ crossover with a probability
equal to Cr.

3) For every pair of parents, each individual resulting from
crossover is mutated by bit-flip with probability equal to
Mr; the two resulting individuals are placed in Gk+1.

Step 4 is repeated until the next generation contains exactly
P individuals.

IV. EXPERIMENTAL RESULTS

The proposed approach focuses on a particular applica-
tion, regarding the power plant located in Sant’Eusanio del
Sangro, in the Abruzzo region of Italy. The data is relative
to a single PV plant that belongs to a broader system with
other interconnected plants operated by the same agent. The
complete numerical dataset is available at https://github.com/
max-panella/panella/raw/master/CEC2020 Dataset.zip.

In the considered prediction problem, the used time series
is composed by the output voltage of the plant subsampled
at one sample per hour, thus we have a sequence of 24
samples per day. The time series is linearly normalized in
the range [−0.5,+0.5], so as to be able to satisfy the numer-
ical requirements of the data driven prediction models. All
the experiments are carried out by using prediction distance
m = 1, standard embedding as in (8) as well as the genetic
one proposed herein. For the classic embedding, the values of
parameters T and D are chosen by using the AMI and FNN
methods, respectively.

The proposed genetic embedding can be applied also select-
ing the inputs that feed any other regression model, not only
the ESN. Therefore, for the sake of comparison, both standard
and genetic embedding will be used with the following state-
of-the-art prediction models:

• LSE: the relationship between the value to be predicted
and the current ones is modeled as a linear function, a
least squares algorithm is used to estimate the parameters
[25];

• RBF: a neural network that builds up a function approx-
imation model with a usually multiquadratic radial basis
functions [26];

• ANFIS: a data driven fuzzy inference system based on a
set of Sugeno first-order type fuzzy rules [27];

• MoG: a neural network model in which a density mixture
of Gaussian components are used in the joint input-
output space; the mixture parameters are estimated via
the Expectation-Maximization [28].

Remark. In the present paper, we are not considering
enhanced recurrent models based on deep neural networks,
for instance, Long Short-Term Memory (LSTM) networks
[29], Gated Recurrent Unit (GRU) networks [30], and so on.
Although they can be sufficiently fast during the inference
(prediction) phase, the learning process of such systems and
the related cross-validation (on a huge set of hyperparameters)
might be computationally expensive. As the present applica-
tion deal with non-stationary PV time series, the whole system
need to be retrained frequently. Moreover, despite any possible
parallel implementation of GAs, both training and model
selection/regularization is necessary for each individual being
considered. For such a reason, it is important to investigate
whether classic shallow models, which are easier to be trained,
are able to attain the expected performance possibly through
the support of evolutionary algorithms for feature selection
and data embedding. ESNs cope perfectly with this constraint,
as they rely on a randomized reservoir and the readout can
be trained in one shot by using a closed-form least squares
solution.

GA selection is performed by considering separately each
one of the five regression models previously introduced. The
adopted dataset is a single month (mostly 31 days) of the
time series, then resulting in 744 samples. During fitness
evaluation, given the inputs selected by the chromosome of
each individual, the regression model is trained by using an

input-output dataset that is built, through embedding, on the
first 500 samples of the adopted time series. The remaining
244 samples are used for evaluating the fitness by using (11),
as successively defined. Such samples are also used to cross-
validate the adopted regression model; i.e., for each individual,
a different model complexity (i.e., reservoir dimension Nr in
ESN, order of linear predictor, Gaussian kernels in RBF and
MoG, number of fuzzy rules in ANFIS) is considered and the
one scoring the best fitness is selected for that individual. The
final solution found by the proposed GA is tested on the next
operation day (i.e., 24 samples) after the end of the month.

The main parameters of the genetic process are: chromo-
some length L = 72 (i.e., 3 days); population size P = 100;
Cr = 1; Mr = 0.3; maximum number of generations
Mgen = 30; Roulette Wheel selection algorithm; two-point
crossover. All of the experiments had been performed using
Matlab

TM
R2019a on a machine equipped with Intel R© Core

TM

i7-3770K 64-bit CPU at 3.50 GHz, 32 GB RAM, and NVIDA
GTX 680 GPU.

The proposed GA was run 10 times (each run with a
different initial population randomly initialized) and we report
successively the average results obtained in terms of the
following metrics, which are commonly adopted for prediction
performance:
• Normalized Mean Squared Error (NMSE)

NMSE =

∑
n

(
S[n]− S̃[n]

)2
∑

n

(
S[n]− S̄

)2 , (11)

where S̃[n] is the predicted value of S[n] and S̄ is the
average on the considered values of S[n];

• Error-to-Signal Ratio (ESR) (in dB)

ESRdB = 10 log10

∑
n

(
S[n]− S̃[n]

)2
∑

n S[n]2
. (12)

TABLE I
AVERAGE RESULTS (OVER 10 RUNS) FOR THE WINTER TEST SET

Prediction model
NMSE ESR

Standard GA Standard GA
embedding embedding embedding embedding

LSE 0.825 0.745 -6.914 -7.354
RBF 0.616 0.693 -8.182 -7.669
ANFIS 0.677 0.654 -7.773 -7.923
MoG 0.753 0.603 -7.310 -8.272
ESN 0.619 0.586 -8.162 -8.398

We tested the algorithm by using four different sets of data,
all taken from the described time series relative to the year
2016. These sets exhibit some different behaviors, as for the
maximum values reached in a day and for the volatility of the
time series. The training set is a whole month of a different
season (winter, spring, summer, and autumn), as described in
the following and shown in Fig. 3:

(a) Winter (b) Spring

(c) Summer (d) Autumn

Fig. 3. Adopted training sets of one month-length per season.

TABLE II
AVERAGE RESULTS (OVER 10 RUNS) FOR THE SPRING TEST SET

Prediction model
NMSE ESR

Standard GA Standard GA
embedding embedding embedding embedding

LSE 0.066 0.056 -13.023 -13.772
RBF 0.062 0.055 -13.298 -13.820
ANFIS 0.065 0.059 -13.112 -13.559
MoG 0.063 0.061 -13.265 -13.362
ESN 0.055 0.051 -13.811 -14.151

TABLE III
AVERAGE RESULTS (OVER 10 RUNS) FOR THE SUMMER TEST SET

Prediction model
NMSE ESR

Standard GA Standard GA
embedding embedding embedding embedding

LSE 0.057 0.037 -13.880 -15.724
RBF 0.062 0.033 -13.476 -16.250
ANFIS 0.044 0.043 -14.935 -15.021
MoG 0.045 0.041 -14.884 -15.305
ESN 0.036 0.030 -15.796 -16.631

TABLE IV
AVERAGE RESULTS (OVER 10 RUNS) FOR THE AUTUMN TEST SET

Prediction model
NMSE ESR

Standard GA Standard GA
embedding embedding embedding embedding

LSE 0.234 0.130 -10.367 -12.917
RBF 0.132 0.082 -12.858 -14.918
ANFIS 0.159 0.107 -12.034 -13.752
MoG 0.155 0.141 -12.155 -12.557
ESN 0.099 0.072 -14.092 -15.462

• Winter: from January 1 to January 31, 2016, standard
embedding parameters T = 13, D = 25;

• Spring: from March 31 to April 30, 2016, standard
embedding parameters T = 10, D = 20;

• Summer: from July 1 to July 31, 2016, standard embed-
ding parameters T = 10, D = 14;

• Autumn: from October 1 to October 31, 2016, standard
embedding parameters T = 10, D = 13.

The numerical results for each test set (i.e., from sample
745 to 768) are reported in Tables I-IV, while the graphical
behavior is shown in Figs. 4-7, where the time series obtained
in one run of the proposed GA by using the proposed genetic
embedding and ESN regression model are plotted.

TABLE V
SELECTED SAMPLES BY GENETIC EMBEDDING USING THE ESN MODEL

Dataset Std. embedding GA embedding
D T Ni Selected samples

Winter 25 13 8 S[n] S[n− 1] S[n− 2] S[n− 7] S[n− 9] S[n− 17] S[n− 21] S[n− 23]

Spring 20 10 9 S[n] S[n− 1] S[n− 4] S[n− 7] S[n− 11] S[n− 15] S[n− 17] S[n− 26] S[n− 29]

Summer 14 10 6 S[n] S[n− 2] S[n− 7] S[n− 14] S[n− 20] S[n− 24]

Autumn 13 10 7 S[n] S[n− 2] S[n− 6] S[n− 18] S[n− 23] S[n− 30] S[n− 35]

Fig. 4. Winter test set (blue) and predicted time series (red).

Fig. 5. Spring test set (blue) and predicted time series (red).

There are many differences among the various seasons and
winter seems to be the hardest one to be predicted. Anyway,
apart from one case only, for all seasons the performance of the
genetic embedding performs better than standard embedding,
independently of the adopted prediction model, with an ESR
gain up to 2 dB. Also, for every season the proposed ESN
approach with genetic embedding always obtains the best

Fig. 6. Summer test set (blue) and predicted time series (red).

Fig. 7. Autumn test set (blue) and predicted time series (red).

result with respect to other prediction models.
It is also worth noticing that, by using the proposed ap-

proach, the embedding dimension, which is also the order
of the predictor, is heavily reduced. For instance, we report
in Table V the selected samples associated with the best
individual obtained at the end of one run of the genetic process
using ESN for prediction.

It is evident the reduction of the used samples with respect
to standard embedding, although the prediction performance
increases. This proves that the genetic embedding regularizes
the prediction process and also reduces the curse of dimen-
sionality, which is typical for data driven learning systems,
like neural networks, when the dimension of the data space
becomes too large with respect to the available samples in the
training set.

Furthermore, the genetic optimization always tends to select
the latest available sample, some in the latest hours and then,
at nearly the same hour one day before. Even the use of the
Roulette Wheel for selection does not create issues as the
algorithm starts to converge, as a proper persistence of elitism
is adopted. In general, no further samples are used. Such a
result agrees with the technical rationale of prediction in PV
plants, which are characterized by a daily periodicity, and
substantiates the robustness of the proposed genetic selection.

It is important to outline that the samples obtained in
Table V by genetic embedding are strictly related to the
considered data set used during the evolutionary process and
hence, they depend on the specific time window where the time
series is analyzed. Commonly speaking, the selected samples
cannot be generalized to other periods because of the non-
stationarity and seasonality of PV time series. In spite of this,
the reported results prove a stable trend of GAs, which are
able to reduce data dimensionality.

V. CONCLUSION

In this paper, the application of ESNs and GAs to the
prediction of real-world time series has been investigated,
aiming at a reliable solution to the difficult problem of
forecasting the power generation in PV plants. The results are
promising as the proposed approach always performs better
than other well-known and standard benchmarks. In future
works, the proposed system might be considered for parallel
and distributed implementations, in order to cope with the
constraints of learning and forecasting on multiple distributed
sources of energy and photovoltaic correlated data. Also, more
complex recurrent models, based on deep neural networks,
might be considered, provided that a sufficient computing
power balanced with sustainable costs is ensured for that
application.

REFERENCES

[1] R. Inman, H. T.C. Pedro, and C. F.M. Coimbra, “Solar forecasting
methods for renewable energy integration,” Progress in Energy and
Combustion Science, vol. 39, p. 535–576, 12 2013.

[2] H. Abarbanel, Analysis of Observed Chaotic Data. Springer, New York,
1996.

[3] C. Bennett, R. A. Stewart, and J. Lu, “Autoregressive with
exogenous variables and neural network short-term load forecast
models for residential low voltage distribution networks,” Energies,
vol. 7, no. 5, pp. 2938–2960, 2014. [Online]. Available: http:
//www.mdpi.com/1996-1073/7/5/2938

[4] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Takagi-sugeno
fuzzy systems applied to voltage prediction of photovoltaic plants,”
in 2017 IEEE International Conference on Environment and Electrical
Engineering and 2017 IEEE Industrial and Commercial Power Systems
Europe (EEEIC / I CPS Europe), June 2017, pp. 1–6.

[5] ——, “Prediction in photovoltaic power by neural networks,” Energies,
vol. 10, no. 7, 2017.

[6] H. Jaeger, “A tutorial on training recurrent neural networks, covering
bppt, rtrl, ekf and the ”echo state network” approach,” German National
Research Center for Information Technology, GMD Report 159, 2002.
[Online]. Available: http://minds.jacobs-university.de/sites/default/files/
uploads/papers/ESNTutorialRev.pdf

[7] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[8] M. H. Tong, A. D. Bickett, E. M. Christiansen, and G. W. Cottrell,
“Learning grammatical structure with echo state networks,” Neural
Networks, vol. 20, no. 3, pp. 424–432, 2007.

[9] X. Lin, Z. Yang, and Y. Song, “Short-term stock price prediction based
on echo state networks,” Expert Systems with Applications, vol. 36, no. 3,
pp. 7313–7317, 2009.

[10] F. Triefenbach, A. Jalalvand, K. Demuynck, and J.-P. Martens, “Acoustic
modeling with hierarchical reservoirs,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 21, no. 11, pp. 2439–2450, Nov 2013.

[11] M. Casdagli, “Nonlinear prediction of chaotic time series,” Physica
D: Nonlinear Phenomena, vol. 35, no. 3, pp. 335 – 356,
1989. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0167278989900742

[12] D. Goldberg, Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, 1989.

[13] G. Dudek, “Artificial immune system with local feature selection for
short-term load forecasting,” IEEE Trans. Evol. Comput., vol. 21, no. 1,
pp. 116–130, Feb 2017.

[14] T. M. Lakshmi, A. Martin, and V. P. Venkatesan, “A genetic bankrupt
ratio analysis tool using a genetic algorithm to identify influencing
financial ratios,” IEEE Trans. Evol. Comput., vol. 20, no. 1, pp. 38–
51, Feb 2016.

[15] O. Garcı́a-Hinde, V. Gómez-Verdejo, M. Martı́nez-Ramón, C. Casanova-
Mateo, J. Sanz-Justo, S. Jiménez-Fernández, and S. Salcedo-Sanz, “Fea-
ture selection in solar radiation prediction using bootstrapped SVRs,” in
2016 IEEE Congress on Evolutionary Computation (CEC), July 2016,
pp. 3638–3645.

[16] N. Ghadimi, A. Akbarimajd, H. Shayeghi, and O. Abedinia, “Application
of a new hybrid forecast engine with feature selection algorithm in a
power system,” International Journal of Ambient Energy, vol. 40, no. 5,
pp. 494–503, 2019.

[17] D. Niu, H. Wang, H. Chen, and Y. Liang, “The general regression
neural network based on the fruit fly optimization algorithm and the
data inconsistency rate for transmission line icing prediction,” Energies,
vol. 10, p. 2066, 12 2017.

[18] S. Jiang, K.-S. Chin, L. Wang, G. Qu, and K. L. Tsui,
“Modified genetic algorithm-based feature selection combined
with pre-trained deep neural network for demand forecasting
in outpatient department,” Expert Systems with Applications,
vol. 82, pp. 216 – 230, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417417302610

[19] A. Ahmad, N. Javaid, M. Guizani, N. Alrajeh, and Z. A. Khan, “An
accurate and fast converging short-term load forecasting model for
industrial applications in a smart grid,” IEEE Trans. Ind. Informat.,
vol. 13, no. 5, pp. 2587–2596, Oct 2017.

[20] H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in Advances in neural information processing systems, 2002,
pp. 593–600.

[21] M. LukošEvičIus and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[22] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Embedding of time
series for the prediction in photovoltaic power plants,” in 2016 IEEE 16th
International Conference on Environment and Electrical Engineering
(EEEIC), June 2016, pp. 1–4.

[23] A. Rosato, M. Panella, R. Araneo, and A. Andreotti, “A neural network
based prediction system of distributed generation for the management
of microgrids,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7092–7102,
2019.

[24] R. Altilio, M. Paoloni, and M. Panella, “Selection of clinical features
for pattern recognition applied to gait analysis,” Medical & Biological
Engineering & Computing, vol. 55, pp. 685–695, 2017.

[25] H. W. Bode and C. E. Shannon, “A simplified derivation of linear
least square smoothing and prediction theory,” Proceedings of the IRE,
vol. 38, no. 4, pp. 417–425, 1950.

[26] A. G. Bors and I. Pitas, “Median radial basis function neural network,”
IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1351–1364, 1996.

[27] J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[28] M. Panella, A. Rizzi, and G. Martinelli, “Refining accuracy of envi-
ronmental data prediction by MoG neural networks,” Neurocomputing,

vol. 55, pp. 521–549, 2003.
[29] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: con-

tinual prediction with LSTM,” in 1999 Ninth International Conference
on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2,
1999, pp. 850–855 vol.2.

[30] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

