
Pattern searcher for decision making of trading
agents using Genetic Algorithm
Felipe V. Cacique

DCC - UFMG
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
vitalcac@ufmg.br

Adriano C. M. Pereira
DCC - UFMG

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
adrianoc@dcc.ufmg.br

Abstract—In the last few years, there was a growth regarding
the use of computational methods in the field of finance, especially
to negotiations in the stock market. In this paper, we aim to
bring new ideas and approaches to the development of automated
trading or bots based on historical data of financial series. Our
model, named Pattern Searcher, was inspired in unsupervised
learning methods and evolutionary optimization. Given a trading
agent with its predefined parameters, the method uses the power
of Genetic Algorithm (GA) to search, within a set of financial
indicators, for the region that provides a higher positive financial
return. This implementation exhibited desirable properties com-
pared to some Machine Learning methods, such as the simplifi-
cation of the system flow and the generation of rules that humans
can clearly understand. Besides, we have generated strategy
portfolios, composed by the strategies derived from the Pattern
Searcher method, which were also optimized via GA. The system
was able to generate very profitable trading agents and portfolios
on the Brazilian stock market, surpassing important benchmarks.

Index Terms—Genetic Algorithm, trading agent, stock market,
portfolio, leverage, Pattern Searcher, finance.

I. INTRODUCTION

The stock market can be a very profitable place for those
who have good trading strategies. Based on rules, people can
decide when is the right time to buy, sell or hold a stock,
find out the involved risks, the financial income, and the
amount of necessary investment. If one finds out a pattern
that leads him to buy a stock when the price is low and
sell it when the price is high, for example, he will receive
profitable financial returns. A good strategy may depend on
exhaustive tests and validation on historical data, in order to
know how the proposed strategy would have worked in the
past, to estimate how it will work in the future, and to best
adjusts its parameters.

It is common for investors to make trading decisions based
on technical indicators, which is an analysis focused on the
pattern of price movements [1]. In a simplified manner, the
buy and sell signal can be represented by Boolean expressions
using a combination of those indicators. For example, in a
typical moving average crossover strategy [2], a buy order
is sent when the price crosses above the moving average of
x periods and there is an increase in the traded volume, that
may confirm an uptrend movement. Similarly, when the price
cross below the moving average, a sell order is sent.

We can improve and create new strategies by combining
different financial indicators and adjusting their parameters on
historical price data. Usually, this is a time expensive process
due to the huge number of indicators and parameters that can
be used, even for computers. Thus, looking for computational
optimization techniques, such as Genetic Algorithm, is a must.

Genetic Algorithm (GA) is an optimization technique that
can be used for a variety of problems, such as designing
aircraft, evolving electronic circuits, finding hardware bugs
and optimizing asset portfolios. GA is an analogy to Darwin‘s
theory of evolution of species and the genetic field, in order
to develop an algorithm that searches for solutions in a
variety of computational problems [3]. The idea is to evolve
a population of possible solutions in the searching space of
the problem. At each generation, the strongest individuals
within the population are more likely to survive and combine
their genetic material to generate better individuals.

In this context, the goal of this project is to develop an
algorithm that searches for profitable patterns for decision
making of automatized trading agents (also called trading
robots), using Genetic Algorithm. In other words, creating a
generator of trading strategies. The main idea is that the GA
will evolve trading rules to hopefully create more profitable
strategies, which tells the right time to buy or sell a stock. In
addition, the GA will also be applied to generate and optimize
portfolios using the found strategies, aiming to potentially
improve the financial returns. The implementation and
optimization were done in the trading software Metatrader 5
(MT5), using its MQL5 programming language and its strategy
tester. This choice was done intending for a simple and quick
transition between simulated and live trading operations.

The remainder of this paper is organized as follows:
Section II presents a literature review addressing Machine
Learning and Evolutionary Algorithm techniques applied to
finance. The following is the methodology adopted to achieve
the proposed goal, including the Pattern Searcher modeling
in Section III, the controlled leverage methodology in Section
IV and the generation of strategy portfolios in Section V.
Section VI presents the experimental validation of the trading
agents and the agent portfolios trained via Genetic Algorithm.
Finally, Chapter 5 concludes the work, summarising the most
relevant results and discussing future works.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

II. RELATED WORKS

The majority of computational tools used by investors to au-
tomate investment strategies and create stock trading systems
uses Machine Learning methods, especially Long Short Term
Memory (LSTM). LSTM is a Recurrent Neural Network that
has memory mechanisms that are well-suited for classifying
and making predictions based on time series data [4].

[5] combined stock prices with stock news data from
Google Trends using the LSTM network for decision support.
The use of LTSM improved the predictability from 51.9%
to 58.2%, compared to the simple model of Neural Network
MLP (Multi-Layer Perceptron). Similarly to this work, [6]
used the LSTM to predict the volatility of the Shanghai
Shenzhen CSI300 Index, achieving an accuracy of 78% in
the predictions.

The LSTM neural network has shown to be very
appropriate for temporal series like financial data. However,
as market behavior changes over time, this model needs to
be periodically retrained. This creates a necessity for models
that are able to dynamically adapt to new market conditions.
An alternative is the use of Reinforcement Learning.

Reinforcement Learning (RL) is a learning system where an
agent perceives the environment and takes actions in order to
maximize a notion of cumulative reward [7]. In the context of
automated trading systems, [8] used the Q-Learning and pro-
posed algorithm, named as Recurrent Reinforcement Learning
(RRL), to trade a portfolio. They used the Sharpe index as
the reward function, which measures a relation between the
portfolio profitability and the investment risk. Both algorithms
were profitable and surpassed the baseline Buy-and-Hold.

In literature, there is a parallel approach to Machine Learn-
ing that uses Evolutionary Algorithms (EAs), such as Genetic
Algorithm (GA), for creating trading decision support systems.
Evolutionary Algorithms has been used for feature selection
(select the best inputs for a Machine Learning model), rule
parameter (find the best parameters for a specific rule or
system), rule combination (combine the best rules) and rule
construction (evolve more complex rules from simple ones).

[9] compared two Genetic Systems for creating trading
strategies. In the first, GA was used to train the weights of
a Neural Network, which received technical indicators of
NASDAQ stocks as inputs. The second system used Genetic
Programming (GP) to derive trading strategies in a tree
representation. Both systems returned, as output, trading
signals such as buy, sell and hold. They found that both were
more profitable than the Buy-and-Hold strategy, which is
usually used for comparison in many works.

In [10]’s work, GA was used for rule construction in
intraday trading, and its performance was compared to a
Reinforcement Learning system, a Markov Decision Process-
based system and a heuristic. The rules found by GA exhibited
several desirable properties. Unlike many Machine Learning
implementations, the rules are not “black boxes” and can
be understood by humans. The GA outperformed the other
methods in new unseen data, although none of the methods
produced significant profits at realistic transaction costs.

[11] has developed a decision making and trading algorithm
named Goldminer. It used the power of Genetic Programming,
combined with indicators of technical analysis to identify the
time of purchasing and selling a stock. The individual was
composed of the logical operators AND, OR, XOR and the in-
dicators of technical analysis, while the fitness was calculated
simply by counting the profitability (all profits subtracted from
all losses). The inclusion of the two windows verification to
validate the models was a key distinguishing point for reaching
the target time and profit in more than 90% of the runs tested
on the Brazilian stock market B3 (Bolsa, Brasil, Balcão)

[12] did similar work. They have implemented an
Evolutionary Algorithm for generating trading rules for
intraday trading, but with different individual representation.
The individual was a binary decision tree, directed acyclic,
whose leaf nodes contained buy and sell decisions. As the
fitness function, they used the total stock financial return.
When the strategies generated by the algorithm were tested in
the forward test, in the major cases, the profitability degraded
drastically. However, the strategies remained efficient, and
in all cases, it exceeded the rate of risk-free return, and the
maximum drawdown values (worse consecutive sequence of
losses) stayed within 7%.

There is a financial forecasting tool based on Evolutionary
Algorithms designed to help investors to create trading rules in
a form of Genetic Decision Trees that can be readable, called
EDDIE (Evolutionary Dynamic Data Investment Evaluator)
[13]. According to [14], its most recent version (EDDIE 8)
is not constrained in using pre-defined indicators, but it auto-
matically chooses the optimal ones. The tests were performed
in an artificial data set, which the authors knew patters existed.
Eddie 8 was able to find those patterns, but it seems that it was
having difficulties with searching effectively in the space state.

According to [15], studies applying GA for rule discovery
in algorithmic trading have been increasing in the last few
years, but few papers have been published so far. There is
still a lack of comparison between Evolutionary Algorithm
implementations and other techniques. It indicates that there
is a need for more study on this topic and there is still plenty
to explore. In their paper, they suggested some future research
directions, including:

1) Predicting future market trends: predict future market
trends and search for more predictable and influential
classification standards can bring much help (e.g., strate-
gies can be selected accordingly to the prediction);

2) Considering liquidity and transaction costs in more
precise and positive ways, and combining portfolio
selection techniques and period for training and learning;

3) Combining portfolio selection techniques: researchers
need to consider the correlation of stocks in different
environments, relationships between trading rules, trans-
action cost, and selection of fitness function.

In the field of finance, backtest overfitting is one of the
most important open problems [16]. Backtest overfitting is
when the developed strategy performs well in the backtest
because it has “memorized” random patterns of the data set,

rather than learning important features about it. As those
patterns are unlikely to happen in the future, the strategy fails
in real account trading. Several steps can help to reduce the
overfitting presence, including developing models for entire
asset classes, rather than for specific securities [16], and
reducing the model complexity [17].

In our work, we aimed to address some of the suggestions
of [15] and also to develop a system with reduced complexity,
attempting to avoid overfitting.

III. PATTERN SEARCHER MODEL TRAINED VIA GENETIC
ALGORITHM

This section describes the Pattern Searcher modeling, the
training process of the model using GA, and the normalization
of the indicators that were used as model input.

A. Pattern Searcher model

In this work, we propose a model for decision making
of trading agents, which we named Pattern Searcher. This
model, inspired by Machine Learning unsupervised methods
and Evolutionary Algorithm, automatically searches for buy
and sell patterns using as input a set of indicators. In order
to present details about the modeling, we have divided it
into: Idea, Hypothesis, Problem, Solution, and How to use the
system:

Idea: Given a trading agent with its pre-defined proprieties
(e.g., stop loss, take profit, stop trail, close position time,
indicator parameters) and a set of financial indicators (e.g.,
MACD, RSI, MA, PIVOT), the method will search, within
this set of indicators, for the region that provides the higher
positive financial return.

Hypothesis: There is a region within the multidimensional
space of indicators that gives highly positive financial returns
for a given operation (e.g., buy or sell), which can be
covered by a geometric primitive (e.g., ellipses, boxes). Fig. 1
illustrates a profitable region, composed by 2 indicators,
being covered by a box.

Problem: Find the properties of the geometric primitive
that cover the region (e.g., center and radius for ellipses, or
center and edge for boxes).

Solution: Use of Genetic Algorithm to find the edges es
and the centers cs of each indicator, in case of a box, in order
to maximize the financial returns for a given historical dataset.

How to use the system for decision making: The agent
will only open a position if the current indicator signals are
inside the geometric primitive.

In the situation where the geometric primitive is a box,
we can express the rules derived from the Pattern Searcher
in the form of Boolean expression. This is an example of
how the rule would looks like: if MACD(x1, x2, x3) >
y1 and RSI(x4) < y2 then BUY . This Boolean expression
means that the buy position opens if MACD signal is above
y1 and RSI signal is bellow y2. Notice that, beside the
specification of the indicators, this expression have two kinds
of parameters: the indicator‘s parameters (x1, x2, x3, x4) and
the signal thresholds (y1, y2). Our model focuses primarily

Fig. 1. The dots and triangles represent, respectively, positive and negative
financial returns from trades on historical market data, performed by an agent
randomly opening positions. For a given set of indicators, it might end up
generating a concentration of positive financial returns, which is a region of
high expected return. If this region exists, with the Pattern Searcher method
we could cluster it using geometric figures, which in this case is a box of
center c and edge e.

on finding the signal threshold ys, while fixating the values
of the indicator‘s parameters xs. Even though the indicator‘s
parameters could be optimized simultaneously with the signal
threshold, it would increase the complexity of the model and
also the chance of overfitting [17], since too many parameters
would be optimized at once. Thus, keeping our model as
simple as possible may help to prevent overfitting.

We have defined the domain of the center and the edge of
the Pattern Searcher model as −1 ≤ c ≤ 1 and 0 ≤ e ≤ 2.4.
All the indicators were normalized within the interval from
-1 to 1, and by this, the geometric figure can cover the whole
space, in case of c = 0 and e = 2.4, for example. This allows
our model to not only optimize the parameters but also to
do feature selection. It means that poor features added to the
model can be automatically removed during training if the
figure covers completely the feature dimension.

B. Geometric primitives and indicators

The regions with highly expected financial returns within
the multidimensional space of indicators may have different
shapes, so different geometric figures could be used. In this
work, we have implemented ellipses and boxes:

Ellipse: It can be represented by a center c and a radius
r for each indicator: Ellipse = (c1, r1, c2, r2. . . cn, rn). The
region inside an ellipse is given by (1):

(c1 − r1)
2

r21
+

(c2 − r2)
2

r22
+ ...+

(cn − rn)
2

r2n
≤ 1 (1)

Box: It can be represented by a center c and an edge e
for each indicator: Box = (c1, e1, c2, e2. . . cn, en). The region
inside a box and the trade rule can be given by a Boolean
expression:

If (c1 − e1/2 < indicator1 < c1 + e1/2) and
(c2 − e2/2 < indicator2 < c2 + e2/2) and

. . .
(cn − en/2 < indicatorn < cn + en/2) then

Open Position(TY PE)

In our experiments, we have used boxes only. The reason
for this is that the possibility of representing the trade rules
by Boolean expressions makes easier their interpretation.

We have used 10 different indicators, which were:
Relative Strength Index (RSI), Moving Average Convergence
Divergence (MACD), Moving Average (MA), Trend Strength
Indicator (ADX), Money Flow Index (MFI), Stochastic
Oscillator (STO), Bollinger Bands (BB), Pivot Points (PVT),
Volume, and Time (day time in minutes). Those indicators
were slightly modified to return a single float signal without
losing the original information that they were designed for.

C. Model optimization using Genetic Algorithm

We have stated the problem of finding the parameters of
the geometric primitive, which are the boxes centers and
edges for each indicator. To accomplish that, we have used
Genetic Algorithm, as it has shown to be extremely efficient
in optimizing parameters in a variety of problems. In the
GA perspective, the problem resumes in “finding the optimal
parameters in order to maximize the profits”. The process
was divided into: Setting the agent parameters, and starting
the optimization. Fig. 2 shows these steps and their details.

Fig. 2. Pattern Searcher optimization diagram. After all the parameters are
configured, the agent’s Pattern Searcher is trained on a historical dataset using
GA. The best individual from validation is taken for testing on unseen data.

Before the optimization, we have set the agent parameters.
Firstly we have configured the agent strategy variables
regarding risk management, position management and order
management, which includes variables such as take profit,
stop loss and volume of contracts. The values of those
parameters were chosen accordingly to some prior experience
with trading strategies design and the desired outcome. About
the later, we desire to capture large movements of the market,
since it would improve the financial returns while decreasing
the brokerage costs. Because of this, we have set large take
profits and stop losses, around 1% of the asset price. Next, we
have configured the pattern searcher parameters. Here, we
have chosen the indicators to be used, the trade type (buy or
sell) for each pattern and the number of patterns the agent will
trade (up to 4 patterns). Each pattern was trained separately,
attempting to reduce the number of the GA input variables.

After all the parameters were chosen, we finally started the
optimization process. It was done using the Metatrader 5 Ge-
netic Optimizer [18]. Since it is a built-in MT5 tool, we could
not have access to the crossover and mutation types and rates.
The optimization consisted in training, validating, and testing.

In the training, the Genetic Algorithm evolved near to 40
generations of individuals until the stop criteria were satisfied.
The individuals‘ chromosome were represented by the centers
(cs) and edges (es) of each indicator that compounded an
agent pattern. The cs’ domain varied from -1 to 1, and the es’
domain from 0 to 2.4. The initial population was generated
with a range from 64 to 256 individuals [19], each of them
representing a solution. All individuals were evaluated through
a trading simulation onto the stock historical data and received
a value of fitness that express the quality of the strategy. Our
Fitness function was a combination between total profit and
drawdown, given by: Fitness = TotalProfit×Drawdown.
It measures a relationship between profitability and risk,
leading the GA not only to evolve individuals that have great
profits but also individuals with low drawdown.

In the validation, we have checked the agent’s performance
on unseen data, quantified by the same fitness function
used for training. It is a very important step for removing
agents that have probably suffered from overfitting. These are
agents that performed well in the training because they have
”memorized” the data set, rather than learning interesting
features about it. Agents that passed the validation have
higher chances to be more robust and perform well in real
trading. Since GA is a stochastic process, we have repeated
the whole training and validation processes for 30 times, and
the best individual from validation was taken for testing.

In the testing, we have evaluated the performance of the
agents in a new unseen data, which reflects what we would
expect in a real account trading.

D. Other considerations

There are some other relevant considerations that worth
to be discussed, which are: the number of simultaneously
positions allowed per agent, the inverse condition being
satisfied, and the simplicity of the system flow.

The agents are only allowed to have one opened position
at each time. This results in uncorrelated patterns within an
agent. The reason for this is that correlated pattern signals
would probably overlap and their trade signal would be
ignored. Consequently, there would not be any improvement
in the agents’ performance. The only way to improve the
total profit while not violating the restriction of contracts
per agent would be finding patterns in which signals do not
overlap. It would significantly improve the agent’s efficiency.

In addition, the agents were programmed to close an open
position if has passed 2 hours after the position was opened,
or if the inverse condition was satisfied. About the later, if
an agent has a buy position, and one of its patterns sends
a signal to sell, for example, then the agent closes the buy
position and opens a sell position.

Indeed, the implementation exhibited a desirable property
compared to some Machine Learning methods, which is
the simplification of the system flow. The model and the
strategy are interconnected, in a way that the training directly
optimizes the agent’s performance in terms of profitability.

IV. CONTROLLED LEVERAGE AND MONTHLY FINANCIAL
FINANCIAL RETURN CALCULATION

Leverage is when an investor uses borrowed money in
an attempt to increase the ratio of financial return of an
investment [20]. A leverage ratio of 1:10, for example, means
that we can negotiate 10 times more cash of what we have
in the broker’s account. This can potentially increase the
financial returns, but also the losses.

One can ask: “How do we calculate the initial investment
needed to trade with leverage, in order to have great financial
returns while minimizing the risks?” To answer this question,
we should not think about maximizing the financial returns
but think about controlling the risks. What we want is
a trade-off between financial returns and risk. Aiming to
calculate the initial deposit, we have proposed a method that
we will refer to as ”Controlled Leverage”. We have not found
much information about this in literature, but we believe that
many professional traders use a similar approach.

A. Controlled Leverage
The drawdown (DD), which is the worse consecutive loss,

needs total attention because it is capable of breaking an
account balance if there is not enough margin to trade in that
period. Brokers may ask little margin per contract of Future
assets, for example, which allows people to start trading with
a very small amount of money. However, to reduce the risks
and “survive” from the DD, we should invest more money
per contract than the margin asked by the broker.

In this work we estimated the amount of initial invest-
ment (BalanceNeeded) based on the DD of the backtest
(DrawnDown), defined by (2):

BalanceNeeded = DrownDown×RiskCoef (2)

Where the RiskCoef is a risk coefficient. If the RiskCoef
is set as 5, it means that we will have 5 times more money
in the account than the DD from backtesting. The higher the
value we chose, the less will be the risk of breaking an account.
We could also rewrite this formula by (3):

BalanceNeeded = DrawnDown/TradePct (3)

Where TradePct represents the percentage of the initial
deposit that we are effectively trading. Lower TradePct
results in higher financial returns but also higher risks.

B. Monthly Financial Return
Once the initial deposit was estimated and we have

the monthly profit (MonthlyProfit), we can calculate the
monthly financial return by (4):

MonthlyReturn = MonthlyProfit/BalanceNeeded
(4)

Notice that the financial return is inversely proportional
to the DD. Lower DD reduces the BalanceNeeded, and
consequently increases the Monthly Financial Return. Aiming
to decrease the DD, we have generated strategy portfolios,
which are described in section V.

V. STRATEGY PORTFOLIO

In finance, a portfolio is a group of financial assets that
can include stocks, bonds, commodities, currencies and cash
equivalents [21]. In this context, a strategy portfolio is a portfo-
lio composed of different strategies with the twin objectives of
maximizing financial return while minimizing risk. Instead of
negotiating all contracts in one single strategy, we would dis-
tribute those contracts among a set of strategies. The weight w
represents the percentage volume that each agent within a port-
folio will trade. The weights were optimized through Genetic
Algorithm. Fig. 3 synthesize the portfolio’s training elements.

Fig. 3. Portfolio optimization diagram. The GA individuals are represented
by weights. At each generation, the weights multiply the agents’ historical
financial returns, to generate portfolios with w’s distribution. We calculate the
monthly returns of those portfolios and use them as the GA fitness function.

The individuals were represented by an array with the
portfolio weights (w′s). w′s could assume R values from 0 to
1. The initial population was generated with 100 individuals,
that were decoded in solutions for the problem. It was done
by, firstly, normalizing the weights with (5):

wi =
w′

i∑n
i=1 w

′
i

× 100% (5)

Where the wi value is the percentage of contract volume
for each agent, and

∑n
i=1 wi = 100%. Then, the wi was

multiplied to the return distribution of the agent i, resulting
in portfolios with w weighted distribution. Each portfolio
was evaluated by a fitness function, which in this case is the
monthly financial return. We have considered it an interesting
fitness measure because its calculation incorporates both
the drawdown and the total profit. Consequently, the GA
would look for a trade-off between risk and financial return.
In addition to the usual GA setup, we have incorporated a
restriction that limits the standard deviation of the weights.
This would lead to more balanced weights, without too large
or too little w values (that would resulting in removing
strategies from the portfolio and increasing the chance of
overfitting). The crossover and mutation rates were 92% and
8%, respectively. The algorithm have ran for a total of 30
generations, and the best individual was taken for testing.

VI. EXPERIMENTS

In this section, we present the experimental validation of
the trading agents and the agent portfolios trained via Genetic
Algorithm. We have organized the results and analysis in 5
parts. In the first part, we explain general considerations,
including the platform and data used to train the agents, the
trading costs and the Brazilian benchmarks. In the second part,

we describe the portfolios’ generation, giving details about
the generation of 3 different portfolios. In the third part, we
show the agent patterns obtained through GA. In the fourth
part of the analysis, we discuss the agents’ and portfolios’
performance without leverage, in terms of profitability of the
testing set. In the fifth and last part, we present the agents’ and
portfolios’ performance with leverage. We compare the results
of the 3 different portfolios with the single agent‘s perfor-
mance and compare them to important Brazilian benchmarks.

A. General considerations

1) Platform: Most of the implementations and tests were
done using the trading platform Metatrader 5 and its program-
ming language called MQL5. They allow the development of
trading robots, performing backtests and trading with a real
account.

2) Dataset: The dataset where we have run the model,
consisted of the Brazilian BM&F Mini Ibovespa Futures
(WIN) and Mini Dollar Futures (WDO). Each WIN and WDO
point corresponds to R$ 0.20 and R$ 10.00, respectively. They
were chosen because of their high liquidity, financial return
potential, low brokerage fees and high leverage allowed by the
broker. The data contained candlesticks of different timeframes
with volume, open, high, low and close prices. The data period
chosen for the experiments went from 2013-10-18 to 2019-07-
12. The data was split as following:

1) 2013-10-18 to 2017-01-01: Data set for training;
2) 2017-01-01 to 2018-01-01: Data set for validation;
3) 2018-01-01 to 2019-07-12: Data set for testing.
Those same periods were used both for training the Pattern

Searcher model and training the portfolio weights.
3) Initial deposit and trade margin: For our analysis, we

have considered an initial deposit of R$100,000.00 and a
trading margin (TradePct) of 10%, which means that we
are using R$10,000 for trade.

4) Trade costs: We have considered all the trading costs,
totaling R$0.48 per contract. These costs were already applied
in the experiments.

5) Brazilian Benchmarks: There are 2 important Brazilian
benchmarks: SELIC (rate of risk-free return) and IBOV (float-
ing income rate).

SELIC: is the Brazilian interest rate. It had an average
annualized rate of 6.46% during the period between 2017-
12-07 and 2019-07-31 [22].

IBOV: is the Brazilian stock market index. It had a growth
of 48% from 2018-01-01 to 2019-07-12, that is approximately
31% per year, and had a maximum cumulative fall, or “
drawdown”, of 23%.

B. Portfolios’ generation

We have used the agents generated by the Pattern Searcher
model to create 3 strategy portfolios: Portfolio A, Portfolio B,
and Portfolio C. In each of them, the weights were determined
differently.

In the Portfolio A, the weights are equal, with each agent
trading the same volume of contracts. In the Portfolio B,

we have used the Genetic Algorithm without restricting the
weight’s standard deviation. In the Portfolio C we have
optimized the weights such as the Portfolio B optimization,
however with the restriction that limits the standard deviation
of the weights. The Table I shows the ws distribution.

C. Agent patterns

We have generated 8 agents, 5 on WIN and 3 on WDO,
using the Pattern Searcher model. Each of them received
different parameters, indicators, timeframes, and symbols,
intending to improve the diversity of the found patterns. The
experiments were all focused on day trading, which means
that all positions were opened and closed in the same day.

In order to show the outcome rules generated by the
model, while not extending this section, Table II shows
the parameters of Agent 1 only, and its generated patterns,
expressed in form of Boolean rules.

D. Agents’ and portfolios’ performance without leverage

The Table III shows the agents’ and portfolios’ performance
without considering any leverage.

We can see that all agents, except Agent 7, were profitable
during the testing and had an average monthly income of
around 1%. The best agent was Agent 5, with a monthly
income of 2.72% and an annualized financial return of 38.56%.
In this situation where we did not consider any leverage, the
portfolios did not give any improvement in terms of monthly
financial return, however, their drawdown was considerably
smaller compared to the single agent’s, providing lower risks.

6 out of 8 agents, and the 3 portfolios, surpassed the
SELIC in terms of annualized financial return. However, only
the Agent 5 overcame the IBOV, with 38.56% against 31%
of annualized financial return. In terms of drawdown, the
agent’s and portfolio’s drawdowns were smaller.

E. Agents’ and portfolios’ performance with leverage

To facilitate the comparison among the agent results, we
attempted to normalize the results by equaling the risks of the
agents, in a way that all agents have the same drawdown of the
training set. We have used the TradePct = 10%, and used
the “controlled leverage” approach to calculate the number
of contracts. Table IV shows the number of contracts of each
agent and each portfolio, and Table V shows the test results
using the distribution of contracts calculated previously.

1) Agent’s performance: A total of 7 out of 8 agents
had positive total net profit during the test period. The
total net profit varied from R$ 14,328.01 to R$ 53,459.32,
corresponding to a growth of 14.33% to 53.46%. The
drawdown of the test stayed between 3,38% and 14.21%,
deviating up to 40% from the training drawdown.

The Agent 7 was the only one that presented poor results.
It’s possible to see strategies that work well for a long time and
suddenly stop to work. We could address the reason for it to the
change of market behavior over time, possibly for external fac-
tors, such as economy, interest rate, and inflation. All the other
agents are likely to have loss periods like Agent 7 at some mo-
ment. This reinforces the benefits of using a strategy portfolio.

TABLE I
PORTFOLIO’S WEIGHTS (ws)

Weight w1 w2 w3 w4 w5 w6 w7 w8 Total Std Description
Strategy Portfolio A 12.50% 12.50% 12.50% 12.50% 12.50% 12.50% 12.50% 12.50% 100.00% 0.00% Equal ws

Strategy Portfolio B 29.87% 12.81% 4.78% 18.82% 18.98% 3.33% 1.95% 9.46% 100.00% 9.62% ws trained via GA
Strategy Portfolio C 13.41% 9.56% 12.57% 12.71% 18.08% 10.28% 10.17% 13.22% 100.00% 2.71% ws trained via GA with std restriction

TABLE II
AGENT 1 PARAMETERS AND PATTERNS

Agent 1
Symbol: WIN
Timeframe: 5 minutes
TP/SL type: percentual of the entry price
TakeProfit: 0.08%
StopLoss: 0.008%
Order placement: placed 3 ticks after the candle close price
Close position: at the end of the day

120 minutes after the position was opened
if inverse condition is satisfied

Pattern 1:
if -1.00<RSI(6)<0.52 and 0.26<ADX(14)<0.30 and

0.33<PvtR3()<1.00 and 0.22<STO(14)<1.00 then Sell
Pattern 2:
if -1.00<RSI(6)<-0.57 and -1.00<MA(28)<-0.80 then Buy

2) Portfolio’s performance: The portfolios A, B, and C
presented a total net profit of R$ 115,044.55, R$ 138,983.47
and R$ 137,468.44, and an annualized financial return of
108.09% 139.96% and 138.46%, respectively. All portfolios
managed to more than double the initial deposit in a period
of 1 year. The drawdown went from 6.58% to 10.36%, which
is coherent with the 10% drawdown of the training set.

The way the portfolio’s weights were determined signifi-
cantly implicated in the results. The Portfolio A had great
profitably even with no training. The training using GA
improved further the financial returns of the Portfolios B and
C. The Portfolio B has a slightly higher monthly income than
the Portfolio C, 7.46% against 7.40%, however, the Portfolio
C is better since its drawdown was only 6.60%, 36% smaller
than the Portfolio B drawdown. The reason for that is the
possibility of having occurred some overfitting of the agent B.
Its weights assumed an unbalanced distribution, with a very
high volume of contracts in the Agent 1 and only a very few in
the Agents 6 and 7 (see Table I). The effect of this is similar to
removing agents from the portfolio and relying only on a few.

On the other hand, restricting the standard deviation of the
weights of the Portfolio C resulted in a soft optimization with
weights ending up having close values from each other. This
soft optimization was enough to increase the performance of
the portfolio while maintaining its robustness on unseen data.

3) Agent’s performance vs Portfolio’s performance: The
portfolios had a considerably higher performance compared
to the single agents’ performance. The portfolio’s highest
annualized return was 3 times greater than the highest single
agent’s annualized financial return, 139.96% against 42.25%.
This wide difference is mostly due to the drastic risk decrease
that a portfolio can yield. The decrease of the drawdown

opens room for increasing the leverage, and consequently,
achieving higher profitability for the same amount of risk.

4) Comparison with Benchmarks: 6 out of 8 agents, and the
3 portfolios, overcame the SELIC rate in terms of annualized
financial return. Only 2 agents (Agent 5 and 6) were able to
beat the IBOV, with 41.25% and 40.28%, respectively, against
31% of annualized financial return. On the other hand, all of
the 3 portfolios surpassed the IBOV with considerable advan-
tage. The Portfolio C, which we have considered as being the
best among all portfolios, had an annualized financial return
of 138.46%, which is over 4 times greater than the IBOV’s.
Also, the Portfolio C’s drawdown was 6.60%, which is around
3.5 times smaller than the IBOV’s cumulative fall of 23%.

VII. CONCLUSION

This paper proposed a model that automatically searches
for profitable trading patterns, named Pattern Searcher, and
generated strategy portfolios, both trained via GA. As a result,
7 out of 8 agents generated through the Pattern Searcher
model were very profitable.

The creation of portfolios considerably improved the
profitability compared to single agents’, outperforming
the Brazilian benchmarks. The best portfolio achieved an
annualized financial return of 138.46% and a drawdown of
6,56%, With this return, it would more than double the initial
deposit in one year.

The system showed some desirable properties. One of them
is the generation of rules than can be easily interpreted by
humans, allowing the investor to accept or reject the strategy
according to his knowledge. Another desirable characteristic
is the simplification of the system flow compared to some
Machine Learning methods. The model and the strategy are
interconnected, in a way that the training directly optimizes
the agent performance in terms of profitability.

Although the results seem promising, it is important to
have in mind that past results are not a guarantee of future
results. The stock market may change its behavior over time,
and the agent’s strategy might lose effectiveness.

Future work would consist of testing the robustness and
consistency of the GA agents, and applying the method
in other datasets, including international financial markets
(e.g., NYSE, NASDAQ, Tokyo), cryptocurrencies and forex.
In addition, we would extend the approach to agents that
trade multiple assets simultaneously, rather than specific
assets. According to [16], this can help to prevent overfitting,
resulting in more robust systems.

ACKNOWLEDGMENTS

This work was partially funded by the Brazilian National
Institute of Science and Technology for the Web (grant no.

TABLE III
AGENT’S AND PORTFOLIO’S RESULTS WITHOUT LEVERAGE

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Agent 8 Portfolio A Portfolio B Portfolio C
Initial Deposit R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00

Contracts 5.00 5.00 5.00 5.00 5.00 2.86 2.86 2.86 3.90 4.50 3.99
Gross Profit R$ 70,910.01 R$ 49,750.35 R$ 63,374.32 R$ 47,442.65 R$ 111,861.63 R$ 21,730.72 R$ 28,774.65 R$ 27,776.29 R$ 29,998.35 R$ 42,565.98 R$ 32,869.77
Gross Loss -R$ 50,992.32 -R$ 26,997.03 -R$ 37,683.19 -R$ 37,104.41 -R$ 61,417.03 -R$ 11,386.55 -R$ 28,806.10 -R$ 19,940.64 -R$ 14,303.44 -R$ 21,396.58 -R$ 15,165.00

Total Net Profit R$ 19,917.68 R$ 22,753.33 R$ 25,691.13 R$ 10,338.24 R$ 50,444.59 R$ 10,344.17 -R$ 31.46 R$ 7,835.66 R$ 15,694.92 R$ 21,169.40 R$ 17,704.77
Total Financial Return 19.91% 22.75% 25.69% 10.34% 50,44% 10.34% 0.00% 7.84% 15.69% 21.16% 17.70%

Drawdown R$ -7,131.67 R$ -5,184.22 R$ -3,216.35 R$ -4,728.66 R$ -4,451.29 R$ -1,037.95 R$ -7,283.18 R$ -2,011.67 R$ -895.19 R$ -1,583.43 R$ -848.93
Drawdown (%) -7.13% -5,18% -3,21% -4,72% -4,45% -1,03% -7,28% -2,01% -0,90% -1,58% -0,85%

Profit per Month R$ 1,072.77 R$ 1,225.49 R$ 1,383.72 R$ 556.82 R$ 2,716.94 R$ 557.14 -R$ 1.69 R$ 422.03 R$ 845.33 R$ 1,140.18 R$ 953.58
Monthly Return 1.07% 1.23% 1.38% 0.56% 2.72% 0.56% 0.00% 0.42% 0.85% 1.14% 0.95%

Annualized Return 13.86% 15.97% 18.20% 6.99% 38.56% 6.99% -0.02% 5.26% 10.78% 14.79% 12.24%

TABLE IV
ESTIMATION OF THE NUMBER OF CONTRACTS PER AGENT

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Agent 8 Portfolio A Portfolio B Portfolio C
Balance Drawdown (from training set) R$ 1,004.32 R$ 1,213.39 R$ 1,901.23 R$ 1,443.08 R$ 1,887.21 R$ 690.52 R$ 700.88 R$ 1,079.81 R$ 348.92 R$ 339.51 R$ 322.62

Balance Needed (from training set) R$ 10,043.18 R$ 12,133.86 R$ 19,012.30 R$ 14,430.81 R$ 18,872.14 R$ 6,905.23 R$ 7,008.81 R$ 10,798.10 R$ 3,489.24 R$ 3,395.10 R$ 3,226.20
Contracts to make DD = 10%*Deposit 9.96 8.24 5.26 6.93 5.30 14.48 14.27 9.26 28.66 29.45 31.00

TABLE V
AGENT’S AND PORTFOLIO’S RESULTS WITH LEVERAGE

Trading Agents Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Agent 8 Portfolio A Portfolio B Portfolio C
Initial Deposit R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00 R$ 100,000.00

Contracts per Entry 9.96 8.24 5.26 6.93 5.30 14.48 14.27 9.26 28.66 29.45 31.00
Gross Profit R$ 141,210.23 R$ 82,002.53 R$ 66,666.65 R$ 65,751.88 R$ 118,546.83 R$ 110,034.78 R$ 143,548.75 R$ 89,941.64 R$ 220,308.34 R$ 278,480.57 R$ 255,216.85
Gross Loss -R$ 101,546.14 -R$ 44,498.67 -R$ 39,640.85 -R$ 51,423.87 -R$ 65,087.51 -R$ 57,656.46 -R$ 143,705.68 -R$ 64,569.22 -R$ 105,044.65 -R$ 139,983.45 -R$ 117,748.44

Total Net Profit R$ 39,664.08 R$ 37,503.86 R$ 27,025.80 R$ 14,328.01 R$ 53,459.32 R$ 52,378.32 -R$ 156.93 R$ 25,372.42 R$ 115,263.70 R$ 138,497.12 R$ 137,468.41
Total Financial Return 39.66% 37.50% 27.03% 14.33% 53.46% 52.38% - 0.16% 25.37% 115.26% 138.50% 137.47%

Profit Factor 1.39 1.84 1.68 1.28 1.82 1.91 1.00 1.39 2.10 1.99 2.17
Drawdown -R$ 14,206.30 -R$ 8,543.60 -R$ 3,383.60 -R$ 6,553.92 -R$ 4,718.37 -R$ 5,255.08 -R$ 36,339.52 -R$ 6,513.31 -R$ 6,578.52 -R$ 10,362.66 -R$ 6,595.70

Drawdown (%) - 14,21% - 8,54% - 3,38% - 6,55% - 4,72% - 5,26% - 36,34% - 6,51% - 6,58% - 10,36% - 6,60%
Entries 314 163 272 252 531 170 144 130 1976 1976 1976

Entry Costs R$ 1,500.72 R$ 644.81 R$ 686.71 R$ 838.21 R$ 1,350.56 R$ 1,181.71 R$ 986.19 R$ 577.88 R$ 3,397.88 R$ 4,194.16 R$ 4,005.61
Leverage 1.99 1.65 1.05 1.39 1.06 5.06 4.99 3.24 7.34 6.54 7.76

Days with Entry 215 120 188 176 282 149 139 124 368 368 368
Profit per Month R$ 2,136.31 R$ 2,019.96 R$ 1,455.61 R$ 771.71 R$ 2,879.32 R$ 2,821.09 -R$ 8.45 R$ 1,366.56 R$ 6,208.10 R$ 7,459.45 R$ 7,404.04

Success Rate 54.88% 60.00% 57.45% 54.55% 53.90% 69.13% 51.80% 53.23% 57.61% 56.79% 58.97%
Std. Dev. of the returns 1100.14 759.29 522.44 566.01 708.49 755.42 1374.65 805.30 1098.57 1462.34 1256.46

Monthly Return (%) 2.14% 2.02% 1.46% 0.77% 2.88% 2.82% -0.01% 1.37% 6.21% 7.46% 7.40%
Annualized Return 29.33% 27.55% 19.22% 9.80% 41.25% 40.28% -0.10% 17.96% 108.09% 139.96% 138.46%

573871/2008-6), MASWeb (grant FAPEMIG/PRONEX APQ-
01400-14), CAPES, CNPq (grant 459301/2014-4), Finep, and
Fapemig.

REFERENCES

[1] Investopedia, “Technical analysis.” https://www.investopedia.com/terms/
t/technicalanalysis.asp, 2018. [Online; accessed 25-November-2018].

[2] C. M. Investopedia, “Moving averages: Strategies.” https://www.
investopedia.com/university/movingaverage/movingaverages4.asp, 2018.
[Online; accessed 25-November-2018].

[3] J. R. Koza, “Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems,” 06 1990.

[4] A. Padua Braga, Redes neurais artificiais: teoria e aplicaes. LTC
Editora, 2007.

[5] D. Faustryjak, L. Jackowska-Strumillo, and M. Majchrowicz, “Forward
forecast of stock prices using lstm neural networks with statistical
analysis of published messages,” pp. 288–292, May 2018.

[6] S. Liu, G. Liao, and Y. Ding, “Stock transaction prediction modeling
and analysis based on lstm,” pp. 2787–2790, May 2018.

[7] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 2 nd ed., 2018.

[8] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE Transactions on Neural Networks, vol. 12, pp. 875–889, jul 2001.

[9] P. Kroha and M. Friedrich, “Comparison of genetic algorithms for
trading strategies,” 01 2014.

[10] M. A. Dempster, T. W. Payne, Y. Romahi, and G. W. Thompson,
“Computational learning techniques for intraday fx trading using popular
technical indicators,” Trans. Neur. Netw., vol. 12, pp. 744–754, July
2001.

[11] A. Pimenta, F. G. Guimarães, E. G. Carrano, C. A. L. Nametala,
and R. H. C. Takahashi, “Goldminer: A genetic programming based
algorithm applied to brazilian stock market,” in 2014 IEEE Symposium

on Computational Intelligence and Data Mining (CIDM), pp. 397–402,
Dec 2014.

[12] D. Iskrich and D. Grigoriev, “Generating long-term trading system rules
using a genetic algorithm based on analyzing historical data,” in 2017
20th Conference of Open Innovations Association (FRUCT), pp. 91–97,
April 2017.

[13] E. Tsang, P. Yung, and J. Li, “Eddie-automation, a decision support tool
for financial forecasting,” Decis. Support Syst., vol. 37, pp. 559–565,
Sept. 2004.

[14] M. Kampouridis and E. Tsang, “Eddie for investment opportunities
forecasting: Extending the search space of the gp,” in IEEE Congress
on Evolutionary Computation, pp. 1–8, July 2010.

[15] Y. Hu, K. Liu, X. Zhang, L. Su, E. Ngai, and M. Liu, “Application of
evolutionary computation for rule discovery in stock algorithmic trading:
A literature review,” Applied Soft Computing, vol. 36, 07 2015.

[16] M. L. de Prado, Advances in Financial Machine Learning. Wiley
Publishing, 1st ed., 2018.

[17] D. Bailey, J. J. Borwein, M. Lopez de Prado, and Q. Zhu, “Pseudo-
mathematics and financial charlatanism: The effects of backtest over-
fitting on out-of-sample performance,” Notices of the American Mathe-
matical Society, vol. 61, p. 458, 05 2014.

[18] M. S. Corp, “Trading strategy tester: Test and optimize your trading
robot before you use it for real trading.” https://www.metatrader5.com/
en/automated-trading/strategy-tester, 2020.

[19] M. S. Corp, “Optimization types.” https://www.metatrader5.com/en/
terminal/help/algotrading/optimization types.

[20] A. Hayes, “Leverage.” https://www.investopedia.com/terms/l/leverage.
asp, 2019. [Online; accessed 07-January-2020].

[21] J. CHEN, “What is a portfolio?.” https://www.investopedia.com/terms/
p/portfolio.asp, 2019.

[22] BancoCentral, “Taxas de juros básicas.” https://www.metatrader5.com/
en/automated-trading/strategy-tester, 2020.

