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Abstract—Personal contact networks that represent social
interactions can be used to identify who can infect whom during
the spread of an epidemic. The structure of a personal contact
network has great impact upon both epidemic duration and the
total number of infected individuals. A vaccine, with varying
degrees of success, can reduce both the length and spread of
an epidemic, but in the case of a limited supply of vaccine a
vaccination strategy must be chosen, and this has a significant
effect on epidemic behaviour.

In this study we consider four different vaccination strategies
and compare their effects upon epidemic duration and spread.
These are random vaccination, high degree vaccination, ring
vaccination, and the base case of no vaccination. All vaccinations
are applied as the epidemic progresses, as opposed to in advance.
The strategies are initially applied to static personal contact
networks that are known ahead of time. They are then applied
to personal contact networks that are evolved as the vaccination
strategy is applied. When any form of vaccination is applied,
all strategies reduce both duration and spread of the epidemic.
When applied to a static network, random vaccination performs
poorly in terms of reducing epidemic duration in comparison to
strategies that take into account connectivity of the network.
However, it performs surprisingly well when applied on the
evolved networks, possibly because the evolutionary algorithm
is unable to take advantage of a fixed strategy.

I. INTRODUCTION

A personal contact network represents connections within
a community of individuals along which a disease can spread.
These networks can be generated through the use of demo-
graphic information, historical epidemic data, or by using an
existing network such as YouTube watch history [18].

Evolutionary computation has been used in previous work to
induce networks that satisfy chosen problems, i.e. acting as a
plausible personal contact network [21]. Personal contact net-
works are evaluated by simulating an epidemic on the network,
observing the behaviour of a disease as it spreads through
the simulated community. This process is known as graph
induction — locating graphs which best satisfy a problem
under study through exploration of the solution space. The test
problems presented in this paper include maximizing epidemic
duration [5] and maximizing epidemic spread, this being the
total number of infected individuals over the course of an
outbreak. Previous work also included the epidemic profile
matching problem: searching for networks which behave most

like an epidemic profile comprised of new infections in each
time step over the course of an epidemic [7].

The Susceptible-Infected-Removed (SIR) model of infection
[14] [16] divides a population into three mutually exclusive
groups of individuals. The susceptible group consists of indi-
viduals who may become infected. The infected group consists
of individuals who are currently infected and can spread the
epidemic to others. The removed group consists of those
who cannot become infected; this is comprised of individuals
who are immune (whether by vaccination or due to previous
infection from which they have recovered) and individuals who
have succumbed to the disease.

In the case of a limited supply of vaccine, selection of
individuals for vaccination can have a significant impact on the
severity of an epidemic. Four different vaccination strategies
were considered in [22] and [20]. These included the simple
strategy of choosing random individuals to be vaccinated, and
three other strategies based on the structure of the personal
contact network, which is known ahead of time.

The current study aims to evaluate four vaccination strate-
gies to determine their relative effectiveness in reducing the
length of an epidemic or cumulative number of infected indi-
viduals. Other than the baseline case in which no vaccination
occurs, these strategies are random vaccination, high-degree
random vaccination, and ring vaccination. The first two of
these are also considered in [22] and [20] although we model
the situation in which individuals are vaccinated during the
time at which the epidemic is spreading. We measure the
effect of the strategies upon epidemic duration and epidemic
spread. Initially, the different strategies are applied to personal
contact networks that are known ahead of time and static. The
strategies are later applied to personal contact networks that
evolve in reaction to vaccination, with these networks designed
to maximize either epidemic duration or epidemic spread. We
analyze the relative performance of the different strategies, as
well as properties of the personal contact networks evolved.

A. Graph Theory

The personal contact networks used in this study are mod-
elled as combinatorial graphs. Members within the network
are the graph’s vertices (or nodes) and connections between
members are the edges of the graph. The term network and
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Fig. 1. Initial graph with 128 vertices for transformation with editing
commands. Each vertex is the end of four edges, two ahead and two behind
in the circular layout.

graph are treated as interchangeable within this paper. A graph
G comprises a set of vertices V and a set edges E and is
denoted G(V,E). An edge between two vertices p and q from
V can be represented as the unordered pair {p, q}. All edges
are undirected, allowing the infection to spread both directions
along the edge. A path from vertex p to vertex q on graph G
is a sequence of edges from E which connect p and q. The
distance from p to q is the length of the shortest path which
connects p and q.

B. Generating Personal Contact Networks

The Local THADS-N generative representation [11] will be
used in this paper to generate the personal contact networks
which then are assessed for performance against the test
problems. Existing applications of generative representations
include [9], [13], [17]. Evidence of the effectiveness of gen-
erative solutions is demonstrated in [15].

The representation of a personal contact network is com-
prised of two parts: an initial graph and an ordered list of edge-
editing operations which are performed upon the initial graph
to produce the personal contact network. These operations can
add, delete, or move edges. A generative representation was
chosen as it allows the researcher to provide an appropriate
starting point in the space of personal contact networks. The
graph in Figure 1 was used as the initial graph because graphs
with four or five edges ending at each vertex performed well
for a class of epidemic modelling problems in [4], [6]. Another
advantage of generative representations is that they employ a
simple linear structure, a list of editing commands, that permits
evolutionary computation to be applied in a simple manner.

This representation has itself evolved since the first edge
operation, swap, was introduced in [3]. The operation was
thought to allow for a universal operator to perform network

induction with a fixed number of edges and vertices, though
other operations would need to be added and have since
proven to be more useful. Next, operations to allow for the
addition and deletion of edges to the graph were added in
[1]. These added operations improved performance, leading
to exploration of several new operations. Beneficial ones were
incorporated into the representation [8], [10]–[12]. The newest
operations added are local edge operations as they ensure
that the triples of vertices involved within the operation will
maintain a minimum distance of two from one another before
and after the editing operation is applied. Local operations are
valuable when there is a global distance structure that can be
disrupted by non-local operations.

1) Edge Operations from Existing Representation: Given a
graph G(V,E) and the vertices p, q, r, and s from the set V
the existing operations are defined below.

• Toggle(p, q): If edge {p, q} is in E then remove {p, q}
from E, otherwise add {p, q} to E.

• Local Toggle(p, q, r): If edge {p, q} and {q, r} are in E
then Toggle(p, r).

• Hop(p, q, r): If edge {p, q} and {q, r} are in E and edge
{p, r} is not in E then remove edge {p, q} from E and
add edge {p, r} to E.

• Add(p, q): If {p, q} is not in E then add {p, q} to E,
otherwise do nothing.

• Local Add(p, q, r): If edge {p, q} and {q, r} are in E
then Add(p, r).

• Delete(p, q): If {p, q} is in E then remove {p, q} from
E, otherwise do nothing.

• Local Delete(p, q, r): If edge {p, q} and {q, r} are in E
then Delete(p, r).

• Swap(p, q, r, s): If {p, q} and {r, s} are the only edges
between p, q, r and s then remove {p, q} and {r, s} from
E and add {p, s} and {q, r} to E.

• Null(): Do nothing.

C. Unleashing an Epidemic

In accordance with the SIR model of infection, all indi-
viduals in the population are initially set to the susceptible
state except for one individual (patient zero) who is chosen
to be infected with the disease. The status of members of
the population is represented by integers in an array; the first
element of the array, vertex zero, is set to be patient zero for
all epidemics simulated within this paper. Furthermore, the
epidemic is then permitted to spread throughout the personal
contact network along edges from infected individuals to those
who are susceptible. Every infected member can infect each
of their neighbours with a probability of α = 0.5, calculated
independently. This simplification allows us to analyze the
impact of a vaccination strategy on an outbreak; in real
life situations this value could vary depending on level and
duration of contact between individuals.

II. EVOLUTIONARY COMPUTATION

In order to generate the personal contact networks the
strings of edge operations must first be generated to apply



TABLE I
PARAMETER SETTINGS FOR PROBABILITY DENSITIES OF THE EDGE
OPERATIONS. CREATED USING A POINT PACKING WITH MINIMUM

DISTANCE OF 0.535 FROM [12]. THE HEADER ROW IS POPULATED WITH
PS MEANING PARAMETER SETTING, FOLLOWED BY THE EDGE

OPERATIONS IN THE ORDER LISTED IN SECTION I-B1

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
1 0.0312 0.3528 0.2545 0.2835 0.0065 0.0151 0.0011 0.0324 0.0229
2 0.3988 0.0250 0.4167 0.0122 0.0380 0.0016 0.0325 0.0569 0.0182
3 0.0107 0.0358 0.7801 0.0243 0.0614 0.0563 0.0130 0.0057 0.0128
4 0.0438 0.0188 0.0281 0.0499 0.0003 0.4322 0.0051 0.0170 0.4047
5 0.0085 0.0104 0.0232 0.0177 0.4035 0.0008 0.0613 0.4326 0.0421
6 0.7592 0.0305 0.0024 0.0060 0.0068 0.0344 0.0106 0.1176 0.0326
7 0.0122 0.0196 0.3838 0.0942 0.0070 0.0067 0.0303 0.0173 0.4288
8 0.0020 0.0727 0.0010 0.0435 0.0355 0.0123 0.7946 0.0201 0.0184
9 0.0073 0.0261 0.3406 0.0015 0.0195 0.3741 0.0077 0.2037 0.0195

10 0.4303 0.0847 0.0105 0.0086 0.4158 0.0042 0.0025 0.0208 0.0226
11 0.0108 0.0072 0.0030 0.0617 0.4359 0.0010 0.0129 0.0223 0.4451
12 0.3682 0.0191 0.0319 0.3670 0.0191 0.1107 0.0127 0.0466 0.0247
13 0.0199 0.0032 0.3243 0.1881 0.3991 0.0012 0.0262 0.0269 0.0110
14 0.0180 0.0491 0.0002 0.7646 0.0277 0.0174 0.0661 0.0047 0.0522
15 0.0334 0.4149 0.0113 0.0005 0.0323 0.4130 0.0213 0.0373 0.0360
16 0.0129 0.3896 0.0193 0.0034 0.0038 0.0001 0.1483 0.4096 0.0130
17 0.0093 0.0211 0.0098 0.0020 0.8084 0.0532 0.0000 0.0519 0.0442
18 0.0341 0.0192 0.0044 0.2095 0.0586 0.3328 0.3233 0.0047 0.0134
19 0.0531 0.7894 0.0394 0.0261 0.0114 0.0203 0.0150 0.0164 0.0289
20 0.0038 0.0457 0.4066 0.0768 0.0226 0.0061 0.3952 0.0268 0.0164
21 0.0032 0.3982 0.0129 0.0426 0.0336 0.0115 0.0070 0.0539 0.4371
22 0.0259 0.0140 0.0032 0.2220 0.0056 0.0160 0.0203 0.3623 0.3308
23 0.0053 0.0229 0.0372 0.0192 0.0110 0.0134 0.0435 0.0045 0.8430
24 0.0176 0.3765 0.0125 0.0156 0.3637 0.0094 0.1757 0.0099 0.0190
25 0.3572 0.2016 0.0045 0.0079 0.0026 0.0088 0.3556 0.0510 0.0109
26 0.0027 0.0091 0.0011 0.0628 0.0071 0.8545 0.0484 0.0028 0.0115
27 0.0038 0.0156 0.0221 0.0021 0.0285 0.0267 0.4183 0.0396 0.4432
28 0.0265 0.0456 0.0144 0.0109 0.0179 0.0102 0.0087 0.7966 0.0691
29 0.4238 0.0343 0.0021 0.0319 0.0021 0.0066 0.0487 0.0037 0.4469

to the initial graph in Figure 1. This is accomplished using a
steady state genetic algorithm [19].

The population consists of 1000 chromosomes which are
themselves comprised of 256 edge operations from the list of
operations described in Section I-B1. These edge operations
combined with the initial graph result in a personal contact
network and thus a candidate solution to the problem. To
initialize these chromosomes, they are randomly assigned edge
operations according to the probability densities in Table I.
These probabilities were generated using a point packing [2],
a procedure which allows for the creation of parameter sets
with the explicit intent of best exploring the parameter space of
the problem. To run this algorithm, a researcher must choose a
value for the minimum allowable distance between parameter
settings. The 29 parameter settings used here come from [12],
and correspond to a minimum distance of 0.535.

After generating the initial chromosomes and calculating
their fitness according to a fitness function, they undergo 500
000 mating events, with statistical reporting being conducted
every 5 000 mating events. A mating event is made up of three
procedures: tournament selection, crossover and mutation.
Size-7 tournament selection is used in this paper. First, seven
chromosomes are chosen at random. The two chromosomes
with the worst fitness are replaced by copies of the two
with the best fitness. These copied chromosomes are known
as parents and undergo two-point crossover resulting in two
children which overwrite their parents’ chromosomes. Next,
1-3 mutations are applied to the children, chosen uniformly
at random. New edge operations are chosen according to the
probability densities from the parameter set being used. Lastly,
the fitness of the children is calculated. After evolution the

chromosome resulting in a solution with best fitness from
the whole population is saved. This process is repeated 30
times for each experiment being tested. One change to the
tournament selection used in this paper is the re-evaluation of
the fitness of the two chromosomes after being copied to make
the parent chromosomes. This procedure, known as skeptical
tournament selection, was first described in [21] and has been
shown to be useful in [10]–[12].

This process does not indicate the absolute quality of a
network, but instead its relative quality, permitting successive
solutions to converge to graphs which are more likely to create
epidemics satisfying the problem at hand.

III. EXPERIMENTAL DESIGN

In this study we consider the modelling of an epidemic
with respect to two different fitness functions, each of which
is combined with four different vaccination strategies.

A. Epidemic Duration

The duration or length of an epidemic is the number of time
steps elapsed from the time at which it is unleashed, up until
the time at which there are zero infected individuals within the
population. The current study applies epidemics both to static
graphs that are known ahead of time (see Section III-D) and
to graphs that evolve in reaction to the vaccination strategy
(see Section III-E). To evaluate epidemic length when applied
to a given graph, we use skeptical tournament selection from
[21].

B. Epidemic Spread

The spread of an epidemic is the total number of individuals
infected by the epidemic over its entire course, i.e. from the
time at which it is unleashed up until the time at which
there are zero infected individuals within the population. As
with epidemic length, this is applied both to static graphs
and to graphs that evolve in reaction to the vaccination
strategy. Evaluation of epidemic spread is a simple sum of the
number of newly infected individuals during each time step.
Additionally, in order to prevent evolution from coalescing
around networks with ever-increasing edge counts the fitness
function evaluates to zero whenever the total number of edges
is greater than five times the number of vertices. Skeptical
tournament selection is used from [21].

C. Vaccination Strategies

One of the goals of this study is to evaluate different
vaccination strategies with respect to their effect upon (a)
epidemic length and (b) epidemic spread. Four strategies are
applied to each of these, as follows:

• No vaccine: No individuals are vaccinated at any point.
• Random: At each time step, one individual from the

susceptible category is selected for vaccination. Selection
is performed uniformly at random.

• High degree: At each time step, one individual from the
susceptible category is selected for vaccination. Selection
is performed uniformly at random amongst all of the



individuals (vertices) that have the highest degree of all
nodes in the graph.

• Ring: At each time step, one individual from the sus-
ceptible category is selected for vaccination. Selection
is performed uniformly at random from amongst all of
the individuals (vertices) that are neighbours of infected
individuals.

As stated earlier, according to our model infection can pass
from one individual to a neighbouring individual within one
time step. The length of time before a vaccine becomes effec-
tive can vary from one vaccine to another. In the current study,
the vaccine becomes effective and the individual is added
to the removed category immediately upon being selected
to receive the vaccine according to the current vaccination
strategy.

D. Static Graphs

The epidemic duration (ED) problem [4] seeks to find
graphs which promote longer-lasting epidemics. In considering
the epidemic duration problem, previous work [12] generated
a large number of graphs. As a first step in the current study,
we take the best 30 of these, i.e. those for which epidemics
had the longest duration. Using these graphs, we then evaluate
the length of the epidemic when each of the four vaccination
strategies listed in Section III-C are applied.

The epidemic spread (ES) problem seeks to find graphs
which promote more widespread epidemics, i.e. those in
which more individuals are infected over the course of the
epidemic. As this problem has not been previously addressed,
we generate graphs designed to maximize epidemic spread,
using the process defined in Section II. Equivalently to the
ED problem, we take the best 30 of these, i.e. those for which
the maximum number of individuals were infected. We then
evaluate the spread of the epidemic when each of the four
vaccination strategies listed in Section III-C are applied.

Each of the above represents a situation in which a personal
contact network is known ahead of time and does not change
throughout the course of the epidemic, regardless of vaccine
strategy applied.

E. Evolving Graphs

To represent a situation in which a personal contact network
changes in reaction to vaccination, we also evolve graphs. To
evolve the graphs, we follow the process defined in Section II.
Graphs are evolved with respect to (a) maximizing epidemic
length and (b) maximizing epidemic spread. In each case,
the graphs are evolved while a chosen vaccination strategy is
being applied. As before, we use the four vaccination strategies
described in Section III-C.

IV. RESULTS AND DISCUSSION

This section provides the results for the performance of the
four vaccination strategies. These are evaluated for their effect
on both epidemic duration and epidemic spread, and for both
static graphs and evolved graphs.

Note that the evolutionary algorithm is on the side of
the epidemic, i.e. works towards providing personal contact
networks which maximize the fitness (duration or spread).
From the other side, the goal of the vaccination strategies is to
reduce the length or spread of an epidemic. Therefore, in terms
of vaccination strategy lower values are better, even though
both fitness functions have the goal of maximizing their value
during evolution.

A. Static Graphs

1) Epidemic Duration: The results for the 29 parameter
settings under the epidemic duration problem, applied to a
static environment with the four vaccination strategies, are
available in Figure 2. Recall that the epidemic is not permitted
to evolve in response to the chosen vaccination strategy in a
static environment. Therefore, the epidemic length without any
vaccination is expected to be much higher than with any vacci-
nation strategy as the personal contact network was explicitly
evolved to achieve a maximal epidemic length without any
vaccinations. This turns out to be true: for the 29 parameter
settings the mean epidemic length without vaccination ranged
between 33.233− 44.1667 compared to a drastically reduced
7.3−19.5667 for the other three vaccination strategies. Regard-
less of strategy, within a static environment the introduction
of vaccines has a significant impact on overall length of the
epidemic within the population for all parameter settings.

Other than when there is no vaccination, the random vacci-
nation strategy performs worst for all parameter settings except
experiments 5, 17, and 20. However, the confidence intervals
also typically overlap between these strategies and are thus not
statistically significant. The random high-degree vaccination
strategy performs exceptionally well in experiment 18 with a
mean length of 11.9 ± 1.7319 compared to 17.5333 ± 3.195
for ring vaccination and 36.4333±1.2142 without vaccination.
Ring vaccination and high-degree vaccination perform simi-
larly for the majority of experiments, though in experiments
5, 10, and 17 ring vaccination outperforms the other strategies.
Lastly, the standard deviation for ring vaccination is larger than
the other vaccination strategies leading to more variability in
outcome when that strategy is chosen.

2) Epidemic Spread: The results for the 29 parameter
settings under the epidemic spread problem, applied to a static
environment with the four vaccination strategies, are available
in Figure 3. The lack of a vaccine results in the totality of the
population becoming infected during the course of an epidemic
for each of the 30 runs performed on all parameter settings
except for 2, 3, and 6. In experiments 2 and 3 the number of
edges in the network happened to be higher than the cutoff to
make the fitness evaluate to zero for all vaccination strategies.
Recall that the epidemic spread fitness is zero whenever the
total number of edges is more than 5 times the total number of
nodes for a personal contact network. Also, in experiment 6,
this was also the case for 16 of the 30 networks tested. These
16 fitness values of zero were removed from experiment 6 for
all strategies before the mean fitness was calculated in order
to not dramatically skew the results towards zero.



Fig. 2. The mean epidemic length, with 95% confidence interval, of epidemics unleashed on the 30 best personal contact networks for each of the 29
parameter settings with the specified vaccination strategy. The personal contact networks are from [12].

Fig. 3. The mean epidemic spread, with 95% confidence interval, of epidemics unleashed on the 30 best personal contact networks for each of the 29
parameter settings with the specified vaccination strategy. The personal contact networks are from [12].



The inclusion of vaccination does an adequate job at lim-
iting the spread of the epidemic throughout the population,
regardless of which strategy is chosen. First, the random
vaccination strategy does not outperform the other strategies
nor does it under-perform them. Rather, the random strategy
typically falls between the performance of high-degree and
ring vaccination with the confidence intervals overlapping or
one being contained within another. However, random vac-
cination can achieve superior fitness, though these scenarios
greatly increase the variance of the fitness as can be seen in
parameter settings 8, 22, and 28. Similarly, in experiments 16,
21, and 27 the random high-degree vaccination strategy also
achieves fitness values that are less than the other strategies;
this is at the cost of consistency of outcome when the strategy
is applied. Finally, the ring vaccination strategy behaves in two
distinct ways: a large variance and thus inconclusive results
(e.g. for experiments 4 and 25) or a small variance and poor
performance (e.g. experiments 11 and 26).

B. Evolving Graphs

1) Epidemic Duration: The results for the 29 parameter
settings under the epidemic duration problem, applied to an
evolving environment with the four vaccination strategies, are
available in Figure 4. Recall that in an evolving environment
a strategy for vaccination is chosen and the evolutionary
algorithm is then permitted to find personal contact networks
which maximize fitness while vaccines are present. Therefore,
it is not surprising that the lengths achieved in environments
with vaccine present perform much better than the static results
from above. Most obviously, the ring vaccination strategy per-
forms poorly compared to the random vaccination strategies.
This could be because of the less random selection of indi-
viduals to vaccinate, permitting the evolutionary algorithm to
develop strategies against the fixed strategy employed by ring
vaccination. In comparison, an entirely random strategy leaves
little intuition to be gained by the evolutionary algorithm
across generations.

The random vaccination strategies perform similarly to one
another for all parameter sets, with the confidence intervals
overlapping for all but experiments 15, 19, and 22. Random
high-degree vaccination performs best in experiments 15 and
19 while the fully random vaccination strategy performs best in
experiment 22. Furthermore, the overall reduction in the length
of an epidemic is not consistent across parameter settings.
For example, in experiment 10 the mean epidemic length
went from 33.233 without a vaccine to 29.3667, 29.5333,
and 30.3 for random vaccines, random high-degree vaccines,
and ring vaccines respectively; this is a reduction of around
three time steps. In contrast, in parameter setting 27 the mean
lengths go from 44.1667 to 33.0667, 33.6667, and 34.4333,
a reduction of around 10 time steps. Therefore, the overall
impact of a vaccine on epidemic length is more dependent on
the underlying personal contact network than the vaccination
strategy being applied in this case.

2) Epidemic Spread: The results for the 29 parameter
settings under the epidemic spread problem, applied to an

evolving environment with the four vaccination strategies, are
available in Figure 5. As with the static epidemic spread,
parameter settings 2 and 3 both universally failed the fitness
functions requirement that the total number of edges cannot
exceed 5 times the total number of vertices, and are thus
omitted to better see the contrast between the more interesting
results from the other experiments. Also, experiment 6 once
again has 16 of the 30 runs fail this requirement for all
four vaccination strategies and these were removed before
calculating the mean for experiment 6.

The ring vaccination strategy performs worse than both
random strategies by a significant margin for all the experi-
ments. Once again, this is likely a product of the evolutionary
algorithm devising contact networks which counteract the
effect of the ring vaccination strategy. Both random and high-
degree strategies’ results once again overlap in all but a few
experiments, namely experiments 1, 15, and 24. The random
high-degree strategy outperforms the random strategy for these
parameter settings making them the optimal strategy in this
case.

C. Static vs Evolving Graphs

The static environment does not allow for the personal
contact network to respond to the vaccination strategy being
applied to the population. Therefore, the outcomes of the
strategies within the static environment have a much larger
variance compared to those who undergo evolution. Thus, the
result of applying the strategy varies greatly between runs.
Whereas, when the networks are permitted to evolve the fitness
values increase and variance decreases. This phenomenon is
also what leads to the vaccine strategies performing better in
a static environment as compared to one which is evolving.

D. Parameters

The parameter settings have a great deal of influence over
the final networks being generated and thus they also greatly
impact the performance of the various vaccine strategies
above. Recall, experiment 2 and 3 failed when tested against
the epidemic spread fitness function. Both of these settings
had an abundance of add density with 0.4167 and 0.7801
respectively, which would result in an abundance of edges to
be added to the graph likely leading to the epidemic spread
fitness to evaluate to zero for all of the runs. Parameter setting
2 also had the toggle density set to 0.3988. Experiment 5
had a value of 0.4035 for swap and 0.4326 for local delete.
Local delete would go about removing edges from triples of
vertices which remain connected after the edge is deleted. This
reduction in local connections can lead to a more restricted
path for the epidemic to spread, improving the likelihood that
the ring vaccination strategy immunizes a node necessary to
access subsections of the graph. Experiment 5 accomplishes
this on the epidemic length problem in a static environment.
Parameter setting 6 also fails for 16 of the 30 runs when
epidemic spread fitness is used which is likely the result of the
density for toggle being 0.7592. As toggle can add or remove
edges and the edges chosen are at random, it seems reasonable



Fig. 4. The mean epidemic length, with 95% confidence interval, of the best fitness value achieved on 30 runs of the evolutionary algorithm for each of the
29 parameter settings with the specified vaccination strategy.

Fig. 5. The mean epidemic spread, with 95% confidence interval, of the best fitness value achieved on 30 runs of the evolutionary algorithm for each of the
29 parameter settings with the specified vaccination strategy.



that this reliance on toggle is the culprit for why the fitness
calculation fails approximately half the time.

V. CONCLUSIONS AND FUTURE WORK

Four different vaccination strategies were evaluated for their
effect upon epidemic duration and epidemic spread. These
were first applied to personal contact networks known ahead
of time, and that had been created specifically to maximize the
duration or spread of the epidemic. They were then applied
to personal contact networks that were evolved with a goal
of maximizing epidemic duration or spread as the vaccination
strategy was applied. For all of the above, the vaccinations
were applied as the epidemic progressed, as opposed to in
advance. This is closer to a real-life situation than one in which
all vaccines are applied prior to the start of the epidemic and
on a known, static graph.

When applied to a static network, it was demonstrated
that all vaccination strategies greatly reduced both duration
and spread of the epidemic. Random vaccination was tied
to increased epidemic duration in comparison to both ring
vaccination and high-degree vaccination, but generally slightly
reduced spread in comparison to the others.

When applied to evolved networks, again all vaccination
strategies reduced both duration and spread of the epidemic,
but not as drastically. For these networks, random vaccination
actually reduced epidemic duration and spread. This was
possibly due to the fact that the evolutionary algorithm was
unable to take advantage of a fixed strategy, and also the fact
that the random vaccination strategy is more likely to choose a
node further away from currently infected individuals, thereby
allowing some sections of the graph to prevent infection
passing through.

All of the above trends concerning relative performance of
the vaccination strategies hold across all 29 parameter sets
considered, with some minor variation. This is despite the fact
that the graphs produced by the different parameter sets are
quite different from one another.

In the future, it would be of interest to consider how to
evolve the vaccination strategies themselves, using known,
static, personal contact networks. These evolved strategies
could then be compared to existing strategies, including those
presented in this paper. One could also consider such factors
as a sliding scale of high-degree vaccination. It would also be
of interest to apply these ideas and techniques to related issues
such as the design of quarantine strategies.

Also, in the current study we considered that vaccines would
take effect immediately. In real life situations, this can depend
upon the type of vaccine. Therefore we could consider the
following vaccine effectiveness delays: (i) that the vaccine is
effective immediately, (ii) that the vaccine takes one time step
to become effective, and (iii) that the vaccine takes two (or
more) time steps to become effective.
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[11] M. Dubé, S. Houghten, and D. Ashlock. Parameter selection for model-
ing of epidemic networks. In Proceedings of the 2018 IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational
Biology, 2018.

[12] Michael Dube, Sheridan Houghten, and Daniel Ashlock. Representation
for evolution of epidemic models. In 2019 IEEE Congress on Evolu-
tionary Computation (CEC), pages 2370–2377, 06 2019.

[13] P. F. Hingston, L. C. Barone, and Z. Michalewicz. Design by Evolution:
Advances in Evolutionary Design. Springer, New York, NY, 2008.

[14] F.C. Hoppensteadt and C.S. Peskin. Mathematics in medicine and the
life sciences, volume 10. Springer Science & Business Media, 2013.

[15] G.S. Hornby. Improving the scalability of generative representations
for openended design. In R. Riolo, T. Soule, and B. Worzel, editors,
Genetic Programming Theory and Practice V, Genetic and Evolutionary
Computation Series, pages 125–142. Springer, Boston, MA, 2008.

[16] William O Kermack and Anderson G McKendrick. A contribution to
the mathematical theory of epidemics. Proceedings of the royal society
of london. Series A, Containing papers of a mathematical and physical
character, 115(772):700–721, 1927.

[17] T. Kowaliw, N. Bredeche, and R. Doursat. Growing Adaptive Machines.
Springer, 2014.

[18] Robert A. Van Gorder * Rahil Sachak-Patwa, Nabil T. Fadai. Under-
standing viral video dynamics through an epidemic modelling approach.
Physica A, 502:416–435, February 2018.

[19] Gilbert Syswerda. A study of reproduction in generational and steady
state genetic algorithms. In Foundations of Genetic Algorithms, pages
94–101. Morgan Kaufmann, 1991.

[20] Punam R Thakare and SS Mathurkar. Modeling of epidemic spread
by social interactions. In 2016 IEEE International Conference on
Recent Trends in Electronics, Information & Communication Technology
(RTEICT), pages 1320–1324. IEEE, 2016.

[21] M. Timmins and D. Ashlock. Network induction for epidemic profiles
with a novel representation. Biosystems, 162:205–214, 2017.

[22] Zhaoyang Zhang, Honggang Wang, Chonggang Wang, and Hua Fang.
Modeling epidemics spreading on social contact networks. IEEE
transactions on emerging topics in computing, 3(3):410–419, 2015.




