
A Genetic Algorithm for the Thief
Orienteering Problem

Leonardo M. Faêda
Departamento de Informática

Universidade Federal de Viçosa
Viçosa, MG, Brazil

leonardo.faeda@gmail.com

André G. Santos
Departamento de Informática

Universidade Federal de Viçosa
Viçosa, MG, Brazil

andre@dpi.ufv.br

Abstract—This paper approaches the Thief Orienteering Prob-
lem, a multi-component problem that combines two combi-
natorial problems: Orienteering Problem (OP) and Knapsack
Problem (KP). In this problem, a person (called thief) has a
capacitated knapsack and has a time limit to collect objects
distributed in a set of points. The departure and arrival points
are fixed. The thief begins his journey with an empty knapsack
and travels with speed inversely proportional to the weight of
the knapsack. As long as he has time, the thief can go through
the points collecting the objects. The objective of the problem is
to define which route and which objects the thief must collect to
maximize the profit of the knapsack. We developed a heuristic
algorithm based on the genetic algorithm (GA) metaheuristic and
computational experiments were carried out in order to compare
the performance of the developed algorithm with the existing
algorithms in the literature. Our results showed that our GA
was superior in the majority of the cases.

Index Terms—Orienteering problem, Knapsack problem,
Multi-component problems, Thief Orienteering Problem, Genetic
Algorithm.

I. INTRODUCTION

A multicomponent problem is characterized by the combi-
nation of two or more subproblems that are interdependent,
in the sense that the solution for a subproblem influences the
quality of the solutions of the other subproblems [1]. This
class of problems was proposed due to the need to approach
the complexity of real world problems, as scientists like [1]
and [2] argue that there is a big distance between the classic
problems that are largely studied and the real world problems.
The reason is that many studies improve techniques for classic
NP-Hard problems to known benchmarks, but these problems
lack the main features of reality, such as combination and
interdependence, which make problems even more complex
[2].

This work approaches the Thief Orienteering Problem
(ThOP), a multicomponent problem proposed by Santos and
Chagas [3], which combines two combinatorial problems:
the Orienteering Problem and the Knapsack Problem. In this
problem, the thief carries a capacitated knapsack and has a
time limit to travel through a set of cities, collecting the items
(KP component), knowing for each item its weight, profit
and location. The thief has a fixed place of departure and
arrival, and as long as he has time and capacity in his knap-
sack, he goes around the cities (called checkpoints) collecting

items (OP component). However, as items are collected, the
knapsack becomes heavier and the thief walks more slowly.
Formally, the minimum and maximum speeds (vmin e vmax)
are the thief speeds when the knapsack is full (at maximum
capacity W) or empty, respectively. The thief speed (v) for
a knapsack for a given weight (w), with 0 ≤ w ≤ W , is
represented by v = vmax−(vmax−vmin)w/W . The objective
of the problem is to determine a route and the items to be
collected, in order to maximize the profit of the knapsack [3].

An example for this problem is depicted in Figure 1, where
there are four points: the first (start point) and the last (end
point) have no items; the other points have a set of items,
each item i with its profit (pi) and weight (wi). For example,
the item with identifier 31 is at point 3, has a profit of 110
and weight 3. The distances between each pair of points
are presented on the edges. In addition to the information
contained in the figure, the thief has a minimum speed 0.1,
maximum speed 1, a knapsack with maximum capacity 3 and
a time limit of 75 to arrive at the end point.

A solution to the ThOP can be represented only by the items
collected in an orderly manner, as the route is derived from
the location of the items. The collection of items 32 and 23
has a total profit of 45 + 50 = 95. This solution is feasible, as
the capacity and the timeout constraints have been respected,
as detailed below:

• the thief travels from the start point (1) to the point (3)
at maximum speed, as the knapsack is empty: time is the
distance divided by the speed, 5 / 1.0 = 5;

• at point (3) item 32 is collected, with weight 2: the speed
decreases to 0.4;

• he then travels from point (3) to point (2): travel time is
8/0.4 = 20;

• at point (2) item 23 is collected, with weight 1: the speed
drops to 0.1;

• finally, he travels from point (2) to the end point (4):
travel time is 5/0.1 = 50. The total time is 5+20+50=75.

If we reverse the order in which the items are collected (23
and then 32), the solution is not feasible, as the time required
to collect the items in this sequence is 77.43, which is over
the time limit. For this example, the ideal solution is to collect
item 21, thus having a profit of 120, spending time 56 and

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

respecting the capacity 3 of the backpack.

Fig. 1. ThOP example.

An applicability to this problem arises in logistics, assuming
that a company has vehicles with limited capacity and the
working time of its employees cannot exceed a time limit per
day. The company uses vehicles to collect recyclable goods,
to carry out the material to reuse process, and each item
has a weight and a value. The vehicle’s speed decreases as
objects are collected, so the travel time between two collection
locations increases. Therefore, the objective is to find a route
and the items that must be collected, in order to maximize the
profit of using the vehicle.

This problem was idealized by Santos and Chagas in [3],
where the problem was formally defined, a mathematical
model was formulated and two heuristics were proposed. The
model could not be used due to its complexity: the number
of variables is exponential in the number of items at a given
point, due to the number of possible subsets; and the constraint
that defines the speed is non-linear, as the distance must be di-
vided by a continuous variable. The heuristics were developed
based on the Iterative Local Search (ILS) metaheuristic and
the Biased Random Key Genetic Algorithm (BRKGA). The
results of the computational experiments showed a superiority
of BRKGA when compared to ILS, for larger instances.

In this work we present a Genetic Algorithm and analyze its
performance to generate upper bounds in the optimal solution
of the Thief Orienteering Problem. Through techniques of
experimental statistics we show that the developed algorithm
produces results with significant improvements in comparison
to the already existing algorithms.

This work is organized as follows: in Section II, we present
a short bibliographic review of the problem; in Section III,
we describe in detail the proposed heuristic; then, in Section
IV, we report the computational experiments and analyze the
performance of the proposed heuristic algorithm; finally, in
Section V, we present our conclusions and suggest further
investigations.

II. LITERATURE REVIEW

The evolution of multi-component problems with interde-
pendence started in 2013 with the Traveling Thief Problem
(TTP) [1]. This problem consists of a combination of two
well-known classic problems: the Traveling Salesman Problem
(TSP) and the Knapsack Problem (KP). In TTP, the thief must
visit all cities from a set of cities and during the visit he may
collect items present in those cities to fill his knapsack. The
speed at which the thief moves from one city to another is
inversely proportional to the weight of his knapsack, so the
heavier the thief’s knapsack, the slower he goes. The knapsack
is rented and the price to pay is proportional to the time of
use. The thief objective is at the same time maximize the
profit from the collected items, respecting the capacity of the
knapsack, and minimize the total time of the route, as the total
revenue is the profit collected minus the amount payed for the
knapsack rental.

Since the presentation of the TTP, a benchmark of 9,720
instances has been made available [4]. Several heuristics have
been proposed: Hill Climbing and Simulated Annealing [5],
Ant Colony [6], Variable Neighborhood Descent [7], Profit
Guided Coordination [8] and Genetic Algorithm [9]. More-
over, an exact algorithm was proposed in [10] to verify the
efficiency of the existing heuristic algorithms. The TTP was
also used in competitions in the main events of Evolutionary
Computing [11] e [12]. A research was developed in [13] that
selects the most suitable algorithm, among the twenty one
existing, according to the characteristics of the instance.

The ThOP is the most recent problem approaching multi-
components with interdependence [3]. It was inspired by TTP,
but instead of the Traveling Salesman Problem it is based
on the Orienteering Problem. The Orienteering Problem is
based on an orientation sports game. In this game, players
start at a specific checkpoint (origin) and try to visit as many
checkpoints as possible and return to a checkpoint within a
time limit. Each control point has a score and the objective is
to maximize the total score collected. At ThOP, score is not
given by solely visiting the checkpoints, the score is given for
collected items, which must be carried by the participants to
the finish line. However, since they must carry the items, each
one has a knapsack to store the items collected, and the speed
on the route, and consequently the time, varies according to
the weight of the knapsack, just as in the TTP.

For ThOP, to the best of our knowledge, only two heuristics
have already been proposed to find good solutions in reason-
able time, a BRKGA and an ILS [3]. The performance of the
algorithm based on the BRKGA was superior to that of ILS.
The use of other metaheuristics for ThOP may improve the
upper bounds on the optimal solution. A Genetic Algorithm
was used in TTP and had good performance, finding for some
instances the best known solutions. Due to these good results,
we developed a heuristic for ThOP based on the Genetic
Algorithm.

III. HEURISTIC APPROACH

In this section we describe the Genetic Algorithm developed
for the problem (thopGA). An overview of the algorithm is
presented in the flowchart of Figure 2 . In the following, we
detail each procedure.

Fig. 2. Flowchart of the thopGA algorithm.

A. Solution representation and evaluation procedure

The solution is represented by two sequences: the first (R)
contains the points to be visited in the order in which the
journey will be carried out (as the initial and final location is
fixed, it is not necessary to store this information); the second
(C) contains the items to be collected (in any order, since
the first sequence already informs the collection order). The
example of solution given for Figure 1 would be represented
by R = {3, 2} and C = {32, 23} (or C = {23, 32}).

The evaluation procedure starts with the route R and the
collection C filled and the backpack K empty. For each
location in R, following the order defined by the permutation,
we check the items in C that are related to the R location,
so all items in a given location is collected in a single visit.
For each item, its weight is accumulated and we check if
the capacity of the backpack has been respected and if the
remaining time is sufficient for the thief to arrive at the final
location. If any of these constraints is violated, this solution is
considered invalid, otherwise the profit obtained is returned.

B. Local Search

Algorithm 1 presents the local search technique used as a
subroutine in the main algorithm here proposed. It explores
the neighborhood for a current solution to search for a better
quality neighbor. If a better solution is detected, that solution
becomes the current solution and the process is repeated
until a stopping criterion is reached itmax, thus returning an
improved solution.

This local search process has a simple structure that consists
of finding a better route to collect the items in the solution,
thus reducing the time spent to collect them. Subsequently,
new items are inserted in the route, thus increasing the profit
of the backpack. These two procedures respect the maximum

capacity of the backpack and the route time limit, and are
executed until there is no improvement for several iterations.

The process to find a better route is the 2-Opt neighborhood
(Algorithm 2). On each iteration, two cities in the route are
randomly selected and the visit order of the cities between
them are reversed. For example, consider the route {B, C, D,
E, F, G, H, I, J} with start point A and end point K. If the
selected cities are D and G, the new route is built in three steps:
the cities up to the first selected remain the same {B, C, D};
the route from there until the second city selected is reversed
{B, C, D, G, F, E}; finally, the remaining cities remain in the
same order {B, C, D, G, F, E, H, I, J}.

The process for inserting new items is performed to include
items not yet collected, in order to improve the profit. The set
of items is randomly shuffled and items are inserted one-by-
one in the solution, if the item does not belong to the solution.
For each item included, the new solution is checked if the time
and capacity constraints are still satisfied. Otherwise, the item
is removed. Algorithm 3 show the steps of this neighborhood.

Algorithm 1: Local search procedure
procedure LOCAL-SEARCH (s, itmax)
k ← 0
while k < itmax do

s′ ← 2-OPT (s, itmax)
s′ ← ITEM-INSERTION (s′)
if f(s′) > f(s) then

s ← s′

k ← 0
else

k ← k + 1
end

end
return s

Algorithm 2: Neighborhood 2-OPT procedure
procedure 2-OPT (s, itmax)
k ← 0
while k < itmax do

index1 ← RANDOM (1, s.number of points)
index2 ← RANDOM (1, s.number of points)
if index1 > index2 then

SWAP (index1, index2)
end
s′ ← s.route [1 .. index1] +

s.route [index2 .. index1 + 1] +
s.route [index2 + 1 .. s.numberofpoints]

if f(s′).feasible then
s ← s′

k ← 0
else

k ← k + 1
end

end
return s

Algorithm 3: Neighborhood Item-Insertion procedure
procedure ITEM-INSERTION (s)
i ← number of items
t ← SHUFFLE (items)
k ← 0
while k < i do

if IN-SOLUTION (t[k].idItem, s) == False then
INSERT-ITEM (s, t[k].idItem)
belongs ← IN-SOLUTION (t[k].idPoint)
if belongs == False then

INSERT-ROUTE (s, t[k].idPoint)
end

end
if f(s).feasible == False then

REMOVE-ITEM (s, t[k].idItem)
if belongs == False then

REMOVE-ROUTE (s, t[k].idPoint)
end

end
k ← k + 1

end
return s

C. Genetic Algorithm

The Genetic Algorithm (GA) is an evolutionary metaheuris-
tic [14] inspired by the Darwinian principle of the evolution of
species [15]. Their methods use the evolution of a population
of individuals, where each individual has a solution to the
problem studied. Over the course of evolution, the character-
istics of individuals with greater aptitude tend to survive, thus
leading the algorithm to more promising solutions.

In the thopGA proposed here, each individual is represented
by two vectors, one containing the route and the other the
items that should be collected. The population has pk indi-
viduals, that are generated initially at random, respecting the
constraints of the problem: the backpack capacity and time
limit. While items fit and the thief has time to arrive at the end
point. The vector containing the route is filled in the order that
the items are in the collection vector. After the generation of
the initial population, all individuals in the population undergo
an improvement through the local search explained above.

The thopGA proceeds to the next stage, creating new
individuals by recombination and mutation. The process con-
tinues until a maximum number of generations is reached,
controlled by a parameter Tmax. To generate a new child,
two parents from the initial population are drawn using the
roulette technique, where the probability of choosing a parent
is proportional to the quality of his solution. Suppose the
parent 1 and 2 collects i and j items respectively. Then, the
crossover processes are carried out: the first i/2 items from
parent 1 and the last j/2 items from parent 2, without repeating
items, are inserted in the child and the route is generated from
the selected items respecting this sequence, without repeating
cities. After, the mutation process is carried out, where an item
is selected randomly in the child and exchanged for another

random item that is not present in the child. The crossover and
mutation processes are carried out with a given probability.

The child generated from the crossover and processes un-
dergoes an improvement through local search. The thopGA
has then a component like Memetic Algorithms. The solution
value of the child is compared to the value of the worst
individual in the population. If the child’s value is higher, the
worst individual is removed from the population and the child
is inserted. At the end of the entire process, the one with
the most valuable solution is chosen from the population of
individuals. Algorithm 4 summarizes the previously mentioned
steps of thopGA.

Algorithm 4: Genetic Algorithm procedure
procedure thopGA (Tmax, pc, pm, itmax)
Population ← START-POPULATION ()
for s in Population do

LOCAL-SEARCH (s, itmax)
end
while time limit Tmax do

i ← RANDOM (0, 1)
if i < pc then

parent1 ← ROULETTE-WHEEL ()
parent2 ← ROULETTE-WHEEL ()
child ← CROSSOVER (parent1, parent2)
i ← RANDOM (0, 1)
if i < pm then

child ← MUTATION (child)
end
LOCAL-SEARCH (child, itmax)
if f(child) > f(WORST-INDIVIDUAL

(Population)) then
Population.REMOVE
(WORST-INDIVIDUAL (Population))
Population.INSERT (child)

end
end

end
return BEST-INDIVIDUAL (Population)

IV. COMPUTATIONAL EXPERIMENTS

The proposed heuristic algorithm was implemented in the
C++ language and compiled in Cygwin 3.1.2. The experiments
were performed on a notebook with an Intel Core i7 processor
with 2.50 GHz clock, 8 GB of memory and Windows 10 64-bit
operating system.

The heuristic algorithm was evaluated using different in-
stances, from the ThOP benchmark proposed by [3]. The
characteristics of each set vary according to the number and
location of cities, the number of items in each city, the
weight-profit relationship type of the items, the capacity of
the backpack and the maximum travel time. The following
characteristics are considered in this benchmark:
• TSP based instance groups: eil51, pr107, a280 and
dsj1000;

• number of items per city: 01, 03, 05, and 10;
• weight-profit relation type: bounded-strongly-correlated

(bsc), uncorrelated (unc), uncorrelated-similar-weights
(usw);

• knapsack capacity class: 01, 05, 10;
• maximum travel time class: 01, 02, 03.

Regarding the parameters of the algorithm, we defined as the
stopping criterion the execution time equal to m/10 seconds,
the same used by [3], given in terms of the number of items
m of each instance. In addition to the stop parameter, it has
four more parameters: the local search stop condition itmax,
the number of individuals in the population pk, which is the
number of individuals that are stored as the best found, the
probability of crossover pc and the probability of mutation
pm. All parameters were calibrated empirically and in the final
experiment they were performed with itmax = 50, pk = 100,
pc = 0.90, pm = 0.85.

As the algorithm has random components, it was ex-
ecuted 10 times for each instance with different random
seeds. The average value of the objective function and the
best found in these 10 runs is used to compare the al-
gorithm with those from the literature. Therefore we have
10 results for 432 instances, a total of 4320 results, from
which we extract two values per instance, the best and the
average. The complete results can be found in a supple-
mentary material in the links https://bit.ly/3ayvWoQ and in
http://www.dpi.ufv.br/~andre/thop. In this paper, we present
and analyze the results grouped by instance and types, in
Tables I, II, III and IV and the graphs on Figures 3, 4, 5
and 6.

The metric χ used in the work where ThOP was proposed
[3] to establish a measure of the quality of convergence of the
algorithm was adopted in this paper to verify the quality of
the proposed algorithm. The equations (1) and (2) show how
the metric χ is calculated for the thopGA proposed in this
work and for the BRKGA proposed by Santos and Chagas [3].
The thopGAavg and BRKGAavg values refer to the average
of the results found by the thopGA and BRKGA algorithms,
respectively, for the corresponding group, and thopGAbest and
BRKGAbest are the best solutions for each algorithm. The
metric then measures how close the algorithm approaches, on
average, to the best known solution. Note that the higher the
χ metric, the greater the convergence of the algorithm to the
best known solution.

χthopGA =
thopGAavg

max(thopGAbest, BRKGAbest)
.100% (1)

χBRKGA =
BRKGAavg

max(BRKGAbest, thopGAbest)
.100% (2)

TABLE I
QUALITY OF CONVERGENCE GROUPED BY NUMBER OF ITEMS PER CITY.

Group χBRKGA χthopGA

01 03 05 10 01 03 05 10
ei151 93 83 74 64 91 95 93 95
pr107 96 71 63 56 77 91 92 93
a208 90 54 47 35 85 96 97 98
dsj1000 83 44 56 74 87 99 98 97

TABLE II
QUALITY OF CONVERGENCE GROUPED BY ITEM RELATION TYPE.

Group χBRKGA χthopGA

bsc unc usw bsc unc usw
ei151 80 79 78 97 90 94
pr107 73 70 71 93 85 89
a208 55 55 57 96 92 94
dsj1000 69 62 62 95 95 96

TABLE III
QUALITY OF CONVERGENCE GROUPED BY MAXIMUM TRAVEL TIME

CLASS.

Group χBRKGA χthopGA

01 02 03 01 02 03
ei151 77 79 81 94 93 93
pr107 73 71 71 88 89 89
a208 55 56 58 93 94 95
dsj1000 61 65 67 95 95 96

TABLE IV
QUALITY OF CONVERGENCE GROUPED BY KNAPSACK CAPACITY CLASS.

Group χBRKGA χthopGA

01 05 10 01 05 10
ei151 94 78 65 91 98 94
pr107 96 65 54 90 92 86
a208 83 46 41 92 96 96
dsj1000 74 62 57 89 99 99

Fig. 3. Quality of convergence per number of items per city.

Fig. 4. Quality of convergence per weight-profit relation type.

Fig. 5. Quality of convergence per maximum travel time class.

Fig. 6. Quality of convergence per knapsack capacity class.

One can see that the thopGA algorithm remains stable for
most groups (convergence around 85%), while the conver-
gence of the BRKGA algorithm decreases as the number of
checkpoint increases and the number of items per checkpoint
increases for the same number of checkpoint, from 93% to
approximately 44%. The BRKGA has a better convergence
only for the group with only one item per checkpoint (except
for class dsj1000) and for the group with the lowest capacity
of the backpack (except in classes a208 and dsj1000).

We believe that the machines used influenced the worse
performance of thopGA, because the fewer items available,
the tight is the execution time limit, hence the solution for
these instances are more sensitive to the performance of the
machine used. The processor of the machine used to carry out
the experiments of the BRKGA algorithm is superior to that
used for the experiments of the thopGA algorithm.

The behavior of the algorithms changes for different weight-
profit relationship, as can be seen in Table II. Both algorithms
perform better for the bsc type, with the thopGA algorithm
being superior in all types compared to the BRKGA algorithm.
The worst performance is for the unc type. This indicates that
the algorithms still depend on a good relationship between the
weight and the value of the items. Regarding the maximum
travel time, the algorithms tend to have a better convergence
as this parameter increases, as reported in Table III, except
in the BRKGA algorithm in the cases of pr107, where the
behavior is the opposite. And for the convergence of the
algorithms regarding the backpack capacity class, the BRKGA
algorithm has a better performance for group 01 (in classes
eil51 and pr107) and worse for the others, and the thopGA
algorithm was better in groups 01 (in classes classes a208
and dsj1000), 05 and 10. These results indicate that the
algorithms behave better when time and capacity limits are
not highly constrained. Instances with tighter limits are more
difficult.

Besides the convergence, we also analyze how often a
method find an overall best solution, compared to the others.
The results are presented in Tables V and VI, grouped by
the type of instance. The values for each method and group
of instances inform in how many of the 108 instances of the
group the best (or average) solution found by the respective
algorithm has the best value among the methods. The column
“equals” informs in how many there is a tie, i.e., more than
one method found the best value. The thopGA was superior
to the other methods in all groups, in both cases, the best
solution and the average solution in 10 runs. Regarding the
best solution, thopGA found the best one in 304 out of 432
instances, which corresponds to more then 70%.

TABLE V
NUMBER OF BEST RESULTS FOUND FOR EACH GROUP

Best SolutionsInstances ILS BRKGA thopGA equals
eil51 12 26 64 6
pr107 17 25 64 2
a208 20 4 84 0
dsj1000 1 15 92 0

TABLE VI
NUMBER OF BEST AVERAGE RESULTS FOR EACH GROUP

Average SolutionsInstances ILS BRKGA thopGA equals
eil51 11 30 64 3
pr107 14 29 65 0
a208 19 2 87 0
dsj1000 0 13 95 0

In order to verify whether the results found by the algo-
rithms already developed for the ThOP problem, including
the one proposed in this work, have a significant difference
among them, the Friedman test was applied. The Friedman
test was chosen because we cannot say that the samples used
in the tests are independent [16]. The hypothesis observed in
this test is that the algorithms are the same; if this statement is
denied, we can say that there is at least one different algorithm.
Using the p-value = 0.05, the result found was less than 0.05,
thus concluding that there is at least one different algorithm
with 95% confidence.

As a way to observe the results, Figure 7 has a boxplot graph
that illustrates the results of the experiments. On the x-axis we
have the BRKGA (best results currently in the literature) and
the thopGA algorithm proposed in this work, and on the y-axis
the percentage of solution convergence for each instance. The
normalization used to verify the percentage of improvement
in the solution of each instance was the χ metric presented
in equations (1) and (2). The thopGA algorithm has a higher
average result than BRKGA and we can also observe that the
thopGA algorithm has greater convergence than BRKGA.

Fig. 7. Comparative analysis of the convergence of BRKGA algorithm and
thopGA for all instances.

The algorithm that is apparently the best one, observed in
the graph previously, must pass the Wilcoxon test [17]. In
this test, it is verified if the visually better algorithm has
a significant difference in relation to the other algorithms.
Initially, the p-value is adjusted using the Bonferroni correc-
tion [18], and the hypothesis observed for the test is that the
pairwise compared algorithms are the same. The value found
for (thopGA with BRKGA) is less than 0.05, then we can
say that the thopGA algorithm is significantly different from
BRKGA and has a better performance.

V. CONCLUSIONS AND FURTHER INVESTIGATIONS

In this paper, we approach the Thief Orienteering Problem
(ThOP), a combinatorial problem with interdependence. We
proposed the thopGA, a Genetic Algorithm based heuristic. We
tested thopGA for the 432 instances available in the literature
and compared it with the existing heuristic algorithms (ILS and
BRKGA). The results showed a superiority of thopGA when
compared to the other algorithms, mainly in large instances.
We believe that this superiority is due to the combination of
individuals who have good characteristics, and also by the
local search used in the generation of the initial population
and after the new individuals generated, generating others with
better results. As a future work, we would like to develop an
exact mathematical programming model to test the quality of
the developed heuristics algorithms, at least for the smaller
instances, and to analyze the performance of new heuristics
based on other metaheuristics.

ACKNOWLEDGEMENT

The authors thank Fundação de Amparo à Pesquisa do
Estado de Minas Gerais (FAPEMIG) and Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) for
the financial support of this project.

APPENDIX
SUPPLEMENTARY MATERIAL

Supplementary material associated with this
paper can be found, in the online version, at
the following urls: https://bit.ly/3ayvWoQ and in
http://www.dpi.ufv.br/~andre/thop

REFERENCES

[1] M. R. Bonyadi, Z. Michalewicz, L. Barone. The travelling thief problem:
the first step in the transition from theoretical problems to realistic
problems. In Proceedings of the 2013 IEEE Congress on Evolutionary
Computation, pp. 1037–1044, 2013.

[2] Z. Michalewicz. Quo vadis, evolutionary computation?. In IEEE World
Congress on Computational Intelligence, pp. 98-121, 2012.

[3] A. G. Santos and J. B. Chagas. The Thief Orienteering Problem:
Formulation and Heuristic Approaches. In 2018 IEEE Congress on
Evolutionary Computation (CEC), pp. 1-9, 2018.

[4] S. POLYAKOVSKIY, et al. A comprehensive benchmark set and
heuristics for the traveling thief problem. In: ACM.Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation, p.
477–484, 2014.

[5] M. E. YAFRANI and B AHIOD. Efficiently solving the traveling thief
problem using hill climbing and simulated annealing. In: Information
Sciences, p. 231–244, 2018.

[6] M. WAGNER. Stealing items more efficiently with ants: a
swarm intelligence approach to the travelling thief problem. In:
SPRINGER.International Conference on Swarm Intelligence, p.
273–281, 2016.

[7] R. P. ARAUJO, et al. A novel list-constrained randomized vnd approach
in gpu for the traveling thief problem. In: Electronic Notes in Discrete
Mathematics, Elsevier, p. 183–190, 2018.

[8] M. NAMAZI, et al. A profit guided coordination heuristic for travel-
ling thief problems. In: Twelfth Annual Symposium on Combinatorial
Search, 2019.

[9] D. K. Vieira, G. L. Soares, J. A. Vasconcelos and M. H Mendes. A
genetic algorithm for multi-component optimization problems: the case
of the travelling thief problem. In European Conference on Evolutionary
Computation in Combinatorial Optimization pp. 18-29, 2017.

[10] J. WU, et al. Exact approaches for the travelling thief problem. In:
SPRINGER.Asia-Pacific Conference on Simulated Evolution and Learn-
ing, p.110–121, 2017.

[11] “Optimisation of Problems with Multiple Interdependent Components”.
Internet: https://cs.adelaide.edu.au/ optlog/CEC2014Comp Jul. 9, 2014
[Jan. 15, 2018].

[12] “Optimisation of Problems with Multiple Interdependent Components”.
Internet: http://gecco-2017.sigevo.org/index.html/Competitions [Jan. 15,
2018].

[13] M. WAGNER, et al. A case study of algorithm selection for the traveling
thief problem. In: Journal of Heuristics, Springer, p. 295–320, 2018.

[14] J. H. Holland. Genetic algorithms. In: Scientific american, p. 66-73,
(1992).

[15] C. Darwin, and G. De Beer. “The Origin of Species by Means of Natural
Selection, Or, The Preservation of Favored Races in the Struggle for
Life”, In: Oxford University Press, 1956.

[16] D. W. ZIMMERMAN and B. D. ZUMBO. Relative power of the
Wilcoxon test, the Friedman test, and repeated-measures ANOVA on
ranks. In The Journal of Experimental Education, pp. 75-86, 1993.

[17] E. A. GEHAN. A generalized Wilcoxon test for comparing arbitrarily
singly-censored samples. Biometrika, pp. 203-224, 1965.

[18] T. V. PERNEGER. What’s wrong with Bonferroni adjustments. Bmj,
pp. 1236-1238, 1998.

