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Abstract—In this paper we present the COLSHADE algorithm
for real parameter constrained optimization problems. COL-
SHADE evolved from the basic L-SHADE algorithm by introduc-
ing significant features such as adaptive Lévy flights and dynamic
tolerance (included in the constraint handling technique). Lévy
flights mainly perform the exploration phase in algorithms such
as the Firefly algorithm and Cuckoo search; in COLSHADE,
however, the goal of the Lévy flights is to administer the selection
pressure exerted over the population as to find the feasible region
and keeping diversity. Thus, a new adaptive Lévy flight mutation
operator is introduced here and called the levy/1/bin. In many
problems the levy/1/bin excels during the exploration phase whilst
the exploitation phase is performed by current-to-pbest mutation.
However, the adaptive strategy propitiates the emergence of
these two mutation approaches at different rates and times.
The proposed method is tested on 57 constrained optimization
functions of the benchmark provided for the CEC 2020 real-
world single-objective constrained optimization competition.

Index Terms—Constrained optimization, Lévy flight, parame-
ter adaptation.

I. INTRODUCTION

In real life many design problems belong to the constrained
optimization category, same which can be formally described
as follows:

minimize f(x), x = (x1 . . . , xD) ∈ Ω
subject to: gi(x) ≤ 0, i = 1, . . . p

hj(x) = 0, j = p+ 1, . . . ,m
(1)

where f(x) is the objective function. x ∈ Ω is a D di-
mensional solution vector and xi is the i-th component of
x. Ω =

∏D
i=1[Li, Ui] is the cartesian product defining the

search space and Li, Ui are the lower bound and the upper
bound of xi, respectively. The function gi(x) is the i-th
inequality constraint and hj(x) is the j-th equality constraint.
Either constraint can be linear or not linear. Usually equality
constraints are transformed into inequalities of the form

|hj(x)| − ε ≤ 0, for j = p+ 1, . . . ,m (2)

In this paper we describe a new algorithm, called “L-
SHADE for Constrained Optimization with Lévy Flights”,
COLSHADE, that is applicable to constrained optimization
problems of the kind defined above. Therefore, COLSHADE
was born with CR and F parameters adaptation, a mutation

operator named DE/current-to-pbest, and the linearly decreas-
ing population feature of its predecessor. COLSHADE incor-
porates the following new features: a) a new mutation operator
levy/1/bin based on the Lévy distribution; b) the adaptation of
the Lévy distribution parameter that controls the extension of
the step size, therefore, a mixture of short and large mutations
that conforms Lévy flights is randomly generated but their
extent is tuned up in concordance with successful mutations
in the search space; c) a constraint handling technique with
dynamic tolerance for equality constraints.

Lévy flights have been used in global optimization to
perform the exploratory step of the algorithm, for instance,
Cuckoo search [1] and Firefly [2] algorithms. Lévy flight is
adopted by our proposed algorithm to keep exploration and
sustain the population diversity required to counter balance
the negative effect of the selection pressure. In that trade off
between exploration and keeping feasible individuals, the se-
lection pressure that favors feasible individuals is kept constant
(rules do not change), however, exploration may be sustained
along large number of generations since the ultimate goal of
the adaptive Lévy flight is the success of the exploration (i.e.,
finding better fitness individuals).

The rest of this paper is organized as follows. Section II
introduces constraint handling, Lévy flights and for the sake
of completeness a brief review of L-SHADE algorithm. In
Section III our proposal COLSHADE algorithm is presented.
Specification of experiments and control parameter setting are
given in Section IV. Section V provides experimental results
and the algorithm complexity. Finally, Section VI provides
final remarks about this work.

II. BACKGROUND AND RELATED WORK

A. Handling Constraints

The adopted constraint handling is based on feasibility
rules which implements a constraint handling technique called
“separation of constraints and objective” [3]. These rules are
quite greedy since given a pair of individuals the winner is the
individual with “less total amount of constraints violation”, or
the one that is feasible if the other is not feasible, or given two
feasible individuals the one with better objective function value
is chosen. There is no opportunity of survival for the weakest
individual in the feasibility sense. Nonetheless, it makes sense
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to leave some of them alive as a measure to keep diversity
and exploration.

B. Lévy Flight

Lévy flights (LF) are random walks with step lengths
simulated from a heavy tail distribution, such as the Lévy
probability distribution. A visual inspection of LF in two
dimensions shows clusters of many small steps linked by
sporadic steps of larger size. The clusters of regions randomly
spread over the search space where either region is traversed
with many small steps is the attractive feature currently
exploited by bio-inspired algorithms to add or enhance their
exploratory capacity.

The foraging behaviour of some species in their natural en-
vironment is being studied since their motion can be explained
by LF [4].

Heavy tail distributions such as Cauchy and Lévy probabil-
ity density functions have already been used in evolutionary
algorithms See Fig. 1. Yao et. al. [5], [6] investigated heavy
tail distributions as primary search operators in evolutionary
programming. The infinite variance of the Cauchy distribution,
and the mentioned features of Lévy flights improved the
search capacity of the mutation operator. Therefore, new
individuals visited regions located farther from their parents
in the landscape.

The mathematical model of the Lévy distribution is a
particular case of stable distribution S with four parameters
(see [7], and Fig. 1): 1) α controls the shape; 2) β controls
the skewness of the distribution, that is, positive tail (β > 0) ,
negative tail (β < 0), or symmetric (β = 0); 3) γ is the scale
factor, that is, it controls the step size of a Lévy flight, it is
an adaptable parameter in our proposed algorithm; 4) δ is the
mean of the distribution.

Recently, Lévy flights were reintroduced to the evolutionary
computation community with the Cuckoo Search algorithm
(CS) [1]. In the CS metaphor, the cuckoo bird randomly flies
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Fig. 1. Normal, Cauchy, and Lévy density functions. Note that either density
is generated with a specific value of the α end β parameters.

to a new place to nest, staying in that spot if the fitness is better
than in the previous spot. The random motion of the cuckoo
bird is modelled after a Lévy distribution, in fact, the new
spot is one step of a Lévy flight. LF were incorporated into
the Gray Wolf optimization algorithm to redistribute wolves
around the fitness landscape, therefore, preventing loss of
diversity and stagnation [8]. The Lévy Firefly algorithm for
global optimization [2], uses LF to model the random motion
of fireflies.

C. L-SHADE Algorithm

The L-SHADE algorithm [9] is an improvement of Dif-
ferential Evolution [10]. The current-to-pbest/1/bin strategy
proposed by JADE algorithm [11] and defined in equation
3 is used by SHADE [12] and also adopted by L-SHADE
algorithm.

vi,g = xi,G+Fi ·(xpbest,G−xi,G)+Fi ·(xr1,G−xr2,G) (3)

where xpbest,G is randomly selected among the p-best
solutions.

L-SHADE mantains a historical memory MCR and MF of
H entries for control parameters CR and F respectively. In
the beginning, the content of memories is initialized to 0.5. In
each generation, the control parameters CRi and Fi used by
each individual are generated selecting a random index ri in
range [1, H] and applying the following criterion:

CRi =

{
randni(MCR,ri, 0.1) if MCR,ri > 0

0 other case
(4)

Fi =randci(MF,ri, 0.1) (5)

where randni(µ, σ) and randci(δ, γ) are normal and Cauchy
random number generators respectively with mean µ, standard
deviation σ, center δ and scale factor γ. The L-SHADE
algorithm incorporates linear population size reduction. The
algorithm starts with a large population to encourage wide
exploration of the search space, and slowly decreases the pop-
ulation size along the generations to accelerate convergence
and exploit the best solutions found.

III. COLSHADE ALGORITHM FOR CONSTRAINED
OPTIMIZATION

In this section, the proposed COLSHADE algorithm is
presented. The whole algorithm is listed in Algorithm 1. The
aim of the adaptive Lévy flight-based mutation is to achieve
larger exploration of the search space, whereas the current-to-
pbest mutation complements the optimization process as an
exploitation operator.

A. Lévy Flight-based Mutation

This mutation is listed in Algorithm 2. The magnitude of
the Lévy flight and crossover rate CR are adapted throughout
the evolutionary process. In that way larger or shorter flights
can be generated. The trial vectors are generated starting from



Algorithm 1 COLSHADE

1: N init = round(D × rNinit), |A| = round(N init × rarc);
2: N0 = N init, Nmin = 4, q0 = 0.5;
3: Initialize memories MCR, MF , MCRL , MFL to 0.5;
4: Initialize population P0 = {x1, . . . ,xN0

};
5: Set initial tolerance such that all equality constraints are

feasible: ε0,j = max{|hj(xi)|};
6: while The termination criteria does not meet do
7: SCR ← ∅, SF ← ∅, SCRL ← ∅, SFL ← ∅;
8: ∆f ← ∅, ∆fL ← ∅;
9: for i = 1 to NG do

10: l← rand(0, 1);
11: if l ≤ qG then
12: CRi, Fi ← GenerateParameters(MCRL ,MFL).
13: ui,G ← current-to-pbest/1/bin(xi, CRi, Fi, PG, pbest);
14: else
15: CRi, Fi ← GenerateParameters(MCR,MF ).
16: ui,G ← levy/1/bin(xi, CRi, Fi, PG, pbest);
17: end if
18: if ui,G improves xi,G then
19: xi,G+1 = ui,G;
20: Copy xi,G to archive A;
21: if l ≤ qG then
22: CRi → SCRL , Fi → SFL ;
23: Update ∆fL according to improve criteria;
24: else
25: CRi → SCR, Fi → SF ;
26: Update ∆f according to improve criteria;
27: end if
28: end if
29: end for
30: MCR,MF ← UpdateMemories(SCR, SF ,∆f );
31: MCRL ,MFL ← UpdateMemories(SCRL , SFL ,∆fL);
32: qG+1 ← UpdateProbability(∆f,∆fL, qG, µ);
33: εG+1 ← UpdateTolerance(PG, FEs, FEsε, εG, εf );
34: NG+1 = round

[(
Nmin−Ninit
MAXFEs

)
× FEs+N init

]
;

35: Resize PG+1 according to NG+1 deleting NG−NG+1

worst individuals;
36: If necessary resize A according to |PG+1| deleting

randomly individuals in A;
37: end while

a solution xi in direction to xpbest. In contrast to current-to-
pbest, all the variables of the trial vector have different scale
factor Fj ∈ (Fcrit, 1) in order to increase exploration in a
promising direction. The value Fcrit [13] limits the minimum
value of F given CR in order to avoid the rapid loss of
diversity in the population.

B. Constraint Handling

Objective function and constraints are handled separately.
Feasibility is measured by the sum of constraints violation:

Algorithm 2 levy/1/bin mutation
Ensure: New individual u;

1: Fcrit ←
√

(1− CRi/2)/NG.
2: Fi ← max{Fcri, Fi}.
3: jrand ← RandInteger(1, D).
4: Choose randomly xpbest from PG.
5: for j = 1 to D do
6: if rand(0, 1) ≤ CR or j = jrand then
7: Flevy ← Fi · S(α, β, γ, γ + δ).
8: uj ← xj + Flevy · (xpbest,j − xj).
9: else

10: uj ← xj .
11: end if
12: end for

svc(x, εG) = I(x) + E(x, εG) (6)

I(x) =

p∑
i=1

max{gi(x), 0} (7)

E(x, εG) =

m∑
j=p+1

max{|hj(x)| − εj,G, 0} (8)

where εG is the tolerance vector for equality constraints.
Each constraint hj(x) is associated with a component εj,G of
the tolerance vector. In each generation the tolerance εG is
adapted dynamically using the following exponential strategy:

εj,G+1 =


εj,G ×

(
εf
εj,G

) 1
FEsε−FEs If pG individuals

are ε-feasible.
εj,G Other case.

(9)

where εf is the final tolerance, FEsε is the maximum num-
ber of fitness evaluations allowed with a tolerance εj,G > εf
and pG ≤ PG is the number of current feasible individuals
necessary for update the tolerance.

The feasibility binary tournament selection based on fea-
sibility rules [3] picks individuals for recombination. To en-
courage the search of the feasible region, the case when two
feasible individuals are compared (for some ε−tolerance), the
one closer to the feasible region is preferred. The feasibility
binary tournament is defined as follows:

xi,G+1 =



ui svc(ui; εG) < svc(xi,G; εG).
ui svc(ui; εG) = svc(xi,G; εG) = 0

∧ f(ui) < f(xi,G).
ui svc(ui; εG) = svc(xi,G; εG) = 0

∧ svc(ui; εf ) < svc(xi,G; εf ).
xi,G other case.

(10)

The first and third cases of the tournament use the fea-
sibility of the individuals as the selection criteria, while the



second case considers optimality as selection criteria. Note
that the second criteria allows to select individuals such that
svc(xi,G; εf ) < svc(ui; εf ), this allows exploring the not
feasible - feasible boundary when εj,G → εf , avoiding to be
left isolated in suboptimal regions and keeping the diversity
in the population. It should be noted that to preserve the
best solution found, the best individual is exempt from being
evaluated in the first case of the tournament.

For boundary constraint handling, the following random
combination is used:

ui,j,G =

{
(1− r) · Uj + r · xi,j,G if ui,j,G > Uj

(1− r) · Lj + r · xi,j,G if ui,j,G < Lj
(11)

where Lj and Uj are the lower and the upper limits of
the variable xj respectively and r is a random number r ∼
U(0, 0.1).

C. Parameter Adaptation

Both current-to-pbest and Lévy flight mutations have in-
dependent parameter adaptation. However, it is necessary to
extend the weighting of the parameters as to include the total
amount of constraint violation of either individual for con-
strained optimization problems. The amount of improvement
∆fi of an individual ui over an individual xi is defined as
follows:

∆fi =


svc(xi; ε)− svc(ui; ε) If improvement is

based on feasibility.
f(xi)− f(ui) If improvement is

based on optimality.
(12)

To keep both ∆fi obtained by feasibility improvement
and optimality improvement in the same range, they are
divided by the maximum value of ∆fi obtained in each case.
The weighted Lehmer mean [14] is computed over a set of
parameter S where ∆fi is used in order to influence the
adaptation (S refers to either SCR or SF for current-to-pbest
mutation or either SCRL , SFL for Lévy flight mutation).

L2(S;w) =

∑
s∈S ws · s2∑
s∈S ws · s

(13)

ws =
∆fs∑
j ∆fj

(14)

Finally, the update of the cyclical memories M , in particular
for the cell k, is given by

Mk,G+1 =

{
L2(S;w) if |S| > 0.

Mk,G+1 other case.
(15)

M refers to either MCR or MF for current-to-pbest mu-
tation or either MCRL , MFL for Lévy flight mutation. Each
mutation has its own index k which controls that the update
is performed cyclically independently for each mutation.

D. Mutation Strategy Selection

The probability to choose a mutation operator is given by
qG. Throughout the evolutionary process, the probability qG
is adapted according to the amount of improvement that is
obtained by each mutation. Considering qG as the probability
to generate new individuals using the Lévy flight mutation, its
adaptation process is given by

qG+1 =

{
qG if |∆fL| = |∆f | = 0.

µ · qG + (1− µ) · q̂G other case.
(16)

q̂G =

∑|∆fL|
i=1 ∆fLi∑|∆fL|

i=1 ∆fLi +
∑|∆f |
j=1 ∆f

(17)

where µ ∈ (0, 1) is a parameter for consider past prob-
abilities and smooth the probability update. To avoid the
degenerate case where some mutation strategy become unused
during the evolutionary process, qG is clipped in the range
(qmin, 1− qmin) where qmin ∈ (0, 0.5).

IV. PARAMETER SETTING AND EXPERIMENTS

The proposed COLSHADE algorithm is tested on 57
CEC2020 Test-suite of Non-Convex Constrained Optimization
Problems from the Real-World [15]. The experiments are car-
ried out according the guidelines given in [16]: 25 independent
runs are performed for each problem and a maximum number
of function evaluation is given by

MAXFEs =



1× 105 D ≤ 10

2× 105 10 < D ≤ 30

4× 105 30 < D ≤ 50

8× 105 50 < D ≤ 150

106 Other case.

(18)

The COLSHADE parameter setting is summarized next:
• Population parameters: rN

init

= 18, rarc = 2.6.
• Proportion of best solutions: p = 0.11.
• Proportion of ε-feasible solutions: pG = 0.2× PG
• Size of cyclical memories: H = 6.
• Stable distribution parameters: α = 0.5, β = 1, γ = 0.01,
δ = 0.

• Minimum probability for mutations: qmin = 10−3.
• Update probability rate: µ = 0.25.
• Function evaluations with tolerance εG:
FEsε = 0.6×MAXFEs.

• Final tolerance: εf = 10−4.
The characteristics of the computer are shown in Table I

TABLE I
PC CONFIGURATION

OS Linux Mint 19.3
CPU Intel(R) i7-8700 CPU @ 3.2 GHz
RAM 32 GB

Language MATLAB (R2019a)
Algorithm COLSHADE



V. RESULTS

The mean value of constraint violation v(x) is defined as

v(x) =

∑p
i=1Gi(x) +

∑m
j=p+1Hj(x)

m
(19)

where

Gi(x) =

{
gi(x) if gi(x) > 0

0 if gi(x) ≤ 0
(20)

Hj(x) =

{
hj(x) if |hj(x)| − 10−4 > 0

0 if |hj(x)| − 10−4 ≤ 0
(21)

TABLE II
ALGORITHM COMPLEXITY OF COLSHADE

T1(s) T2(s) (T2− T1)/T1
6.5417 13.2325 1.0228

Table II reports the algorithm complexity as requested for
the competition. The experimental results for the COLSHADE
Algorithm are listed in Tables VI - XI, where the values of the
objective function f(x) and the violation of constraints v(x)
for the best, median, mean and worst solutions are shown. The
values of feasibility rate FR and c are defined as follows

FR =
Total feasible trials

Total trials
(22)

and c = (c1, c2, c3) such that:
• c1 is the number of constraints violated by an amount

greater than 1.
• c2 is the number of constraints violated by an amount in

the range [0.01, 1.0].
• c3 is the number of constraints violated by an amount in

the range (0, 0.01).
COLSHADE found feasible solutions on 44 of 57 real-

world constrained optimization problems. In particular, the
most challenging real-world constrained optimization prob-
lems where no feasible solution was found are the power
system problems RC34 to RC43, industrial chemical process
problems R06, R07, and the livestock feed ration optimization
problem RC51. COLSHADE also found 42 feasible median
solutions, in addition to achieving feasibility rate FR = 100%
in 39 problems.

Additionally, for the sake of better understanding our basic
algorithms, the performance of COLSHADE and L-SHADE
were contrasted. Since the L-SHADE is a global optimization
algorithm, the constraint handling proposed in section III was
adopted to handle constrained problems. The COLSHADE
and L-SHADE algorithms with static constraint handling,
called COLSHADE-SCH and L-SHADE-SCH respectively,
were also compared. In the case of static constraint handling,
εj,G = εf for all equality constraints hj(x) during all gen-
erations. The metrics used to compare the algorithms are the

normalized adjusted objective function and the performance
measure (PM) used for the CEC2020 [16] and the convergence
speed.

The Wilcoxon’s test results of the normalized adjusted
objective function is summarized in Table V. The values
shown in the columns R+ and R− represent the signed-rank
sum of COLSHADE and the compared algorithm respectively
and numbers in parentheses indicate the number of problems
in which the result obtained by the algorithms is different. For
comparing COLSHADE with algorithms with static constraint
handling, only problems with at least one equality constraint
are considered. The results in Table V show a significant
improvement of COLSHADE over COLSHADE-SCH and L-
SHADE-SCH with a level of significance α = 0.05 in the
cases of the mean and the median and over the L-SHADE
with a level of significance α = 0.1 in the case of the median.

The performance measure is presented in Table III. The
results show that COLSHADE achieves the best performance
measure among the four compared algorithms. Furthermore,
notice that algorithms with dynamic constraint handling out-
perform the algorithms with static constraint handling.

The converge speed is summarized in Table IV. For conver-
gence speed evaluation purpose, we define a successful run as
a run in which the algorithm finds a feasible solution x that
satisfies f(x)− f(x∗) ≤ 0.0001. Therefore, the convergence
speed is measured as the rate of function evaluations required
to obtain a successful run. As shown in Table IV, COLSHADE
and COLSHADE-SHC solved 31 problems. However, the
first performed 646 successful runs whilst the later only 620.
Therefore, the mean number of function evaluations (%FE)
is a bit larger for COLSHADE.

VI. CONCLUSIONS

The COLSHADE algorithm for constrained optimization
problems is introduced in this paper. It is an adaptation of
the L-SHADE algorithm which has proved quite successful
for global optimization. However, the basic search of our
approach still is performed by a Differential Evolution. The
main features of our approach are the adaptive Lévy flight
and the adaptive current-to-pbest mutation, which in turn are
chosen through an adaptable probability value. The approach
aims to be more robust although it can loose some convergence
speed. Lévy flights are used in global optimization algorithms
but we propose one of the first approaches based on adaptive
Lévy flights for constrained optimization.
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Std f 25.451611 0 324.8848 2.8743E-03 114.812301 0.103635 0.195037 0 0
v 2.3334E-05 0 0 0 0 1.5769E-03 0.101060 0 0

FR(%) 88 100 100 100 100 0 0 100 100
c (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 3 5) (0 6 2) (0 0 0) (0 0 0)

TABLE VII
RESULTS FOR PROBLEMS RC10-RC17

RC10 RC11 RC12 RC13 RC14 RC15 RC16 RC17

Best f 1.076543 107.78178 2.924831 26887.422 58505.45 2994.4245 3.2213E-02 1.2665E-02
v 0 0 0 0 0 0 0 0

Median f 1.076543 168.25298 2.924831 26887.422 58505.45 2994.4245 3.2213E-02 1.2665E-02
v 0 0.125 0 0 0 0 0 0

Mean f 1.104296 147.815319 2.924831 26887.422 58505.45 2994.4245 3.2213E-02 1.2665E-02
v 0 0.095 0 0 0 0 0 0

Worst f 1.25 151.83494 2.924831 26887.422 58505.45 2994.4245 3.2213E-02 1.2666E-02
v 0 0.125 0 0 0 0 0 0

Std f 6.3590E-02 20.785842 4.4409E-16 3.6380E-12 7.2760E-12 4.5475E-13 0 1.0625E-07
v 0 5.3385E-02 0 0 0 0 0 0

FR(%) 100 24 100 100 100 100 100 100
c (0 0 0) (0 1 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)

TABLE VIII
RESULTS FOR PROBLEMS RC18-RC25

RC18 RC19 RC20 RC21 RC22 RC23 RC24 RC25

Best f 6059.7143 1.6702177 263.89584 0.235242 0.525769 16.069869 2.543786 1616.1198
v 0 0 0 0 0 0 0 0

Median f 6059.7143 1.6702177 263.89584 0.235242 0.53 16.069869 2.543786 1616.1198
v 0 0 0 0 0 0 0 0

Mean f 6062.179252 1.6702177 263.89584 0.235242 0.541026 16.069869 2.543786 1639.037352
v 0 0 0 0 0 0 0 0

Worst f 6090.5262 1.6702177 263.89584 0.235242 0.746667 16.069869 2.543786 2129.1452
v 0 0 0 0 0 0 0 0

Std f 8.359059 0 0 0 4.2573E-02 0 0 100.728213
v 0 0 0 0 0 0 0 0

FR(%) 100 100 100 100 100 100 100 100
c (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)



TABLE IX
RESULTS FOR PROBLEMS RC26-RC33

RC26 RC27 RC28 RC29 RC30 RC31 RC32 RC33

Best f 35.359232 524.45076 16958.202 2964895.4 2.658559 0 -30665.539 2.639347
v 0 0 0 0 0 0 0 0

Median f 36.249291 524.45076 16958.202 2964895.4 2.658559 0 -30665.539 2.639347
v 0 0 0 0 0 0 0 0

Mean f 36.610975 524.45076 16958.202 2964895.4 2.661834 1.8807E-16 -30665.539 2.639347
v 0 0 0 0 0 0 0 0

Worst f 40.931153 524.45076 16958.202 2964895.4 2.699494 1.2074E-15 -30665.539 2.639347
v 0 0 0 0 0 0 0 0

Std f 1.367709 0 0 0 1.1105E-02 3.8137E-16 0 0
v 0 0 0 0 0 0 0 0

FR(%) 100 100 100 100 100 100 100 100
c (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)

TABLE X
RESULTS FOR PROBLEMS RC34-RC41

RC34 RC35 RC36 RC37 RC38 RC39 RC40 RC41

Best f 4.316049 101.37357 116.30845 2.712317 10.080512 11.564254 40.67832 2.187563
v 1.2012E-03 3.8207E-02 3.6130E-02 8.9353E-03 7.8760E-03 6.5157E-03 0.531612 0.300637

Median f 3.190423 111.05303 88.632283 2.535576 8.874342 8.216608 37.407837 45.356177
v 4.4798E-03 0.103417 0.134630 1.5125E-02 1.3914E-02 1.4770E-02 0.869289 0.616779

Mean f 4.954820 96.074006 84.323848 2.695820 8.277646 9.309363 111.959857 18.276486
v 6.0654E-03 0.136460 0.156199 1.8351E-02 1.6262E-02 1.6601E-02 0.919681 0.638547

Worst f 7.447166 98.87086 84.074297 4.315512 9.0577711 5.8016909 150.71173 52.907246
v 1.8770E-02 0.466006 0.383872 3.6009E-02 3.7174E-02 3.1957E-02 1.590694 1.168034

Std f 2.015848 21.297331 19.426620 0.791943 1.628060 2.539734 79.856820 14.951658
v 4.8185E-03 9.3360E-02 9.8732E-02 8.7947E-03 7.3959E-03 6.7375E-03 0.245228 0.182121

FR(%) 0 0 0 0 0 0 0 0
c (0 14 55) (2 96 46) (4 87 51) (0 40 11) (0 35 21) (0 42 32) (11 26 32) (13 21 33)

TABLE XI
RESULTS FOR PROBLEMS RC42-RC49

RC42 RC43 RC44 RC45 RC46 RC47 RC48 RC49

Best f -1.662617 15.513014 -6197.2807 3.4368E-02 2.0240E-02 1.2783E-02 1.6827E-02 2.1718E-02
v 0.701991 0.705906 0 0 0 0 0 0

Median f -1.608894 19.797358 -5975.6495 4.1372E-02 2.4814E-02 1.8932E-02 2.1057E-02 3.2378E-02
v 1.025849 1.073704 0 0 0 0 0 0

Mean f -2.613798 24.029476 -6032.41908 4.2795E-02 2.6082E-02 1.8212E-02 2.1876E-02 3.2582E-02
v 1.028898 1.035738 0 0 0 0 0 0

Worst f -1.0213907 19.987572 -5889.0798 5.4915E-02 4.0494E-02 2.5911E-02 3.1408E-02 4.0048E-02
v 1.438733 1.338680 0 0 0 0 0 0

Std f 2.217248 5.485253 106.252432 5.5182E-03 5.6786E-03 3.1952E-03 3.9959E-03 4.0738E-03
v 0.208864 0.145028 0 0 0 0 0 0

FR(%) 0 0 100 100 100 100 100 100
c (11 30 28) (14 29 20) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)

TABLE XII
RESULTS FOR PROBLEMS RC50-RC57

RC50 RC51 RC52 RC53 RC54 RC55 RC56 RC57

Best f 2.0450E-02 4550.914 3352.2532 5029.5203 4241.665 6698.0095 14753.701 3295.0806
v 0 2.8225E-06 0 0 0 0 0 0

Median f 3.9494E-02 4550.9086 3370.1332 5093.8367 4245.0499 6714.5247 14759.4 3508.529
v 0 2.8225E-06 0 0 0 0 7.0711E-05 0

Mean f 6.5091E-02 4550.945116 3372.124748 5109.499652 4245.936432 6732.505332 14646.65576 3628.2399
v 4.02E-05 2.8229E-06 0 0 0 1.8116E-05 1.5186E-04 0

Worst f 0.109993 4550.9041 3400.9498 5241.4407 4254.6273 6922.468 1.4013E+04 4527.8684
v 1.0040E-03 2.8329E-06 0 0 0 1.6763E-04 6.2475E-04 0

Std f 4.8199E-02 6.7845E-02 12.979437 56.510696 3.409109 54.665073 204.732456 293.211450
v 1.9675E-04 2.0498E-09 0 0 0 4.7103E-05 1.8970E-04 0

FR(%) 96 0 100 100 100 84 48 100
c (0 0 0) (0 0 1) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 2) (0 0 0)




