Coevolutionary Operations for Large Scale Multi-objective Optimization

1st Luis Miguel Antonio
Artificial Intelligence Department
GO-SHARP
Mexico City, Mexico
luis.miguel@go-sharp.com

2nd Carlos A. Coello Coello
Computer Science Department
CINVESTAV-IPN
Mexico City, Mexico
ccoello@cs.cinvestav.mx

3rd Mario A. Ramírez Morales
Technological Innovation Department
CIDETEC-IPN
Mexico City, Mexico
mramirezmo@ipn.mx

4th Silvia González Brambila
Computer Science Department
UAM Azcapotzalco
Mexico City, Mexico
sgb@azc.uam.mx

5th Josué Figueroa González
Computer Science Department
UAM Azcapotzalco
Mexico City, Mexico
jfgo@azc.uam.mx

6th Guadalupe Castillo Tapia
Administration Department
UAM Azcapotzalco
Mexico City, Mexico
mgct@correo.uam.mx

Abstract—Multi-objective evolutionary algorithms (MOEAs) of the state of the art are created with the only purpose of dealing with the number of objective functions in a multi-objective optimization problem (MOP) and treat the decision variables of a MOP as a whole. However, when dealing with MOPs with a large number of decision variables (more than 100) their efficacy decreases as the number of decision variables of the MOP increases. On the other hand, problem decomposition, in terms of decision variables, has been found to be extremely efficient and effective for solving large scale optimization problems. Nevertheless, most of the currently available approaches for large scale optimization rely on models based on cooperative coevolution or linkage learning methods that use multiple subpopulations or preliminary analysis, respectively, which is computationally expensive (in terms of function evaluations) when used within MOEAs. In this work, we study the effect of what we call operational decomposition, which is a novel framework based on coevolutionary concepts to apply MOEAs's crossover operator without adding any extra cost. We investigate the improvements that NSGA-III can achieve when combined with our proposed coevolutionary operators. This new scheme is capable of improving efficiency of a MOEA when dealing with large scale MOPs having from 200 up to 1200 decision variables.

Index Terms—Bio-inspired optimization, large scale multi-objective optimization, decomposition, multi-objective optimization

I. INTRODUCTION

There exist many problems in several disciplines that require the optimization of multiple objective functions at the same time. They are called multi-objective optimization problems (MOPs), and their solution involves finding the best possible trade-offs among their objectives. This set of trade-off solutions is called the Pareto optimal set, and their corresponding objective function values form the so-called Pareto front. Obtaining the Pareto front is the main goal in multi-objective optimization. MOPs have been solved during many years, using mathematical programming techniques [1]. However, the fact that a wide variety of MOPs in real-world applications tend to be nonlinear, and perhaps even non-differentiable, has motivated the use of metaheuristics to deal with them. From the many metaheuristics in current use, Evolutionary Algorithms (EAs) are the most popular choice in the specialized literature since they are considered to be among the best multi-objective optimizers [2]. Multi-objective evolutionary algorithms (MOEAs) have the advantage of being population-based, which allows them to generate several elements of the Pareto optimal set in a single run, whereas mathematical programming techniques usually produce a single element per run. Additionally, MOEAs are less sensitive to the continuity and shape of the Pareto front, while these features normally represent serious difficulties for mathematical programming techniques.

The current practice of MOEAs is to assess their performance using benchmark problems such as the Zitzler-Deb-Thiele (ZDT) [3], the Deb-Thiele-Laumanns-Zitzler (DTLZ) [4] and the Walking-Fish-Group (WFG) [5] test suites, which are normally adopted with a relatively low number of decision variables (usually, adopting a maximum of up to 30 decision variables). However, in real-world applications, many MOPs have hundreds or even thousands of decision variables and the effect of parameter scalability in modern MOEAs has not been properly analyzed. In fact, scalability in decision variable space is a topic that has been only scarcely studied in the context of MOEAs. This is perhaps motivated by the fact that most researchers assume that the currently available MOEAs should be able to work properly with a large number of decision variables. Nevertheless, there exists empirical evidence that indicates that most of the currently available MOEAs significantly decrease their efficacy as the number of decision variables of a MOP increases [6], [7]. The work reported here tries to contribute to this important topic.

In this paper, we propose a new scheme to apply a MOEAs’
crossover operators which improves the performance over large scale MOPs. We study here the effect of parameter scalability and investigate the improvements that a MOEA can achieve when adopting this scheme. For this purpose, we propose to combine the NSGA-III [8] with Cooperative Coevolutionary techniques (which have shown to be very effective for large scale single-objective optimization [9], [10]), giving rise to a novel MOEA based on a new framework inspired by coevolutionary operations.

The remainder of this paper is organized as follows. Section II states the problem of our interest. The previous related work is discussed in Section III. Section IV describes our proposed approach and the experiments carried out to validate it. Finally, our conclusions and some possible paths for future work are drawn in Section V.

II. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

Formally, a multi-objective optimization problem (MOP) is defined as:

\[
\begin{align*}
\text{minimize} \quad & f(x) = [f_1(x), f_2(x), \ldots, f_k(x)]^T \\
\text{subject to:} \quad & g_i(x) \leq 0 \quad i = 1, 2, \ldots, m \\
& h_i(x) = 0 \quad i = 1, 2, \ldots, p
\end{align*}
\]

(1)

where \(k \) is the number of objective functions \(f_i : \mathbb{R}^n \rightarrow \mathbb{R}, \)
\(g_i, h_j : \mathbb{R}^n \rightarrow \mathbb{R}, i = 1, \ldots, m, j = 1, \ldots, p \) are the constraint functions of the problem and \(x = [x_1, x_2, \ldots, x_n]^T \) the vector of decision variables. We thus wish to determine from the set \(\Omega \) (where \(\Omega \) is the feasible region) of all the vectors that satisfy (2) and (3) to the vector \(x^* = [x_1^*, x_2^*, \ldots, x_n^*]^T \) of solutions that are Pareto optimal. To describe the concept of optimality that we will adopt, we need to introduce a few additional definitions.

Pareto Optimality: We say that a vector of decision variables \(x^* \in \Omega \) is Pareto Optimal with respect to \(\Omega \) if and only if

\[
f_i(x) = f_i(x^*) \land \exists i \in \{1, \ldots, k\} : f_i(x) < f_i(x^*)
\]

(4)

Pareto Dominance: A vector \(u = [u_1, \ldots, u_k]^T \) is said to dominate another vector \(v = [v_1, \ldots, v_k]^T \) (denoted by \(u \preceq v \)) if and only if \(u \) is partially less than \(v \), i.e.,:

\[
\forall i \in \{1, \ldots, k\}, u_i \leq v_i \land \exists i \in \{1, \ldots, k\} : u_i < v_i
\]

(5)

Pareto Optimal Set: For a given MOP \(f(x) \), the Pareto Optimal Set \(P^* \) is defined by:

\[
P^* := \{ x \in \Omega \mid \exists x' \in \Omega, f(x') \preceq f(x) \}
\]

(6)

Pareto Front: For a given MOP \(f(x) \) and its Pareto optimal set \(P^* \), the Pareto Front \(PF^* \) is defined by:

\[
PF^* := \{ f(x) \mid x \in P^* \}
\]

(7)

When plotted in objective space, the nondominated vectors are collectively known as the Pareto front.

III. PREVIOUS RELATED WORK

Regarding studies on parameter scalability in MOEAs, the most significant ones that we are aware of are those reported by Durillo et al. [6], [7], in which the behavior and effect of parameter scalability over eight state-of-the-art multi-objective metaheuristics is analyzed. Such metaheuristics include three genetic algorithms (GAs) (NSGA-II, SPEA2 and PESA-II), an evolution strategy (PAES), a PSO algorithm (OMOPSO), a cellular GA (MOCell), an algorithm based on differential evolution (GDE3) and a Scatter Search algorithm (AbYSS). All of these approaches were studied when solving a benchmark of parameter-wise scalable problems (the ZDT [3] test suite). The authors analyzed the behavior of these eight multi-objective metaheuristics when adopting a number of decision variables that ranged from 8 up to 2048. The hypervolume performance indicator [11] was adopted to define a stopping criterion. The study paid particular attention to the computational effort required by each algorithm for reaching the true Pareto front of each problem. These papers provide empirical evidence of the decrease in efficacy and efficiency that multi-objective metaheuristics have when dealing with MOPs with a large number of decision variables, as it is shown in their results.

Another work in this direction is a small study presented in [12], where ZDT1 is solved with up to 100 decision variables using MOEA/D. They analyzed how the computational cost of their approach, in terms of the number of function evaluations, increased as the number of decision variable of the problem increased. This was shown using a number of decision variables that ranged from 10 up to 100 variables. They adopted as a performance index the average number of function evaluations used by MOEA/D for reducing the D-metric [13] and concluded that the average number of function evaluations scales up linearly, as the number of decision variables increases. They attribute these results to two facts: (1) the number of scalar optimization sub-problems in MOEA/D is fixed to be 100, regardless of the number of decision variables of the problem, and (2) the complexity of each scalar optimization could scale linearly with the number of decision variables.

However, this study is too small to show a general behavior of MOEA/D over large scale (in decision variables space) MOPs. Later on, an algorithm based on interdependence variable analysis and control variable analysis designed to deal with large scale MOPs was presented in [14]. This approach, called MOEA/DVA, decomposes a MOP with high dimensionality into a set of simpler sub-MOPs with low-dimensional subcomponents. Based on interdependent analysis between two variables, decision variables are decomposed into several low-dimensional subcomponents. Each sub-MOP independently optimizes subcomponents one by one. This work was then improved in [15], where the decomposition is based on a decision variable clustering method. Following the idea of MOEA/DVA, the proposed approach, called LMEA, uses a decision variable clustering method to divide the decision variables into convergence-related and diversity-related ones.
Different from MOEA/DVA, instead of adopting a decision variable analysis method based on dominance relationships, LMEA adopts a decision variable clustering method based on the k-means method with features measured by the angles between the sample solutions and the direction of convergence, where smaller angles indicate more contributions to convergence and larger angles indicate more contributions to diversity.

Large-scale optimization has been the focus of an important amount of research in global (single-objective) optimization using evolutionary algorithms. From these methods, cooperative coevolution has been found to be one of the most successful approaches for solving large and complex problems, through the use of problem decomposition. There is plenty of evidence of the success of this sort of approach in large scale global optimization [9], [10], [16], so we adopt here some of these ideas to develop our proposal.

IV. OUR PROPOSED APPROACH

The main idea of our proposed approach is to make use of the divide-and-conquer technique, adopted by the cooperative coevolutionary framework for large scale single objective optimization. Here, we propose a new way of applying coevolutionary collaborations in terms of crossover operations which makes possible for a regular MOEA to improve its performance in large scale MOPs. Next, we provide a brief description of cooperative coevolution.

A. Cooperative coevolution

In nature, coevolution is the process of reciprocal genetic change in one species, or group, in response to another. That is, coevolution refers to a reciprocal evolutionary change between species that interact with each other [17]. A coevolutionary search involves the use of multiple species as the representation of a solution to an optimization problem. Each species can either compete or cooperate during the evolutionary process. Therefore, such models have been historically categorized as competitive or cooperative. In the case of cooperative algorithms, which are the focus of this work, individuals are rewarded when they work well with other individuals and punished when they perform poorly together [18]. Each population represents a piece of a larger problem, and it is the task of those populations to evolve increasingly fit pieces for the larger problem.

The first framework of cooperative coevolution (CC) utilized within evolutionary algorithms was originally introduced by Potter and De Jong [19], with their Cooperative Coevolutionary Genetic Algorithm (CCGA). This framework uses a divide-and-conquer approach to split the decision variables into subpopulations of smaller size, so that each of these subpopulations is optimized with a separate EA. The main idea was to decompose a high-dimensional problem into several low-dimensional subcomponents and evolve these subcomponents cooperatively. So, instead of evolving a population (globally or spatially distributed) of similar individuals representing a global solution, the cooperative coevolutionary framework co-evolves subpopulations of individuals representing specific parts of the global solution.

After this work, there were many more cooperative coevolutionary approaches, most of which were adopted to solve large scale global optimization problems [9], [10], [16], [20]. In general, the most common cooperative coevolutionary framework for high-dimensional global (single-objective) optimization can be summarized as follows:

1) Decompose an objective vector into m low-dimensional subcomponents.
2) Set $j = 1$ to start a new cycle.
3) Optimize the j^{th} subcomponent with a certain EA for a pre-defined number of fitness evaluations (FEs).
4) If $j < m$ then $j += 1$, and go to Step 3.
5) Finish if the stopping criteria are satisfied; otherwise, go to Step 2 for the next cycle.

Here, a cycle consists of one complete evolution of all species using certain EA. The advantage of cooperative coevolutionary algorithms is the decomposing of the problem which allows us to learn different parts of the problem instead of the whole problem at once.

B. Description of our proposed approach

One of the main drawbacks in the use of cooperative coevolution is the adoption of multiple subpopulations. Since each of these populations makes use of independent function evaluations, this makes a cooperative coevolutionary algorithm (CCA) to be more expensive (in terms of function evaluations) than a regular MOEA. If we are to extend the basic computational model of cooperative coevolution into an approach that does not make use of extra function evaluations, we cannot adopt the whole model of cooperative coevolution, since it would be much more costly than the use of a MOEA as a standalone algorithm. In other words, we must find a way to use the key concept of cooperative coevolution (problem decomposition) without the need of having multiple subpopulations. For this sake, we propose here the so-called operational decomposition approach, which is a coevolutionary step added to a MOEA, where we make use of the divide-and-conquer technique that splits the MOP to be solved (in decision variables space) when applying crossover.

The first concept we must address is problem decomposition in decision variable space. Problem decomposition consists in determining an appropriate number of subcomponents and the role that each of them will play in the overall search process. For some problems, an appropriate form of decomposition may be known a priori but for others, this may not be possible. Let’s consider the problem of optimizing a function of m independent variables. It may be reasonable to decompose the problem into m subtasks, with each of them being assigned to the optimization of a single variable. However, there are many problems for which we have little or no information related to the number or roles of subcomponents that should be used in the decomposition. This occurs in non-separable functions. Here, non-separable means that the vector of decision variables is composed by elements that interact with each other and are...
not independent. There is evidence that indicates that dividing the problem into random groups provides better results than applying a deterministic division scheme, when dealing with non-separable functions [9], [16]. Following this idea, our proposed approach divides the vector of decision variables into S subcomponents (species), each of them representing a subset of all the decision variables at a time rather than taking only one variable per subcomponent. We assign each decision variable to its correspondent subcomponent in a random way, trying to increase the chance of optimizing some interacting variables together.

Our proposed decomposition approach is an adaptation of cooperative coevolution (CC) applied to the crossover and mutation operators that does not need individuals from the other species to assemble a complete solution in order to perform a fitness evaluation. Instead, it uses other individuals for the creation of new solutions. We only use decision variable decomposition to perform crossover operations which allows us to handle in a better way the curse of dimensionality (the performance of an evolutionary algorithm deteriorates rapidly as the dimensionality of the search space increases [21]) present in MOEAs. So, individuals will still be representing a whole solution, but operators will be applied based on the corresponding species, and not based on the individuals. This makes the crossover operator to be more effective, since decomposition of the operations causes a bigger effect than when adopting the usual scheme in which most MOEAs are implemented. The algorithm of our proposed decomposition scheme, when incorporated to a MOEA, works as follows:

Input:
- The MOP (1)
- S: The number of species for decision variables decomposition
- T: The neighborhood size to apply coevolutionary collaboration

Output:
- PS: the final solutions found during the search

Step 1) Initialization:
- Step 1.1) Set the external population of final solutions $PS = \emptyset$.
- Step 1.2) Generate an initial population $X = x^1, \ldots, x^N$ randomly or by a problem-specific method. Set $FV^i = f(x^i)$.
- Step 1.3) Divide the problem into S subcomponents c^1, \ldots, c^S each one of dimension m, created in a random way from the original vector of decision variables x of dimension D (as shown in Figure 1), where $D = m \times S$, such that, for each $j = 1, \ldots, N$, $x^j = [c^1_j, \ldots, c^S_j]$.

Step 2) Update:
- Step 2.1) Find the T closest decision variables vectors to each solution $x_i \in X$. For each x_i, set $B(i) = \{i_1, \ldots, i_T\}$, where x^{i_1}, \ldots, x^{i_T} are the T closest solutions to x^i.

For $i = 1, \ldots, N$ do

Step 2.2) Decompositional Crossover Operation and Mutation:

For $j = 1, \ldots, S$ do

Step 2.2.1) Randomly select two indexes p, q from $B(i)$, and then generate a new solution y^j_c from c^p_j and c^q_j using crossover.

Step 2.2.2) Apply a problem-specific crossover operation on y^j_c to produce y^j_c'.

Step 2.3) Assemble y' from $[y^1_c, \ldots, y^S_c]$, sorting the subcomponents to form the original vector of decision variables.

Step 2.4) Apply mutation operator and evaluate solution y'.

Step 2.5) Remove from the external population PS all the vectors dominated by $f(y')$. Add $f(y')$ to PS if no vectors in PS dominate it.

Step 3) Stopping Criterion: Stop if the termination criterion is satisfied. Otherwise, go to Step 2.

Since c^p_j and c^q_j in Step 2.2.1 are subcomponent (in decision variables space) neighbor solutions and their dimensionality is lower than that of the original vector of decision variables x, their offspring y^j_c' (later improved by mutation) should be a good contribution to the complete assemble of the new final solution y'. The use of neighbors allow the new solution to have a more controlled modification and the absence of it makes the approach to have a very poor performance, causing a poor convergence of the solutions. By using only the decomposition nature of the cooperative coevolutionary framework into the MOEA's crossover operation, there is no need for extra function evaluations. Therefore, the efficiency of the adopted MOEA is not lost.

C. Experimental Results

In order to validate our approach we adopted NSGA-III [8] and incorporated our decomposition approach to it, giving rise to a novel MOEA called OD-NSGA. NSGA-III is the third version of the Non-dominated Sorting Genetic Algorithm (NSGA), which is intended for many-objective optimization.
In fact, NSGA-III is an extension of the NSGA-II [22] in which the crowding comparison operator is replaced by a clustering operator (aided by a set of well-distributed reference points). This approach modifies the selection mechanism of NSGA-II by performing an analysis of the distances of the individuals in the population with respect to the supplied reference points, preferring population members that are non-dominated and close to such reference points. We validated OD-NSGA comparing its performance with respect to that of the original NSGA-III.

1) Methodology: For the purposes of this study, we adopted the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [4] and the Walking Fish Group test suite [5] with instances of three objectives with a number of decision variables that ranges from 200 to 1200. In order to assess the performance of each approach, we selected the hypervolume indicator [11], since this measure can differentiate between degrees of complete outperformance of two sets. The hypervolume is defined as the \(n \)-dimensional space that is contained by an \(n \)-dimensional set of points. When applied to multi-objective optimization, the \(n \)-dimensional objective values for solutions are treated as points for the computation of such space. That is, the hypervolume is obtained by computing the volume (in objective function space) of the non-dominated set of solutions \(\mathcal{Q} \) that minimize a reference point \(\mathbf{w} \). For every solution \(\mathbf{x} \in \mathcal{Q} \), a hypercube \(\mathbf{v}_i \) is generated with a reference point \(\mathbf{w} \) and the solution \(\mathbf{x} \) as the diagonal corner of the hypercube:

\[
S = Vol \left(\bigcup_{i=1}^{\mid \mathcal{Q} \mid} \mathbf{v}_i \right)
\]

(8)

The aim of this study is to identify which of the algorithms being compared is able to get closer to the true Pareto front using the same number of objective function evaluations and how they behave as the dimensionality of the MOP increases.

D. Parameterization

The parameters of each algorithm adopted in our study were chosen in such a way that we could do a fair comparison among them. For both OD-NSGA and NSGA-III, we adopted Simulated-binary crossover (SBX) and polynomial-based mutation [22] as the crossover and mutation operators, respectively. The mutation probability was set to \(p_m = 1/l \), where \(l \) is the number of decision variables; the distribution indexes for SBX and polynomial-based mutation were set as: \(\eta_c = 20 \) and \(\eta_m = 20 \). For the case of OD-NSGA, different numbers of species were used for each problem instance, in order to have 2 decision variables per species. So, for all problems a number \(S = l/2 \) of species was used. The maximum number of iterations adopted for all problems and both MOEAs was set to 1000, regardless of their dimensionality. Finally, the population size for both algorithms in all problem instances was set to 120 and the number of supplied reference points was set to 12.

E. Discussion of Results

In our experiments, we obtained the hypervolume value over the 25 independents runs performed. Tables I and II show the average hypervolume value of each of the two MOEAs being compared for each test problem adopted, as well as the results of the statistical analysis that we made to validate our experiments, for which we adopted Wilcoxon’s rank sum. The cells containing the best hypervolume value for each problem have a grey colored background. Also, we show the improvement on the hypervolume value that our approach was able to obtain against the original NSGA-III. From Figures 2 to 12, we plotted the results of the median of the 25 runs for OD-NSGA and NSGA-III for the adopted test problems with 200 decision variables.

NSGA-III produced competitive results for the WFG test problems, although it could not outperform our approach in any problem instance. According to Wilcoxon’s test, we cannot reject the null hypothesis in any case when comparing our approach to NSGA-III. Regarding the DTLZ test problems, our approach outperformed NSGA-III in a more remarkable way, and as the results show, as the dimensionality of the problems grows, the improvement obtained by our approach on the hypervolume value increases. Based on the results of Wilcoxon’s test, we can confirm that the null hypothesis can be rejected, so OD-NSGA yields the best overall results. Also, from Figures 2 to 8 we can observe that, using the same number of function evaluations, OD-NSGA is able to get closer than NSGA-III to the true Pareto front in all problems.
Table I

<table>
<thead>
<tr>
<th>Function</th>
<th>No. Vars</th>
<th>NSGAII</th>
<th>ODNSGA</th>
<th>ODNSGA - NSGA</th>
<th>Improvement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTLZ1</td>
<td>200</td>
<td>100373</td>
<td>102710</td>
<td>629</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>100403</td>
<td>102710</td>
<td>1216</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>100489</td>
<td>102710</td>
<td>5305</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>100672</td>
<td>102710</td>
<td>17696</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>720953</td>
<td>102710</td>
<td>275411</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>525370</td>
<td>102710</td>
<td>479528</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td>DTLZ2</td>
<td>200</td>
<td>1027842</td>
<td>105239</td>
<td>2023000</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1720942</td>
<td>105239</td>
<td>84452766</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>6579531</td>
<td>105239</td>
<td>3179521645000</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>17758044</td>
<td>105239</td>
<td>1532281647500</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>17752024398</td>
<td>105239</td>
<td>3436740080000</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>10841144173000</td>
<td>105239</td>
<td>8301805288000</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td>DTLZ3</td>
<td>200</td>
<td>1001798</td>
<td>1002948</td>
<td>1201</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>9721377</td>
<td>1002948</td>
<td>931511</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>9867972</td>
<td>1002948</td>
<td>163819</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>8237368</td>
<td>1002948</td>
<td>154690</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>6975488</td>
<td>1002948</td>
<td>709563</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4937798</td>
<td>1002948</td>
<td>507112</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td>DTLZ4</td>
<td>200</td>
<td>1006999</td>
<td>1002689</td>
<td>1870</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>9807949</td>
<td>1002689</td>
<td>16409</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>9452228</td>
<td>1002689</td>
<td>57839</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>8655926</td>
<td>1002689</td>
<td>1358647</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>7256668</td>
<td>1002689</td>
<td>270156</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>5646996</td>
<td>1002689</td>
<td>479786</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td>DTLZ5</td>
<td>200</td>
<td>172400739</td>
<td>172585739</td>
<td>3446590</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>169591891</td>
<td>172585739</td>
<td>2719179</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>161175251</td>
<td>172585739</td>
<td>4062217</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>146075827</td>
<td>172585739</td>
<td>18649697</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>129649248</td>
<td>172585739</td>
<td>272469442</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>919282585</td>
<td>172585739</td>
<td>40645271</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td>DTLZ6</td>
<td>200</td>
<td>3013</td>
<td>68383</td>
<td>3801</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2346</td>
<td>61268</td>
<td>5762</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>2005</td>
<td>55788</td>
<td>5513</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1955</td>
<td>52286</td>
<td>5271</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1887</td>
<td>49348</td>
<td>9097</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1825</td>
<td>43500</td>
<td>2862</td>
<td>0.000000 (1)</td>
<td></td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Function</th>
<th>No. Vars</th>
<th>WFG1</th>
<th>WFG2</th>
<th>WFG3</th>
<th>WFG4</th>
<th>WFG5</th>
<th>WFG6</th>
<th>WFG7</th>
<th>WFG8</th>
<th>WFG9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td>30</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>35</td>
<td>30</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>40</td>
<td>35</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>45</td>
<td>40</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200</td>
<td>50</td>
<td>45</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

Note

The table above shows the average of the hypervolume indicator values for each function and number of variables. The ODNSGA and NSGA-II are compared, and the improvement is calculated as the ratio of the hypervolume values of ODNSGA to NSGA-II. The P-value indicates whether the null hypothesis (that there is no improvement) can be rejected at the 5% level.

Average of the hypervolume indicator values of the results obtained for the DTLZ test problems.

We show average values over 25 independent runs. The cells containing the best hypervolume value for each problem have a grey colored background. The improvement columns show the improvement on the hypervolume value that our approach was able to get against the other algorithm. The P(H) column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. *P* is the probability of observing the given result (the null hypothesis is true). Small values of *P* cast doubt on the validity of the null hypothesis, *H* = 0 indicates that the null hypothesis ("medians are equal") cannot be rejected at the 5% level. *H* = 1 indicates that the null hypothesis can be rejected at the 5% level.
Fig. 4. Plot of DTLZ3 with 200 decision variables.

Fig. 5. Plot of DTLZ4 with 200 decision variables.

Fig. 6. Plot of DTLZ5 with 200 decision variables.

Fig. 7. Plot of DTLZ6 with 200 decision variables.

Fig. 8. Plot of DTLZ7 with 200 decision variables.

Fig. 9. Plot of WFG1 with 200 decision variables.

Fig. 10. Plot of WFG2 with 200 decision variables.

Fig. 11. Plot of WFG3 with 200 decision variables.
V. CONCLUSIONS AND FUTURE WORK

Here, we developed a novel MOEA based on our coevolutionary like operators, which adopts decomposition based techniques used by cooperative coevolutionary algorithms. Our approach, called OD-NSGA, is based on a new scheme that applies the crossover operator in a coevolutionary manner, which make it capable of solving problems with many decision variables. Our experimental results indicate that when adopting operational decomposition, NSGA-III was able to improve its performance in MOPs having from 200 up to 1200 decision variables. Our approach was able to deal with all the difficulties presented in the DTLZ and WFG test suites, even in high dimensionality. The results confirmed that our proposed approach is very effective and efficient in tackling large scale MOPs. As part of our future work, we intend to study other decomposition techniques for decision variable space. Also, we want to test our approach in many-objective MOPs. We are also interested in studying the incorporation of operational decomposition in other state-of-the-art MOEAs.

ACKNOWLEDGMENT

The second author gratefully acknowledges support from CONACyT project no. 1920 and from a 2018 SEP-Cinvestav grant (application no. 4).

REFERENCES