
Exact Signed Modularity Density Maximization
Solutions and Their Real Meaning*

Rafael de Santiago
Department of Computer Science and Statistics

Federal University of Santa Catarina
Florianópolis, Brazil

r.santiago@ufsc.br

Luı́s C. Lamb
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

lamb@inf.ufrgs.br

Abstract—In the context of social media analyses, signed
social networks are important representations of relationships
between entities. These networks can represent positive or
negative relationships between every two entities of a social
network. One of the usual analyses over social networks is the
communities/clustering search. In this paper, we report analyses
on the Signed Modularity Density Maximization problem, which
searches for meaningful clusters inside a signed social network.
In this analysis, we present a new branch-and-price algorithm
to find optimal solutions to this problem. The optimal solutions
of two real signed networks and some artificial networks are
generated and analyzed. The results suggest that the problem
finds meaningful clusterings in signed social networks, and some
parameters are suggested to obtain the best results.

Index Terms—signed social networks, clustering, modularity
density maximization

I. INTRODUCTION

Social network analyses are useful to extract information for
several reasons. They can, e.g., be used to identify relationship
patterns in the networks. Social media have contributed to
this area due to a large amount of data available, allowing
one to test new models and methods in relationship analyses.
Although the rise of social networks helped in this kind of
analyses, their nodes and links are simple representations that
do not detail the richness of complex relationships [1].

Signed social networks try to capture more of the real
meaning of relationships of social networks. In these signed
networks, each link has a positive or negative value. A
positive value represents a friendship-like relationship [1]–[4].
A negative value represents a dislike relationship. In social
networks like Facebook or Twitter, these negative links can be
collected by the analysis of posts and replies.

Community detection problems in the context of social
networks are computational problems that try to find the
clustering of such networks such that the clusters group nodes
which share common features [5], [6]. These problems are
applied in several fields, e.g.: (i) in astronomy, for automatic
stellar cluster recognition [7]; (ii) in biology, for finding
protein complexes [8] and mapping metabolic reactions [9];
(iii) in the health sciences, to identify functional memory

This work is partly supported by the Brazilian Research Council CNPq
(MCTIC/CNPq 2018 - 408771/2018-6) and Federal University of Santa
Catarina.

involved in olfactory recognition [10]; (iv) in social sciences,
to identify criminal organizations [11], [12].

One of the most popular community detection problems is
Newman’s Modularity Maximization (MM) [13]. MM defines
an optimization problem that has an objective function that
measures the difference between the number of internal links
and the expected number of links inside of each cluster.
The original problem is applied to undirected, unsigned, and
unweighted networks. Versions of the Modularity Maximiza-
tion objective function for weighted and directed graphs are
reported in [14] and [15], respectively. [16] reported a model
for signed networks.

Although Modularity Maximization is a popular problem,
some degeneracies are reported in the literature. The most
important of them is named “resolution limit” proved by [17]
in which cliques with a different number of nodes are merged
into the optimal solution, even if they are connected by a
single edge. This behavior is a degeneracy for Modularity
Maximization because the modular property is violated for
optimal partitions. Two other degeneracies are reported by
[18]: there is an exponential number of suboptimal solutions,
and the number of nodes has a positive correlation with the
optimal modularity value. Efforts to avoid these degeneracies
are made by reformulating the objective function of Modular-
ity Maximization in, e.g. [19]–[27].

One of the main alternative problems to Newman’s Modu-
larity Maximization is the Modularity Density Maximization.
Defined by [21], this problem uses the difference between
the internal and external density of links for each cluster to
evaluate the problem solutions. This value is normalized by
the number of nodes inside of each cluster. This problem has
attracted recent interest in science [28]–[38].

The problem version of Modularity Density Maximization
for signed networks is presented in [16], but an evaluation
around exact solutions are missed. In their paper, the solutions
are obtained by non-exact solvers. In this context, this paper
presents an exact solver for the Signed Modularity Density
Problem and discusses the results over the obtained exact
solutions. Our solver is computational expensive in time. In
fact, no exact polynomial solver for the problem is known.
Our proposed solver is a branch-and-price procedure.

The following sections of this paper present the Signed

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Modularity Density optimization problem, the column genera-
tion model, the branch-and-price model, analyses on the exact
solutions, and conclusions.

II. SIGNED MODULARITY DENSITY MAXIMIZATION

The objective function of the Signed Modularity Density
Maximization problem is shown in Equation (1), given a
signed graph G and a clustering C [16]. Consider G =
(V,E+, E−), where V is the set of nodes, E+ is the set
of positive edges, and E− is the set of negative edges. In
this context, we consider that w+

uv = 1 if {u, v} ∈ E+,
otherwise w+

uv = 0, and w−uv = 1 if {u, v} ∈ E−, otherwise
w−uv = 0. The degrees of each node are also divided into
positive and negative ones. So, the positive degree of v is
given by d+v =

∑
u∈V w

+
uv , and the negative degree is given

by d−v =
∑
u∈V w

−
uv . The sets E+

c and E−c are composed the
edges positive and negative respectively of a cluster c ∈ C.

Dλ(C) =
∑
c∈C

(
2λ|E+

c | − 2(1− λ)(
∑
v∈c d

+
v − |E+

c |)
|c|

−2(1− λ)|E−c |+ 2λ(
∑
v∈c d

−
v − |E−c |)

|c|

)
.

(1)

The parameter λ for quantified Signed Modularity Density
Maximization is used to obtain the “ratio association” to find
small clusters when λ > 0.5, and the “ratio cut” to find large
clusters when λ < 0.5. [21] suggested that this function can be
used to find the appropriate level of the topological structure
of graphs to find proper partitions.

In this problem, each node is assigned to one cluster. This
kind of clustering is called non-overlapping clustering. So, the
number of possible solutions is given by the Bell number
(Equation (2)) over the number of nodes of G. Thus, there
is an exponential number of possible solutions.

Bn =

{
1, if n ∈ {0, 1}∑n−1
k=0

[(
n−1
k

)
Bk

]
, if n > 1

(2)

It is not known an exact algorithm for the non-Signed and
Signed Modularity Density Maximization problem. For the
non-signed version, the exact solving is a binary nonlinear
problem (0–1 NLP). Li et al. [21] have presented exact binary
nonlinear (0-1 NLP) mathematical programming which makes
it difficult to use with common solvers. Karimi-Majd et al.
[30] have shown improvement to the [21] model, where the
parameter of the number of clusters is not required. Costa
[32] has created four different mixed integer linear models
converted from the 0-1 NLP. Recent column generation algo-
rithms have been showing exact methods that solve instances
with more than 100 nodes [35], [37]. No exact algorithm for
the Signed Modularity Density Maximization is known, so this
paper presents the first one.

For the non-signed version of the problem, heuristics for
Modularity Density Maximization have been reported in [28],

[29], and [30]. They have presented some evolutionary heuris-
tics. Costa et al. [33] have presented eight divisive heuristics
for Modularity Density Maximization that have provided so-
lutions close to the optimal one. These divisive heuristics are
based on mathematical programming formulations. Recently,
constructive and multilevel heuristics have been presented at
[36] and [38]. For the signed version, Li et al. [16] have
proposed evolutionary and memetic heuristics to find solutions
to the problem.

III. EXACT METHOD

We have developed a branch-and-price method to find exact
solutions for the Signed Modularity Density Maximization
problem. Due to the exponential number of variables of the
exact problem, the branch-and-price method uses a column
generation procedure to discover important variables. Then
the integer values are found for them. This section describes
details around the algorithm used.

A. Column Generation Model

Our column generation method is derived from the integer
linear model related in Equation (3), that is inspired on pre-
vious models relating similar non-signed problems [37], [39],
[40]. In this model, each cluster is a subset of nodes, so there
are |T | = 2|V | possible clusters, where T =

{
1, . . . , 2|V |

}
.

The variables zt are binary. If zt = 0, the cluster t does not
belong to the solution; when zt = 1, the cluster t belongs to
the solution. The value of ct is the contribution of cluster t
to the objective function. This value is defined in Equation
(4). The value avt is a binary number. If avt = 1, the node
v ∈ V belongs to the cluster t, and when avt = 0, the node
v does not belong to this cluster. To obtain the dual problem,
we have relaxed this model by redefining the Constraint (3c)
to zt ≥ 0,∀t ∈ T . In column generation contexts, we named
this model as the master model.

maximize
{∑
t∈T

ctzt

}
(3a)

subject to:
∑
t∈T

avtzt = 1,∀v ∈ V (3b)

zt ∈ {0, 1},∀t ∈ T. (3c)

ct =
4λ
∑
u,v∈V :u<v autavtw

+
uv∑

v∈V avt

+
−2(1− λ)(

∑
v∈V d

+
v avt − 2

∑
u,v∈V :u<v autavtw

+
uv)∑

v∈V avt

+
−4(1− λ)

∑
u,v∈V :u<v autavtw

−
uv∑

v∈V avt

+
+2λ(

∑
v∈V d

−
v avt − 2

∑
u,v∈V :u<v autavtw

−
uv)∑

v∈V avt
.

The auxiliary model is described in Equations (4). The
variable yv is the dual variable related to the v constraint of
the master model.

minimize
{

2(1− λ)
∑
v∈V

d+v av − 2
∑
u∈V

∑
v∈V

w+
uvauav

− 2λ
∑
v∈V

d−v av + 2
∑
u∈V

∑
v∈V

w−uvauav

+
∑
u∈V

∑
v∈V

auavyv

}
(4a)

subject to: av ∈ {0, 1},∀v ∈ V. (4b)

B. The Branch-and-Price Method

The column generation finds the optimal solution in continu-
ous solution space. For this reason, we have used a branch-and-
price method to find the optimal solution in integer solution
space, related to the zt variables. The branch-and-price method
is reported in Algorithm 1.

The branch-and-price algorithm starts by defining the re-
duced master problem. The initial variables are defined by
a two-step local search method of [38] adapted for signed
networks. Then the heap that stores the highest D value in
brach-and-price method is defined. The lowerbound variable
stores the objective value from the best solution found. At
each iteration, the branch-and-price node with the highest D
value is obtained by the heap. If the solution of this node has
a worse D value than the lowerbound value, its sibling nodes
will not find a better solution, and the branch-and-price stops.
If the search does not stop, the selected node is submitted to
the column generation procedure.

The column generation procedure starts adding the branch-
and-price node constraints to the RM. At each iteration of
the column generation, a new column is added in the model
by using the Auxiliary model. During the selection of a new
column, the RM model is solved, and the values for the primal
variables z, the dual variables y, and the objective value Dens
are stored. Then the Auxiliary model is solved, and if a new
variable is found, it is inserted into the RM model. After the
loop, if the solution found is integer, the lowerbound variable
is updated or not. If not, it is created two branch-and-price
nodes. The variable z that has the largest fraction value has
its value fixed in 0 for a node and 1 for the other node.

Algorithm 1 Branch-and-price
1: create the reduced master model RM with initial variables

given by HLSMDλ±
2: heap = new FibonacciHeap()
3: // constructing the starting node of branch-and-price
4: heap.push((D = −∞, cons = {}))
5: lowerBound = −∞
6: stop = false
7: while (not stop) do
8: data = heap.pop()
9: if (data.D < lowerBound) then

10: stop = true
11: end if
12: if (not stop) then
13: columnGeneration (RM, data, lowerbound)
14: end if
15: if heap.empty() then
16: stop = true
17: end if
18: end while

IV. EXPERIMENTS ON REAL SIGNED NETWORKS

To test our exact method and the results of Signed Mod-
ularity Density in real signed networks, we have used two
benchmark signed networks which have been tested in [16],
[41]. The first signed network is known as “Slovene Parliamen-
tary Party Network” and is related to the relation among ten
political parties of the Slovene Parliamentary in 1994 [42]. The
second signed network is known as “Gahuku-Gama Subtribes
Network” and represents the relationship of tribes from New
Guinea [43]. The positive and negative relationships of these
networks have been represented without considering weights
in this paper.

Table I shows the runtime (in seconds) and the D value
obtained for each exact solution found by our branch-and-
price method. Each quantitative parameter λ was tested. We
have used the solver IBM ILOG CPLEX and C++ language
to implement our branch-and-price. The environment has been
Linux, processor Intel i7-7500U, 2.7Ghz and 16GB RAM.

TABLE I
RUNTIME IN SECONDS AND D VALUES RELATED TO THE EXECUTION OF

THE BRANCH-AND-PRICE METHOD ON THE TWO REAL INSTANCES.

Slovene Parliamentary Party Gahuku-Gama Subtribes
λ Time(s) D* Time(s) D*

0.1 0.051 2.000 0.032 3.037
0.2 0.056 5.800 0.061 7.445
0.3 0.035 11.200 0.159 11.854
0.4 0.016 16.600 0.286 17.076
0.5 0.019 23.000 0.400 24.238
0.6 0.057 36.000 0.427 36.520
0.7 0.050 53.999 0.305 55.749
0.8 0.052 72.000 0.185 75.500
0.9 0.056 89.999 0.209 95.466

Figure 1 shows the optimal clustering obtained by our
algorithm with different values of λ factor for each tested
real clustering. The clusters are identified by color, except for

clusters with a single node. In this latter case, the nodes are
filled with white. The edges are identified by two colors. Blue
colored edges are positive, and the red ones are negative.

For the “Slovene Parliamentary Party” network, with λ ∈
{0.1, 0.2, 0.3, 0.4} the network was divided into two clusters
connected only by negative edges. The only internal negative
edges are {“ZS-ESS”, “SNS”} and {“DS”, “SNS”}. With
λ = 0.5, ‘ZS-ESS”, “SNS”, and “DS” are separated from
their community when λ ≤ 0.4. With a larger λ factor, smaller
clusters are identified, so a node needs being more connected
with a cluster to belong to it. When λ ≥ 0.6, each node
belongs to its own cluster (alone).

For the “Gahuku-Gama Subtribes” network, the clustering
is composed of three clusters with no negative edge connecting
two nodes that belong to the same cluster when λ ∈ {0.1, 0.2}.
The difference between this clustering and the clustering
obtained with λ = 0.3 is that the node “GEHAN” passed
to belong the “red” cluster in the last partition. Comparing
the clustering λ = 0.3, the nodes “NOTOH”, “UHETO”,
and ”KOHIK” form a cluster composed of themselves in the
clustering λ = 0.4. Passing from λ = 0.4 to λ = 0.5,
the nodes “NAGAD” and “GAMA” compose two singleton
clusters, the nodes “NAGAN” and ”SEUVE” form their proper
cluster, “NAGAN” and “SEUVE” form their own cluster.
From the clustering λ = 0.5 to 0.6, the nodes “ASARO”,
“GEHAN”, and “NOTOH” form two singleton clusters. For
the clusterings obtained with λ ∈ {0.7, 0.8}, the unique non-
singleton cluster is composed of nodes “ALIKA”, “MASIL”,
“OVE”, and “UKUDZ” which are in the same cluster for all
λ ≤ 0.8. When λ = 0.9, there are singleton nodes only.

Comparing the obtained clusterings of Figures 1, the λ ≤
0.5 appears to be more usable because of the almost com-
plete absence of singleton clusters. Observing the clustering
formation and the positive and negative edges, the results
suggest that the Signed Modularity Density Maximization
obtains coherent clusterings, avoiding to keep together nodes
that are connected by negative edges.

V. EXPERIMENTS ON ARTIFICIAL NETWORKS

We have performed experiments in artificial benchmarks to
test scalability and influence of negative weights in the search
algorithm. We would like to understand how much runtime is
required to solve instances and share these results for further
comparisons in the field. Moreover, we believe that negative
relationships inside modules turn them harder to be detected.
So, we would like to understand if this belief makes sense.

We have created an artificial instance creator inspired by
[44]. This software uses a uniform distribution to create
instances with the following parameters:

• The number of expected clusters (k);
• The number of nodes (n);
• The set of proportions of nodes each cluster have (Ω =
{ω1, ω2, . . . , ωk} in which

∑
i∈k ωi = 1);

• The proportion of negative (Π−) and positive (Π+)
weighted edges inside each cluster;

• The proportion of negative (Θ−) and positive (Θ+)
weighted inter-edges.

For the following experiments, we have created instances
with parameters n ∈ {30, 40, 50}, k = dlog2 ne, ωi = n

k
for all i ∈ {1, 2, . . . , k}, Π+ = 0.75, Θ+ = 0.1, Π− ∈
{0.01, 0.05, 0.1, 0.2}, and Θ− = 0.075. We have tested these
instances with λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} factors for objective
function.

The experiments were run on a PC with an Intel i7-7500U,
2.7Ghz and 16GB RAM over Linux Ubuntu 16.04.1 LTS
operating system. Each experiment was done by using a single
thread. The language used to program the column generations
was C++, with the “GCC” compiler. The solver IBM ILOG
CPLEX 12.6 [45] was used to solve the mathematical pro-
gramming model.

Table II shows the φ correlation value obtained to find the
optimal solution during the experiments. The value “tl” means
that all results for that method and instance reached the time
limit of ten hours. For the ground truth analyses, we used the
Matthews Correlation Coefficient that takes account of true
positives (N11), true negatives (N00), false negatives (N10),
and false positives (N01) [46]. The φ function is described in
Equation (5). The resulting values of the φ function are bound
between [−1, 1]. The larger the coefficient φ is, the stronger
the correlation between the partition obtained by the heuristic
and the correct partition is.

φ =
N00N11 −N10N01√

(N11 +N01)(N11 +N10)(N00 +N01)(N00 +N10)
.

(5)
Each N has the number of pairs of nodes, comparing the

correct partitions and the one obtained by the tested methods.
They are described as follow:
• N00: the number of pairs of nodes which are not in the

same cluster in the expected partition, and which are not
in the same cluster in the obtained partition by our tested
method;

• N01: the number of pairs of nodes which are not in the
same cluster in the expected partition, but which are in
the same cluster in the obtained partition by our tested
method;

• N10: the number of pairs of nodes which are in the same
cluster in the expected partition, but which are not in
the same cluster in the obtained partition by our tested
method;

• N11: the number of pairs of nodes which are in the
same cluster in the expected partition, and which are in
the same cluster in the obtained partition by our tested
method.

It is possible to observe three different aspects of the results
in Table II. The first one is about the number of nodes. For the
instances with Π− ∈ {0.05, 0.1, 0.2}, one can see the positive
correlation between the number of nodes and the φ values. It
suggests that the model has presented difficulty in capturing
the expected clustering in tiny networks. The second aspect

TABLE II
φ CORRELATION VALUES OBTAINED TO FIND THE OPTIMAL SOLUTION

FOR EACH EXPERIMENTED INSTANCE AND PARAMETER. THE VALUE “TL”
MEANS THAT THE RESULT FOR THAT INSTANCE REACHED THE TIME LIMIT

OF TEN HOURS. THE BEST RESULTS ARE MARKED IN BOLD.

Π−

Nodes λ 0.01 0.05 0.10 0.20
30 0.1 0.0000 0.0000 0.0000 0.0000

0.3 0.0000 0.0000 0.0000 0.0000
0.5 0.4260 0.4260 0.5170 0.5170
0.7 0.4754 tl 0.5928 0.5319
0.9 0.1683 0.1683 0.2748 0.2934

40 0.1 0.0000 0.0000 0.0000 0.0000
0.3 0.0000 0.0000 0.0000 0.0000
0.5 0.8788 0.8788 0.5527 0.6919
0.7 0.3695 0.3695 0.6376 0.3489
0.9 0.0286 0.0286 0.0514 0.0260

50 0.1 0.0000 0.0000 0.0000 0.0000
0.3 0.0000 0.0000 0.0000 0.0000
0.5 tl 0.9484 tl 0.7163
0.7 0.6027 0.6027 0.6085 0.5286
0.9 0.0738 0.0738 0.1594 0.0686

TABLE III
RUNTIME THAT HAS BEEN REQUIRED TO FIND THE OPTIMAL SOLUTION

FOR EACH EXPERIMENTED INSTANCE AND PARAMETER. THE VALUE “TL”
MEANS THAT THE RESULT FOR THAT INSTANCE REACHED THE TIME LIMIT

OF TEN HOURS. THE VALUES ARE IN SECONDS.

Π−

Nodes λ 0.01 0.05 0.10 0.20
30 0.1 0.0095 0.0094 0.0095 0.0206

0.3 0.0636 0.0720 0.0579 0.0571
0.5 0.9005 0.8586 0.5619 0.2374
0.7 36.0004 tl 0.4001 0.3620
0.9 0.0654 0.0657 0.0250 0.0322

40 0.1 0.0088 0.0093 0.0052 0.0099
0.3 0.0239 0.0259 0.0661 0.0446
0.5 4.4276 4.4503 11.0482 3.6149
0.7 2.8841 2.8816 2.7542 2.7541
0.9 0.2966 0.2938 0.1890 0.2260

50 0.1 0.1287 0.1238 0.1313 0.1143
0.3 0.6812 0.6800 1.1254 1.7397
0.5 tl 36.0051 tl 36.1318
0.7 14.3484 14.3953 9.3605 10.4980
0.9 0.4374 0.3797 0.4325 0.3319

is that the best values are related to the λ values between
0.5 and 0.7. The third one is about the internal proportion
of negative weighted edges. Our experiments suggests that
the model have captured a good correlation for Π− = 0.05
considering the instances with n ∈ {40, 50}. Considering our
experiments, the best correlations have been obtained while
using λ ∈ {0.5, 0.7} for networks with 40 and 50 nodes, and
an internal proportion of 5% of negative weighted edges.

Table III shows the runtime in seconds obtained to find the
optimal solution during the experiments. The value “tl” means
that all results for that method and instance reached the time
limit of ten hours. It is possible to see that the higher is the
number of nodes, the larger is the runtime required to find the
optimal solution. We cannot find in these results a behavior
connecting the Π− and the runtime required. Considering the
best correlation values reported in Table II, the best values
were obtained in 37 seconds.

VI. CONCLUSIONS

In this paper, we have aimed at solving exactly the Signed
Modularity Density Maximization problem and to analyze the
optimal solutions in real signed networks. In order to do so, we
have proposed a branch-and-price algorithm, detailing its col-
umn generation procedure to solve the problem. We have also
analyzed the optimal solutions with their real representations
over different quantitative λ parameters to understand how far
they are from the real meaning of the clusterings found.

Our experiments suggest that for λ ≤ 0.5, the clustering
obtained by the exact solving preserve important classification
properties and can be used to identify meaningful clusters of
the signed graphs. For λ > 0.5, several nodes were classified
as singleton nodes, rendering difficult the search for important
clusters.

In the experiments with artificial networks, the best corre-
lations are obtained while using λ ∈ {0.5, 0.7} for networks
with 40 and 50 nodes, and internal proportion of 5% of
negative weighted edges. We also have identified that the
higher is the number of nodes, the larger is the runtime
required to find the optimal solution as expected.

As further research, we suggest amplifying these analyses
for several clustering problems in social media contexts. We
also suggest that new exact approaches can be compared with
our branch-and-price results.

ACKNOWLEDGMENTS

This work is partly supported by the Brazilian Research
Council CNPq (MCTIC/CNPq 2018 - 408771/2018-6) and
Federal University of Santa Catarina. The authors would like
to thank IBM for the Academic Initiative program that offered
the IBM ILOG CPLEX for our experiments.

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.1)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.2)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.3)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.4)

LDSDS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.5)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.6)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.7)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.8)

LDS

DS

SKD

SNS

ZS-ESS

SLS

ZLSD

ZS

SPS-SNS

SDSS

Slovene Parliamentary (0.9)

SEUVE

GAVEV

MASIL

KOTUN

UHETO

KOHIK

ALIKA

GAMA

NAGAN

NAGAD OVE

ASARO
UKUDZ

NOTOH

GEHANGAHUK

Gahuku-Gama Subtribes (0.1)

SEUVE

GAVEV

MASIL

KOTUN

UHETO

KOHIK

ALIKA

GAMA

NAGAN

NAGAD OVE

ASARO
UKUDZ

NOTOH

GEHANGAHUK

Gahuku-Gama Subtribes (0.2)

SEUVE

GAVEV

MASIL

KOTUN

UHETO

KOHIK

ALIKA

GAMA

NAGANNAGAD

OVE

ASARO
UKUDZ

NOTOH

GEHAN

GAHUK

Gahuku-Gama Subtribes (0.3)

SEUVEGAVEV

MASIL

KOTUN

UHETO
KOHIK

ALIKA

GAMA

NAGAN

NAGAD OVE

ASARO
UKUDZ

NOTOH

GEHANGAHUK

Gahuku-Gama Subtribes (0.4)

SEUVE

GAVEV

MASIL

KOTUN

UHETO
KOHIK

ALIKA

GAMA

NAGAN

NAGAD

OVE

ASARO

UKUDZ

NOTOH

GEHANGAHUK

Gahuku-Gama Subtribes (0.5)

SEUVE

GAVEV

MASIL

KOTUN

UHETO

KOHIK

ALIKA

GAMA

NAGAN

NAGAD

OVE

ASARO

UKUDZ

NOTOH

GEHAN

GAHUK

Gahuku-Gama Subtribes (0.6)

SEUVE

GAVEV

MASIL

KOTUN

UHETO

KOHIK

ALIKA

GAMA

NAGAN

NAGAD

OVE ASARO

UKUDZ

NOTOH

GEHAN

GAHUK

Gahuku-Gama Subtribes (0.7)

SEUVE

GAVEVMASIL

KOTUN

UHETO

KOHIKALIKA

GAMA

NAGAN

NAGAD

OVE

ASARO

UKUDZ

NOTOH

GEHAN

GAHUK

Gahuku-Gama Subtribes (0.8)

SEUVE

GAVEV

MASIL

KOTUN

UHETO

KOHIK

ALIKA

GAMA

NAGAN

NAGAD

OVE

ASARO

UKUDZ NOTOH

GEHAN

GAHUK

Gahuku-Gama Subtribes (0.9)

Fig. 1. Our branch-and-price method has obtained the clustering structures presented in this figure for ‘Slovene Parliamentary Party” and “Gahuku-Gama
Subtribes” networks.

REFERENCES

[1] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in Proceedings of the 28th international conference on
Human factors in computing systems - CHI ’10. New York, New York,
USA: ACM Press, 2010, p. 1361.

[2] ——, “Predicting positive and negative links in online social networks,”
in Proceedings of the 19th international conference on World wide web
- WWW ’10. New York, New York, USA: ACM Press, 2010, p. 641.

[3] D. Centola, “The Spread of Behavior in an Online Social Network
Experiment,” Science, vol. 329, no. 5996, pp. 1194–1197, sep 2010.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20813952
http://www.sciencemag.org/cgi/doi/10.1126/science.1185231

[4] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: the state-of-the-art,” Science China Information Sciences,
vol. 58, no. 1, pp. 1–38, jan 2015.

[5] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks.” Proceedings of
the National Academy of Sciences of the United States of America, vol.
101, no. 9, pp. 2658–2663, 2004.

[6] S. Fortunato and C. Castellano, “Community Structure in Graphs,” in
Computational Complexity, R. A. Meyers, Ed. New York, NY: Springer
New York, 2012, pp. 490–512.

[7] S. Schmeja, “Identifying star clusters in a field: a comparison of different
algorithms,” Astronomische Nachrichten, vol. 332, no. 2, pp. 172–184,
Feb. 2011.

[8] T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping protein
complexes in protein-protein interaction networks,” Nature Methods,
vol. 9, no. 5, pp. 471–472, may 2012.

[9] R. Guimera and L. Amaral, “Functional cartography of complex
metabolic networks,” Nature, vol. 433, no. February, pp. 895–900, 2005.

[10] D. Meunier, P. Fonlupt, A.-L. Saive, J. Plailly, N. Ravel, and J.-P.
Royet, “Modular structure of functional networks in olfactory memory.”
NeuroImage, vol. 95, pp. 264–75, Jul. 2014.

[11] E. Ferrara, P. De Meo, S. Catanese, and G. Fiumara, “Detecting
criminal organizations in mobile phone networks,” Expert Systems with
Applications, vol. 41, no. 13, pp. 5733–5750, Oct. 2014.

[12] F. Calderoni, D. Brunetto, and C. Piccardi, “Communities in criminal
networks: a case study,” Social Networks, vol. 48, pp. 116–125, jan.
2017.

[13] M. Newman and M. Girvan, “Finding and evaluating community struc-
ture in networks,” Physical Review E, vol. 69, no. 2, p. 026113, Feb.
2004.

[14] M. E. J. Newman, “Analysis of weighted networks,” Physical Review
E, vol. 70, no. 5, p. 056131, nov 2004.

[15] E. Leicht and M. Newman, “Community structure in directed networks,”
Physical Review Letters, vol. 100, no. 11, p. 118703, Mar. 2008.

[16] Y. Li, J. Liu, and C. Liu, “A comparative analysis of evolutionary
and memetic algorithms for community detection from signed social
networks,” Soft Computing, vol. 18, no. 2, pp. 329–348, Feb. 2014.

[17] S. Fortunato and M. Barthélemy, “Resolution limit in community
detection.” Proceedings of the National Academy of Sciences of the
United States of America, vol. 104, no. 1, pp. 36–41, Jan. 2007.

[18] B. H. Good, Y.-A. de Montjoye, and A. Clauset, “Performance of
modularity maximization in practical contexts,” Physical Review E,
vol. 81, no. 4, p. 046106, Apr. 2010.

[19] S. Muff, F. Rao, and A. Caflisch, “Local modularity measure for network
clusterizations,” Physical Review E, vol. 72, no. 5, p. 056107, Nov. 2005.

[20] A. Arenas, A. Fernandez, and S. Gomez, “Analysis of the structure of
complex networks at different resolution levels,” New Journal of Physics,
vol. 10, p. 053039, 2008.

[21] Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen, “Quantitative
function for community detection,” Physical Review E, vol. 77, no. 3,
p. 036109, Mar. 2008.

[22] S. Cafieri, P. Hansen, and L. Liberti, “Loops and multiple edges in
modularity maximization of networks.” Physical review. E, Statistical,
nonlinear, and soft matter physics, vol. 81, no. 4 Pt 2, p. 046102, 2010.

[23] V. A. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for
resolution-limit-free community detection,” Physical Review E, vol. 84,
no. 1, p. 016114, Jul. 2011.

[24] C. Granell, S. Gómez, and A. Arenas, “Hierarchical multiresolution
method to overcome the resolution limit in complex networks,” Interna-
tional Journal of Bifurcation and Chaos, vol. 22, no. 07, pp. 1 250 171-1
– 1 250 171-7, Jul. 2012.

[25] T. Chakraborty, S. Srinivasan, N. Ganguly, S. Bhowmick, and
A. Mukherjee, “Constant communities in complex networks.” Scientific
reports, vol. 3, p. 1825, 2013.

[26] M. Chen, T. Nguyen, and B. K. Szymanski, “On Measuring the Quality
of a Network Community Structure,” in International Conference on
Social Computing (SocialCom), 2013. Alexandria: IEEE, 2013, pp.
122–127.

[27] M. Chen, K. Kuzmin, and B. K. Szymanski, “Community detection
via maximization of modularity and its variants,” IEEE Transactions on
Computational Social Systems, vol. 1, no. 1, pp. 46–65, Mar. 2014.

[28] J. Liu and J. Zeng, “Community detection based on modularity density
and genetic algorithm,” in Proceedings of International Conference on
Computational Aspects of Social Networks, Taiyuan, 2010, pp. 29–32.

[29] M. Gong, Q. Cai, Y. Li, and J. Ma, “An improved memetic algorithm
for community detection in complex networks,” in 2012 IEEE Congress
on Evolutionary Computation. Brisbane, QLD: IEEE, 2012, pp. 1–8.

[30] A.-M. Karimi-Majd, M. Fathian, and B. Amiri, “A hybrid artificial
immune network for detecting communities in complex networks,”
Computing, vol. 97, no. 5, pp. 483–507, 2014.

[31] Z. Li, R.-S. Wang, S. Zhang, and X. Zhang, “Quantitative function
and algorithm for community detection in bipartite networks,” American
Journal of Operations Research, vol. 5, pp. 421–434, jan 2015.

[32] A. Costa, “MILP formulations for the modularity density maximization
problem,” European Journal of Operational Research, vol. 245, no. 1,
pp. 14–21, 2015.

[33] A. Costa, S. Kushnarev, L. Liberti, and Z. Sun, “Divisive heuristic for
modularity density maximization,” Computers & Operations Research,
vol. 71, pp. 100–109, 2016.

[34] Y. Izunaga, T. Matsui, and Y. Yamamoto, “A doubly nonnegative
relaxation for modularity density maximization,” University of
Tsukuba, Tsukuba, Tech. Rep. 1339, 2016. [Online]. Available:
http://www.optimization-online.org/DB HTML/2016/03/5368.html

[35] K. Sato and Y. Izunaga, “An enhanced MILP-based branch-and-price
approach to modularity density maximization on graphs,” pp. 1–18, may
2018.

[36] R. Santiago and L. C. Lamb, “Efficient modularity density heuristics
for large graphs,” European Journal of Operational Research, vol. 258,
no. 3, pp. 844–865, may 2017.

[37] R. de Santiago and L. C. Lamb, “Exact computational solution of Modu-
larity Density Maximization by effective column generation,” Computers
& Operations Research, vol. 86, pp. 18–29, oct 2017. [Online]. Avail-
able: http://linkinghub.elsevier.com/retrieve/pii/S0305054817301041

[38] R. Santiago and L. C. Lamb, “Efficient Quantitative Heuristics for
Graph Clustering,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion. Berlin: ACM New York, 2017,
pp. 117–118.

[39] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, and L. Liberti,
“Column generation algorithms for exact modularity maximization in
networks,” Physical Review E, vol. 82, no. 4, p. 046112, Oct. 2010.

[40] R. de Santiago and L. C. Lamb, “A ground truth contest between
modularity maximization and modularity density maximization,”
Artificial Intelligence Review, Jan 2020. [Online]. Available:
https://doi.org/10.1007/s10462-019-09802-8

[41] B. Yang, W. K. Cheung, and J. Liu, “Community mining from signed
social networks,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 19, no. 10, pp. 1333–1348, 2007.

[42] S. Kropivnik and A. Mrvar, “An Analysis of the Slovene Parliamen-
tary Parties Network,” Developments in Statistics and Methodology,
Metodološki zvezki, vol. 12, pp. 209–216, 1996.

[43] K. E. Read, “Cultures of the Central Highlands, New
Guinea,” Southwestern Journal of Anthropology, vol. 10,
no. 1, pp. 1–43, apr 1954. [Online]. Available:
http://www.journals.uchicago.edu/doi/10.1086/soutjanth.10.1.3629074

[44] B. Yang, X. Liu, Y. Li, and X. Zhao, “Stochastic Blockmodeling
and Variational Bayes Learning for Signed Network Analysis,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 9, pp. 2026–2039, sep 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7917265/

[45] IBM, IBM ILOG CPLEX Optimization Studio V12.6.3 documentation.
IBM, 2015.

[46] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme,” BBA - Protein Structure, vol. 405,
no. 2, pp. 442–451, 1975.

