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Abstract—Genetic Algorithm (GA) is a widely adopted opti-
mization technique under evolutionary optimization. Inspired by
the evolutionary operators of selection, crossover and mutation,
Genetic Algorithms have been used to successfully solve myriad
optimization problems in a wide range of domains, including in
optimizing multi-agent systems. On the other hand, Evolutionary
Game Theory (EGT) is used to model social-economic systems by
mimicking social evolution by adopting neighborhood strategies
in a stochastic manner. In this work, an extended GA is proposed
for multi-agent systems, which incorporates the strategy adoption
in EGT into GA enabled multi-agent systems. The proposed
extended GA algorithm is applied to an example multi-robot
navigation application. The proposed algorithm gives promising
results in terms of the convergence time, compared to the GA
based approach. Possible applications of the proposed algorithm
are also discussed, while indicating potential future research
directions.

Index Terms—Genetic Algorithm, Evolutionary Game theory,
Multi-Robot navigation

I. INTRODUCTION

Evolutionary computation adopts the Neo-Darwinian the-
ory of biological evolution to a computational environment.
It has resulted in the creation of multiple heuristic-based
optimization algorithms, based on a set of evolutionary op-
erations inspired by the principles of biological evolution,
such as natural selection and genetic inheritance. Evolutionary
computation is an umbrella term that includes population-
based optimization techniques such as Genetic Algorithms
[1] and genetic programming [2]. Evolutionary optimization
techniques have been increasingly applied in a wide range
of applications, from practical applications in production and
engineering to leading scientific research.

Compared to many other optimization methods, GAs use a
population of individuals and this is one of the reasons for their
effectiveness [3]. Evolutionary Game theory (EGT) [4], on the
other hand, is used to model social and economic systems
through autonomous interactions of agents. It’s generally not
used for optimization, rather for modeling the evolution of
socio-economic systems [4]. Further, EGT employs a strategy
adoption process, which is inspired by social interactions in
social systems [5].

In societies of humans and other social animals, both the
biological and social evolution seems to have a significant
effect on optimizing preferable traits and behavior. A good

example is how domestic animals such as dogs seem to ‘adopt’
optimal behavior from the group while passing preferable
genetic traits through biological evolution [6]. Moreover, it
appears that the contribution of the biological and social
components in optimizing behavior may depend on the species
and the specific function [7]. For instance, in humans, social
or cultural evolution may play a more prominent role than
any other species. Therefore, inspirations may be drawn from
nature on the effect of social adoption on the GA based
optimization in multi-agent systems.

Accordingly, this study proposes a novel approach to incor-
porate the social evolution through strategy adoption to extend
the standard Genetic algorithm in a multi-agent setting. In
order to test the proposed algorithm, a well-known multi-robot
navigation problem is used, and it demonstrates that the inclu-
sion of ‘social interactions’ into the GA, significantly improves
the algorithm’s performance. The proposed approach is loosely
related to co-evolutionary approaches in that the evolution of
a chromosome may depend on the other chromosomes in a
population. However, it differs from them in that the social
interaction used in the proposed approach is not the main
mechanism for calculating the fitness of co-evolving species.

The remaining sections of this paper are organized as
follows. The following section provides a review of the
background in relation to the GA, EGT and related opti-
mization algorithms. The next section describes the proposed
algorithm with an introduction to the experimental setup and
the evaluation method. The next section describes the analysis
of results obtained, followed by the discussion of the results.
Finally, we present a summary of the overall results, draws
final conclusions and indicates possible future directions.

II. BACKGROUND

A. Genetic Algorithm

Genetic algorithm is a heuristic based optimization method
that finds near-optimal solutions by subjecting a population
of points in a search space to a set of biologically inspired
operators [8]. The ‘fitness’ of each member of the GA pop-
ulation is computed by an evaluation function that measures
how well the individual performs in the problem domain. GAs
primarily use three genetic operators; selection, crossover, and
mutation, in order to emulate the natural selection process. One
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key feature of Genetic algorithm is that the evolutionary time-
scale is much larger compared to a lifetime of a chromosome
[9], [10].

1) Selection - Selection is the method of selecting potentially
better individuals, to form a mating pool and let them pass
their genes to the next generation [11].

2) Crossover - The crossover operator simulates the method
of gene recombination, which aims to pass the most
effective genes, on to subsequent generation [11].

3) Mutation - The mutation operator is used to prevent the
loss of information that occurs as population converges
on the fittest individuals [11].

B. Evolutionary Game Theory

Evolutionary game theory is an application of the mathe-
matical framework of games theory [5], [12] to the modelling
of social-economic systems and biological systems. It enables
the understanding the selective pressures that influence the
evolution of the ways of agents engaged in interactions with
potential conflicts. It is the branch of science that has resulted
from the adoption of game theory into evolutionary biology
[13]. It is used to study how a specific strategy or set
of strategies evolve over time in a population of players.
An Evolutionarily Stable Strategy (ESS) is a strategy that
dominates over the other strategies over time [14]. One of
the key applications of EGT is to identify the ESS in a given
population of autonomous players.

Evolutionary game theory asserts that the evolutionary suc-
cess of a strategy of an agent depends on how it interacts with
others in the same population. Thus, the evolutionary stability
of a single agent cannot be measured in isolation. Instead,
it must be assessed in the context of the full population in
which it operates. Thus, EGT can have many applications in
biology, social science and economics, as in all those domains
the social interactions determine the evolutionary success of
an individual agent. From a GA point of view, an organism’s
genetically-determined characteristics and behaviors are anal-
ogous to its strategies in a game, its fitness is comparable to its
accumulated payoff, and this payoff depends on the strategies
of the organisms with which it interacts. In order to accurately
model the evolution of strategies, Stochastic strategy adoption
processes are used. It is used to update the strategy of an agent
by comparing it with a selected neighbor’s strategy.

1) Stochastic Strategy Adoption: In the social evolution,
players would be more inclined to adopt the apparently suc-
cessful strategy and survive without getting replaced from the
population. In order to model this kind of social evolution,
a stochastic strategy adoption process can be applied. When
employing this particular strategy adoption process, a player
going through the evolutionary process is not directly replaced.
Instead, its strategy could be chosen by comparing its cumu-
lative payoff with that of a selected neighbor in a stochastic
manner [5], [12].

Successful strategies are promoted through imitation and
learning. Players, instead of analyzing the situation in detail,

imitate the more successful ones [13]. Following is an example
of a strategy adoption process [5].

P = max{0, (Py − Px)/[ k > (T − S)] } (1)

In the above strategy adoption process, during each gener-
ation, all pairs of directly connected players, x and y, engage
in a single round of the game, their accumulated payoff being
stored as Px and Py respectively, representing the fitness of
each player at the end of one generation. T and S are the
cooperation and defection payoffs, when one player cooperates
and the other defects. To update a strategy in player x, a
neighbor y is selected out of all kx neighbors, based on a
probability that is proportional to its payoff difference with
the node in concern. Then, the player x’s strategy is updated
with the select neighbor y’s strategy. This process is repeated
for all the players in the population iteratively until the entire
population converges on the evolutionarily stable strategy.

This process has been used in Santos et al. [5] to demon-
strate the evolution of cooperation in Iterated Prisoner’s
Dilemma games with pure strategies. In this work, a simi-
lar process is adopted to enable agents to adopt neighbors’
strategies.

In strategy adoption, three types of neighborhoods are
considered: Von-Neumann, Moore and Radial [15]. The Von-
Neumann neighborhood considers one representative of each
axial direction in the central lattice. For the Moore neighbor-
hood, in addition to Von-Neumann, one node in each of the
diagonal directions is considered. In a radial neighborhood,
the nodes that fall within a certain radial boundary around the
central node are cones. In this work, we employ the Radial
method of determining the neighborhood, as its widely used
in the literature and it’s a more intuitive approach to determine
the neighborhood in the application that we chose.

C. Co-Evolution

In 1994, Paredis introduced Co-evolutionary Genetic Al-
gorithms [16], [17]. A number of co-evolutionary algorithms
have recently been proposed. The algorithm operates on two
sub-populations: the main sub-population, which includes in-
dividuals representing some species, and the additional sub-
populations that encode certain limitations, conditions, or test
sites on a solution [18].

The proposed algorithm differs from the above-mentioned
work, in that it uses a neighborhood strategy adoption process
to adopt fitter strategies in an agent-based system.

D. Applications of GA in multi-robot navigation

Multi-robot navigation involves finding the optimal or near-
optimal collision-free path from a start location to a goal
location in an environment with obstacles for multiple robots
that are spatially distributed. Multiple attempts have been
carried out to apply GA to this application. The work on
path planning methods for mobile robots based on an adaptive
genetic algorithm [19], parallel elite genetic algorithm [20],
knowledge-based genetic algorithm [21], co-evolutionary ge-
netic algorithm [22] are some examples of that. However, to



the best of our knowledge, the existing work do not incorporate
strategy adoption into the application of GA for optimizing
multi-robot navigation.

III. METHODOLOGY

This section describes the proposed algorithm and the multi-
robot navigation application that is employed to evaluate it
against the GA based approach in a multi-agent setting.

Algorithm 1 Incorporating strategy adoption in a GA enabled
multi-agent system

1: Initialization – Randomly generate initial population in
each agent.

2: Neighbor assignment – Assign the neighborhood for each
agent

3: Evaluation – Each member of the population in each
agent is then evaluated and calculate a ’fitness’ for that
individual.

4: Adoption - Each agent adopts the fitter solutions from
neighboring agents

5: Crossover – In each agent, create new solutions by com-
bining of selected solutions.

6: Mutation – In each agent, mutation is applied by making
minute changes at random to each solution.

7: Selection – In each agent, discard the less fit solutions and
retain the fitter solutions in the population.

8: Repeat – Repeat the steps 4-7 until maximum allowed
iterations or convergence is reached.

Adopting from standard GA, the following are the three
basic hyper-parameters used for the Crossover, Mutation and
Selection.
Crossover rate Crossover rate determines the number of

times a crossover occurs in the chromosomes in one
generation and is between 0-1.

Mutation rate Mutation rate determines how many genes
mutate in one generation. It is in the range of [0:1] and
it can have a significant effect of the performance of the
GA implementation [23], [24].

Population size Selection of the size of the population criti-
cal, as if the size of the population is relatively small, it
may result in a smaller search space, which may lead to
a local optimum. However, if the size of the population
is too large, this would increase the area of search and
increase the computational time [25].

A. Neighbor assignment

The step 2 of the proposed algorithm refers to the assign-
ment of the neighborhood of each agent. In a population of
agents that are spatially distributed, each agent may be running
a GA optimization algorithm to optimize a function. In order to
adopt strategies from neighboring agents, first the neighbors of
each agent needs to be assigned. For this purpose, we employ
the radial neighborhood theorem to identify the neighborhood
of each agent.

Depending on the neighborhood function employed, there
may be hyper-parameters that can be used to adjust the
neighborhood distribution. In the case of the radial neighbor-
hood theorem based neighbor assignment, the radius of the
neighborhood may be a hyper-parameter that may be tuned to
fine-tune the optimization process. In the case of static agents,
the neighbor assignment may be only done initially. However,
if the agent placement is dynamic, the neighbor assignment
operation may have to be repeated iteratively. We only con-
sider the scenario where the agents are static, the proposed
algorithm may be extended for a dynamic environment as well.

B. Adoption

The Adoption operator depicted in step 4 in the proposed
algorithm consists of two operators, namely, selection for
adoption and strategy adoption.

1) Selection for adoption: neighbor selection to adopt
strategies is inspired by stochastic Strategy Adoption process
in Evolutionary Game theory. Similar to the strategy adoption
process used in Santos et al. [5], a neighbor to adopt a strategy
from is selected based on a probability proportional to their
average fitness. Here, average fitness of the current population
in an agent is regarded as equivalent to the cumulative payoff
in the EGT context. Further, a strategy in EGT is considered
to be a solution or a chromosome in the GA set-up.

P = max{0, (Fy − Fx)/[

k∑
i

(Fyi
− Fx)] } (2)

P is the probability that a neighbor is selected. Fy and Fx

are the average fitness values of populations of an agent x
and y, respectively, and k is the number of neighbors of agent
x. The difference of the average fitness values is divided by
the sum of the differences between each neighbor and the
respective node, ensuring that 0 ≤ P ≤ 1. Accordingly, the
probability of a neighbor being selected would be proportional
to the difference of its average fitness and the selected agent’s
average fitness.

2) Strategy adoption: In the population representation, a
segment of the population within an agent at any given time
could be adopted from the neighborhood, and the remaining
segment of the population could be resulting from the GA
specific operators. Once combined, a population may undergo
the crossover and mutation genetic operators. The extent of the
population that is adopted determines the level of influence that
neighboring agents’ have on a population of chromosomes.

Pu = βBP b + βSPs (3)

Here, Pu is the combined population and Pb is the segment
of the original population that is retained based on their indi-
vidual fitness and Ps is the adopted segment of the population-
based on their individual fitness. The segment of chromosomes
Ps is obtained by applying Stochastic strategy adoption, which
is a result of the spatial interactions of an agent with its
neighbors. It has to be noted that this step applies an implicit



selection of solutions based on their individual fitness, both
inherent and adopted, in order to keep the population stable.

The population Pu is a weighted sum of populations where
βB and βS represent the weight of the biological and so-
cial components of evolution, respectively. Thus, βB , βS ∈
[0, 1], βS + βB = 1 and βB = 1 − βS .

Accordingly, βB = 1 would be a special case where the
agents and their respective populations would be subjected to
standard GA, while βB = 0 is a special case when the agents
and their respective genomes would be evolved purely in a
social context, based on the principles of EGT. The distribution
of βB and βS between 0 and 1 may result in a collection
of agent-based evolutionary models and hence these can be
considered as hyper-parameters of the proposed algorithm.

3) Evaluation using Multi-robot Navigation: Genetic al-
gorithms are often applied to robotics as a method of de-
signing sophisticated robotic controllers that enable a robot
to perform complex tasks and behaviors, removing the need
to manually implement a complicated robotic controller. In
order to evaluate the proposed algorithm, a multi-robotic
navigation problem is used where multiple robots that are
spatially distributed attempt to find the optimum path to reach
a particular destination.

As the navigation space of the robots, X-Y 16*16 grid
matrix was created, including the robot/goal locations, and
obstacles. Value 0 was used to represent an impassable path
and 1 to represent the possible path. The location of the end
goal was defined with the value 4. Assuming this robot could
rotate 45 degrees (main 4 directions and sub 4 directions). At
the initialization, the robots were placed in random positions,
and obstacle coordinates were marked.

The total population size was set to 200 and the maximum
number of iterations were fixed initially. Number of robots
were fixed to 100 and the crossover rate and the mutation
rate were set to 0.5 and 0.05, respectively. The chromosome
length of each chromosome or path was set to 192. Each robot
in the navigational space would evolve its solution population
independently and parallelly with each other. The initial pop-
ulation of each robot consists of completely random solutions
or paths created in each robot. An individual chromosome is
represented by a vector, where binary values were used to
indicate whether a certain point is visited in the path or not.

Algorithm 2 depicts the adoption of the proposed algorithm
to the multi-robot navigation problem.

The Equation 4 gives the fitness function used in measuring
the effectiveness of a particular path in reaching the destina-
tion.

Fj = min(

N−1∑
i=1

f(i, i+ 1) ∗ s(i)), jε[1, n], sε[0, 1]) (4)

f(i, i+ 1) =
√
(xi+1 − xi)2 + (yi+1 − yi)2 (5)

Here, i is the index of the path point in a encoded chromosome
and f(i, i+1) is the length of two path way points with index
i and i+1. The variable j represents a encoded chromosome
in the population and (xi, yi) gives the position of way point

Algorithm 2 Proposed algorithm applied for multi-robot nav-
igation

1: Robots are randomly placed in the navigation space.
2: neighbor assignment
3: Populations are initialized.
4: Fitness values are calculated for each chromosome of each

population.
5: while termination condition not reached do
6: for Each robot’s population do
7: Strategy adoption
8: Crossover
9: Mutation

10: Selection
11: end for
12: end while

i, while (xi+1, yi+1) represents position of the next way point.
N is the total number of way points and n is population size.
The variable s is set to 0 where the selected path point has
obstacles and 1 where there are no obstacles. Feasibility of
the path is indicated by the s and if a path is infeasible, the
function would reduce the fitness of the solution.

In step 2 of Algorithm 2, the radial neighborhood theorem
is applied by drawing a circle with the given radius around
each neighbor to assign the neighbors of each robot. In order
to do this, the euclidean distance from each robot to each
other was calculated. The robots within the given radius were
identified as being in the same neighborhood. Figure 1 depicts
the neighbor assignment using the radial method.

Fig. 1. Neighbor assignment

The algorithm 3 expands on the strategy adoption process
that is referred in the step 7 in Algorithm 2, which is adopted
to the multi-robot navigation problem.



Algorithm 3 Strategy adoption process
Input: Adoption rate

1: Average fitness of the population is calculated for each
robot.

2: Select neighbor for strategy adoption
3: while All neighbors are not visited do
4: Calculate the average fitness difference between each

neighbor and the robot
5: end while
6: Select the neighbor for strategy adoption
7: Adopt the segment of the selected neighbor’s chromo-

somes based on their individual fitness
8: Retain the proportion of inherent chromosomes based on

their fitness.

The strategy adoption process adopts fittest chromosomes
for each robot from the neighboring populations from neigh-
bors that are selected in a stochastic manner. The segment of
chromosomes in the local population to retain and the segment
of chromosomes that are adopted from the selected neighbor
are both determined based on each chromosome’s individual
fitness. Thus, the resulting population is a combination of the
local population and the adopted strategies or solutions from
neighbors. The combined population would then be subjected
to crossover and mutation operations. Thus, the children in
latter evolutionary cycles may inherit characteristics of both
the genetic lineage as well as the adopted strategies from
neighboring populations.

When the stochastic strategy adoption is performed, the
starting point of a path or a solution may be different the
original starting point, even though the solution may have
the same encoded sequence of binary values. This is a result
of the neighboring robot being at a different initial location,
even though it might be in close proximity. However, since the
initial location is always indicated by 1, the adoption of a path
may result in the initial position being adjusted to the current
robot. This adjustment might make certain adopted paths being
infeasible. However, since their fitness may get reduced as a
result, such paths may be at an evolutionarily disadvantageous
position and may get eliminated in the subsequent iterations.

Two sets of experiments were conducted in order to demon-
strate the feasibility and effectiveness of the proposed algo-
rithm. In both sets of experiments, the average convergence
time to reach an optimal path of all the agents in the envi-
ronment, was measured. In the first experiment set, the hyper-
parameter neighborhood radius was adjusted to control the
neighborhood function, while keeping other hyper-parameters
static. In the second experiment set, the adoption rate was
varied to control the effect of the neighboring agents on a pop-
ulation, and its effect on the convergence time was measured.
These experiments were used to compare the performance of
the proposed extended GA algorithm to the standard Genetic
Algorithm based approach. The following section shows the
results of the experiments conducted.

IV. RESULTS

The aim of the experiments was to verify the efficiency of
the proposed algorithm in comparison with the GA based ap-
proach. The proposed algorithm was implemented and run for
200 iterations with varying adoption rates and neighborhood
radius values. Other hyper-parameters such as size population,
chromosome length, and crossover, mutation probability were
set to be static. The average convergence time was computed
by averaging the average convergence time of all populations
within all robots over ten iterations of the evolutionary process.

Figures 2, 3 and 4 depict the variation of the average con-
vergence time when the radius of the neighborhood function
is set to 0.2, 0.5 and 0.7, respectively.

Fig. 2. The variation of the convergence time against neighbor selection
radius. Adoption rate is set to 0.2.

Fig. 3. The variation of the convergence time against neighbor selection
radius. Adoption rate is set to 0.5.

The results indicate that for a given adoption rate, there’s
an optimal radius in the neighborhood function that minimizes



Fig. 4. The variation of the convergence time against neighbor selection
radius. Adoption rate is set to 0.7.

the convergence time. Hence, it’s also apparent that the mem-
bership of the neighborhood has an effect in the optimization
process. The scenario when radius is set to 0 is a special case
where there’s no social effect on the evolution, hence it would
be equivalent to a Genetic algorithm based implementation.

Next, adoption rate was varied while using the radius unit
values, 2, 5 and 7 for each experimental setup. The resulted
graphs are shown in Figures 5, 6 and 7.

Fig. 5. The variation of the convergence time against adoption rate. Neigh-
borhood radius is set to 2.

When the adoption rate is 0, the algorithm behaves as GA,
which is a special case of the proposed algorithm, where only
the GA operators are relevant. Likewise, when the adoption
rate is 1, the population is reset in each iteration by strategy
adoption, bearing some resemblance to the strategy adoption
in EGT. Within the range [0 : 1], there exists infinite number
of optimization models that may incorporate the strategy
adoption in varying degrees.

Fig. 6. The variation of the convergence time against adoption rate. Neigh-
borhood radius is set to 5.

Fig. 7. The variation of the convergence time against adoption rate. Neigh-
borhood radius is set to 7.

Fig. 8. The variation of the convergence time against the adoption rate and
the neighborhood radius



Fig. 9. Performance comparison of the neighborhood radius under variable
adoption rates

TABLE I
PARAMETERS OF THE PROPOSED ALGORITHM

Parameter Value
No of robots 100

Crossover rate 0.5
Mutation rate 0.05

Population size 200
Chromosome length 192

Figure 8 depicts the aggregated results where the variation
of the convergence time is plotted against the adoption rate
and the neighborhood radius. Figure 9 shows a performance
comparison between the purely GA, EGT and the proposed
algorithm. Table 1 shows the parameter settings of proposed
algorithm. Based on the given results, it is apparent that
the optimum convergence time occurs at a non-zero adop-
tion rate. Accordingly, incorporating the stochastic strategy
adoption from neighboring populations seem to improve the
performance of the optimization process and leads to faster
convergence of GA in a multi-agent system. Similarly, when
the adoption rate is 1, which is the case where the agents
operate based on an EGT inspired optimization algorithm, the
convergence time increases. It’s also worth noting that the
specific radius and adoption rate values that minimizes the
convergence time may be problem specific and may not be
generalizable.

V. DISCUSSION

In this work, we proposed an algorithm to incorporate
the strategy adoption in EGT to the GA based populations
in a multi-agent system. The proposed algorithm can be
used to control the effect of strategy adoption through social
interaction by using an adoption rate. Accordingly, GA can
be regarded as a special case of the proposed algorithm.
By varying the strategy adoption rate, it may be possible to
obtain a collection of models that incorporate the biologically

and socially inspired aspects of the evolutionary optimiza-
tion in varying degrees. The results obtained for a multi-
robot navigation application suggests that a non-zero strategy
adoption rate lead to faster convergence in an agent-based
environment, where each agent may have its own population
of chromosomes.

In the robot navigation problem that was used to validate the
proposed algorithm, it was observed that not only the adoption
rate but also the neighborhood distribution played an important
role in the evolutionary process. If the neighborhood radius
is smaller, an agent is likely to select a neighbor of close
proximity to adopt a strategy. Since the starting point of each
path is in close proximity, this may make the adopted strategies
more viable. On the other hand, if the radius is relatively larger,
there are more neighbors to select from, yet a path adopted
from a distant neighbor may not be viable and therefore less
fit. Therefore, the optimal radius may be where these two
conflicting objectives are optimized. It has to be noted that
the use of the hyper-parameter of neighborhood radius may be
measured in a different dimension other than spacial distance.
The dimension in which the radial distance is measured may
depend on the actual application of the proposed algorithm.

The proposed algorithm differs from co-evolutionary tech-
niques as it uses the agent-based stochastic strategy adoption
process to adopt chromosomes from neighboring agents. In the
application that we use to evaluate the proposed algorithm,
each agent has similar yet not the same objective, as the
starting point of each robot is different. The agents depict
autonomous behavior, similar to the EGT based social and
economic models. Thus, it may be more applicable to agent-
based systems that are spatially distributed, where each agent
may have its own population of chromosomes.

VI. CONCLUSION

The objective of this work was to propose an approach
and an algorithm to adopt the EGT based stochastic strategy
adoption to multi-agent GA implementations. It attempts to
unify the EGT based stochastic strategy adoption with GA
based genetic optimization to obtain an extended optimization
algorithm that takes into account the social interaction between
agents. By applying the proposed algorithm to an agent-
based multi-robot navigation problem, it was observed that the
proposed algorithm converges faster than a purely GA based
approach is demonstrated.

While the proposed algorithm uses pre-defined hyper-
parameter values for the strategy adoption rate and the neigh-
borhood radius, it may be possible to learn the optimal values
for these hyper-parameters using a separate optimization pro-
cess. This may be particularly useful if the problem domain
is dynamic, as the optimum strategy adoption rate and the
neighborhood radius may be problem specific.

While the proposed algorithm is applied to a single objective
optimization problem, it may be extended to solve multi-
objective optimization problems by incorporating multiple
games. The ‘game’ in the multi-robot navigation application
used in this work is played by each robot against ‘nature’.



However, other strategic games such as collision avoidance
games where each agent engages in a strategic interaction with
each other, could be incorporated in the strategy adoption stage
to optimize multiple objective functions.

Even though the proposed algorithm is applied in a multi-
agent setting, it may be applied to a single population as
well, by defining the neighborhood of a chromosome using a
distance function to measure the proximity between individual
chromosomes. Such an approach may theoretically converge
with the existing work on co-evolutionary techniques.
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